279 lines
4.4 KiB
C
279 lines
4.4 KiB
C
|
#ifndef __QUAT_H__
|
||
|
#define __QUAT_H__
|
||
|
|
||
|
#include "mathtypes.h"
|
||
|
#include "math.h"
|
||
|
|
||
|
struct Matrix4x4;
|
||
|
class AxisAngle;
|
||
|
|
||
|
class Quaternion
|
||
|
{
|
||
|
public:
|
||
|
union
|
||
|
{
|
||
|
real m_Vec[4];
|
||
|
|
||
|
struct
|
||
|
{
|
||
|
real x, y, z, w;
|
||
|
};
|
||
|
};
|
||
|
|
||
|
void ToMatrix( Matrix4x4 &m ) const;
|
||
|
void ToInverseMatrix( Matrix4x4 &m ) const;
|
||
|
void ToAxisAngle( AxisAngle & a) const;
|
||
|
|
||
|
inline real SquareMagnitude( void ) const;
|
||
|
inline real Magnitude( void ) const;
|
||
|
inline void Normalise( void );
|
||
|
inline void Inverse( void );
|
||
|
inline void UnitInverse( void );
|
||
|
inline void Negate( void );
|
||
|
inline void Log( void );
|
||
|
inline void Exp( void );
|
||
|
|
||
|
inline void Identity( void );
|
||
|
|
||
|
inline real &operator[](int idx);
|
||
|
inline real const &operator[](int idx) const;
|
||
|
|
||
|
inline Quaternion& operator*=( Quaternion const &b );
|
||
|
inline Quaternion& operator+=( Quaternion const &b );
|
||
|
inline Quaternion& operator/=( float const b );
|
||
|
|
||
|
inline friend Quaternion operator*( Quaternion const &a, Quaternion const &b );
|
||
|
inline friend real DotProduct( Quaternion const &a, Quaternion const &b );
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
real Quaternion::SquareMagnitude( void ) const
|
||
|
{
|
||
|
real magsq = x*x + y*y + z*z + w*w;
|
||
|
|
||
|
return magsq;
|
||
|
}
|
||
|
|
||
|
real Quaternion::Magnitude( void ) const
|
||
|
{
|
||
|
real magsq = x*x + y*y + z*z + w*w;
|
||
|
|
||
|
if (magsq == 0.0f)
|
||
|
{
|
||
|
return 0.f;
|
||
|
} else
|
||
|
{
|
||
|
real mag = (real)(sqrt( magsq ));
|
||
|
return mag;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Quaternion::Normalise( void )
|
||
|
{
|
||
|
float mag = Magnitude();
|
||
|
float oomag;
|
||
|
if (mag != 0.0f)
|
||
|
{
|
||
|
oomag = 1.f / mag;
|
||
|
} else
|
||
|
{
|
||
|
oomag = 1.f;
|
||
|
}
|
||
|
x*=oomag;
|
||
|
y*=oomag;
|
||
|
z*=oomag;
|
||
|
w*=oomag;
|
||
|
}
|
||
|
|
||
|
void Quaternion::Inverse( void )
|
||
|
{
|
||
|
float d=SquareMagnitude();
|
||
|
float ood;
|
||
|
if (d != 0.0f)
|
||
|
{
|
||
|
ood = 1.f / d;
|
||
|
} else
|
||
|
{
|
||
|
ood = 1.f;
|
||
|
}
|
||
|
|
||
|
x=-x*ood;
|
||
|
y=-y*ood;
|
||
|
z=-z*ood;
|
||
|
w*=ood;
|
||
|
|
||
|
}
|
||
|
|
||
|
void Quaternion::UnitInverse( void )
|
||
|
{
|
||
|
x = -x;
|
||
|
y = -y;
|
||
|
z = -z;
|
||
|
}
|
||
|
|
||
|
void Quaternion::Negate( void )
|
||
|
{
|
||
|
float mag = Magnitude();
|
||
|
float oomag;
|
||
|
if (mag != 0.0f)
|
||
|
{
|
||
|
oomag = 1.f / mag;
|
||
|
} else
|
||
|
{
|
||
|
oomag = 1.f;
|
||
|
}
|
||
|
|
||
|
x*=-oomag;
|
||
|
y*=-oomag;
|
||
|
z*=-oomag;
|
||
|
w*=oomag;
|
||
|
}
|
||
|
|
||
|
void Quaternion::Identity( void )
|
||
|
{
|
||
|
x = y = z = 0.f;
|
||
|
w = 1.f;
|
||
|
}
|
||
|
|
||
|
void Quaternion::Log( void )
|
||
|
{
|
||
|
float d=(float)sqrt(x*x+y*y+z*z);
|
||
|
if (w!=0.0f)
|
||
|
{
|
||
|
d=atanf(d/w);
|
||
|
} else
|
||
|
{
|
||
|
d=3.1479f*2.0f;
|
||
|
}
|
||
|
|
||
|
x *= d;
|
||
|
y *= d;
|
||
|
z *= d;
|
||
|
w = 0.f;
|
||
|
}
|
||
|
|
||
|
|
||
|
void Quaternion::Exp( void )
|
||
|
{
|
||
|
float d=(float)sqrt(x*x+y*y+z*z);
|
||
|
float d1;
|
||
|
|
||
|
if (d>0.0f)
|
||
|
{
|
||
|
d1=sinf(d)/d;
|
||
|
} else
|
||
|
{
|
||
|
d1=1.0f;
|
||
|
}
|
||
|
|
||
|
x *= d1;
|
||
|
y *= d1;
|
||
|
z *= d1;
|
||
|
w = cosf( d );
|
||
|
}
|
||
|
|
||
|
|
||
|
real &Quaternion::operator[](int idx)
|
||
|
{
|
||
|
return m_Vec[idx];
|
||
|
}
|
||
|
|
||
|
real const &Quaternion::operator[](int idx) const
|
||
|
{
|
||
|
return m_Vec[idx];
|
||
|
}
|
||
|
|
||
|
inline void QuaternionMult(Quaternion &out, Quaternion const &a, Quaternion const &b)
|
||
|
{
|
||
|
out.x = a.w * b.x + a.x * b.w + a.y * b.z - a.z * b.y;
|
||
|
out.y = a.w * b.y + a.y * b.w + a.z * b.x - a.x * b.z;
|
||
|
out.z = a.w * b.z + a.z * b.w + a.x * b.y - a.y * b.x;
|
||
|
out.w = a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z;
|
||
|
}
|
||
|
|
||
|
Quaternion& Quaternion::operator*=(Quaternion const &other)
|
||
|
{
|
||
|
Quaternion copy = *this;
|
||
|
|
||
|
QuaternionMult( *this, copy, other);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
Quaternion& Quaternion::operator+=( Quaternion const &b )
|
||
|
{
|
||
|
x += b.x;
|
||
|
y += b.y;
|
||
|
z += b.z;
|
||
|
w += b.w;
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
Quaternion& Quaternion::operator/=( float const b )
|
||
|
{
|
||
|
x /= b;
|
||
|
y /= b;
|
||
|
z /= b;
|
||
|
w /= b;
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
|
||
|
Quaternion operator*(Quaternion const &a, Quaternion const &b)
|
||
|
{
|
||
|
Quaternion out;
|
||
|
QuaternionMult( out, a, b);
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
inline real DotProduct( Quaternion const &a, Quaternion const &b )
|
||
|
{
|
||
|
return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w;
|
||
|
}
|
||
|
|
||
|
|
||
|
inline void Slerp( Quaternion &out, Quaternion const &a, Quaternion const &b, real t)
|
||
|
{
|
||
|
real ca = a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w;
|
||
|
real flip;
|
||
|
if (ca<0.f)
|
||
|
{
|
||
|
ca = -ca;
|
||
|
flip = -1.f;
|
||
|
} else
|
||
|
{
|
||
|
flip = 1.f;
|
||
|
}
|
||
|
|
||
|
|
||
|
real c0;
|
||
|
real c1;
|
||
|
if ( ca > 0.9999f )
|
||
|
{
|
||
|
c0 = 1.f - t;
|
||
|
c1 = t * flip;
|
||
|
} else
|
||
|
{
|
||
|
real angle = (real)acos( ca );
|
||
|
real sa = (real)sin( angle );
|
||
|
real oosa = 1.f / sa;
|
||
|
c0 = (real)(sin( (1.f - t) * angle ) * oosa);
|
||
|
c1 = (real)(sin( t * angle ) * oosa) * flip;
|
||
|
}
|
||
|
|
||
|
out.x = c0 * a.x + c1 * b.x;
|
||
|
out.y = c0 * a.y + c1 * b.y;
|
||
|
out.z = c0 * a.z + c1 * b.z;
|
||
|
out.w = c0 * a.w + c1 * b.w;
|
||
|
}
|
||
|
|
||
|
void Squad( Quaternion &out, Quaternion const &a, Quaternion const &i0, Quaternion const &i1, Quaternion const &b, real t );
|
||
|
|
||
|
void InnerQuadPoint( Quaternion &out, Quaternion const &a0, Quaternion const &a1, Quaternion const &a2 );
|
||
|
|
||
|
void CubicInterp( Quaternion &out, Quaternion const &a0, Quaternion const &a1, Quaternion const &a2, Quaternion const &a3, real t );
|
||
|
|
||
|
#endif
|