468 lines
13 KiB
C++
468 lines
13 KiB
C++
/**********************************************************************
|
|
C Implementation of Wu's Color Quantizer (v. 2)
|
|
(see Graphics Gems vol. II, pp. 126-133)
|
|
|
|
Author: Wu
|
|
Dept. of Computer Science
|
|
Univ. of Western Ontario
|
|
London, Ontario N6A 5B7
|
|
wu@csd.uwo.ca
|
|
|
|
Algorithm: Greedy orthogonal bipartition of RGB space for variance
|
|
minimization aided by inclusion-exclusion tricks.
|
|
For speed no nearest neighbor search is done. Slightly
|
|
better performance can be expected by more sophisticated
|
|
but more expensive versions.
|
|
|
|
The author thanks Tom Lane at Tom_Lane@G.GP.CS.CMU.EDU for much of
|
|
additional documentation and a cure to a previous bug.
|
|
|
|
Free to distribute, comments and suggestions are appreciated.
|
|
**********************************************************************/
|
|
|
|
#include "Tquant.h"
|
|
#include "gobject.hpp"
|
|
|
|
|
|
#define MAXCOLOR 256
|
|
#define RED 2
|
|
#define GREEN 1
|
|
#define BLUE 0
|
|
|
|
struct box {
|
|
int r0; /* min value, exclusive */
|
|
int r1; /* max value, inclusive */
|
|
int g0;
|
|
int g1;
|
|
int b0;
|
|
int b1;
|
|
int vol;
|
|
};
|
|
|
|
/* Histogram is in elements 1..HISTSIZE along each axis,
|
|
* element 0 is for base or marginal value
|
|
* NB: these must start out 0!
|
|
*/
|
|
|
|
float gm2[33][33][33];
|
|
long int wt[33][33][33], mr[33][33][33], mg[33][33][33], mb[33][33][33];
|
|
unsigned char *Ir, *Ig, *Ib;
|
|
//int size; /*image size*/
|
|
//int K; /*color look-up table size*/
|
|
unsigned short int *Qadd;
|
|
void ClearTables(void);
|
|
|
|
|
|
void ClearTables(void)
|
|
{
|
|
for (int x=0;x<33;x++)
|
|
for (int y=0;y<33;y++)
|
|
for (int z=0;z<33;z++)
|
|
{
|
|
gm2[x][y][z]=0;
|
|
wt[x][y][z]=0;
|
|
mr[x][y][z]=0;
|
|
mg[x][y][z]=0;
|
|
mb[x][y][z]=0;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/* build 3-D color histogram of counts, r/g/b, c^2 */
|
|
void Hist3d(long int* vwt, long int *vmr, long int *vmg, long int *vmb, float *m2, int size)
|
|
{
|
|
register int ind, r, g, b;
|
|
int inr, ing, inb, table[256];
|
|
register long int i;
|
|
|
|
for(i=0; i<256; ++i) table[i]=i*i;
|
|
Qadd = (unsigned short int *)malloc(sizeof(short int)*size);
|
|
if (Qadd==NULL)
|
|
GObject::Error(ERM_OUTOFMEM);
|
|
|
|
for(i=0; i<size; ++i)
|
|
{
|
|
r = Ir[i]; g = Ig[i]; b = Ib[i];
|
|
inr=(r>>3)+1;
|
|
ing=(g>>3)+1;
|
|
inb=(b>>3)+1;
|
|
Qadd[i]=ind=(inr<<10)+(inr<<6)+inr+(ing<<5)+ing+inb;
|
|
/*[inr][ing][inb]*/
|
|
++vwt[ind];
|
|
vmr[ind] += r;
|
|
vmg[ind] += g;
|
|
vmb[ind] += b;
|
|
m2[ind] += (float)(table[r]+table[g]+table[b]);
|
|
}
|
|
}
|
|
|
|
/* At conclusion of the histogram step, we can interpret
|
|
* wt[r][g][b] = sum over voxel of P(c)
|
|
* mr[r][g][b] = sum over voxel of r*P(c) , similarly for mg, mb
|
|
* m2[r][g][b] = sum over voxel of c^2*P(c)
|
|
* Actually each of these should be divided by 'size' to give the usual
|
|
* interpretation of P() as ranging from 0 to 1, but we needn't do that here.
|
|
*/
|
|
|
|
/* We now convert histogram into moments so that we can rapidly calculate
|
|
* the sums of the above quantities over any desired box.
|
|
*/
|
|
|
|
/* compute cumulative moments. */
|
|
void M3d(long int *vwt, long int *vmr, long int *vmg, long int *vmb, float *m2)
|
|
{
|
|
register unsigned short int ind1, ind2;
|
|
register unsigned char i, r, g, b;
|
|
long int line, line_r, line_g, line_b;
|
|
long int area[33], area_r[33], area_g[33], area_b[33];
|
|
float line2, area2[33];
|
|
|
|
for(r=1; r<=32; ++r)
|
|
{
|
|
for(i=0; i<=32; ++i)
|
|
{
|
|
area[i]=area_r[i]=area_g[i]=area_b[i]=0;
|
|
area2[i]=0.f;
|
|
}
|
|
for(g=1; g<=32; ++g)
|
|
{
|
|
line = line_r = line_g = line_b = 0;
|
|
line2 = 0.f;
|
|
for(b=1; b<=32; ++b)
|
|
{
|
|
ind1 = (r<<10) + (r<<6) + r + (g<<5) + g + b; /* [r][g][b] */
|
|
line += vwt[ind1];
|
|
line_r += vmr[ind1];
|
|
line_g += vmg[ind1];
|
|
line_b += vmb[ind1];
|
|
line2 += m2[ind1];
|
|
area[b] += line;
|
|
area_r[b] += line_r;
|
|
area_g[b] += line_g;
|
|
area_b[b] += line_b;
|
|
area2[b] += line2;
|
|
ind2 = ind1 - 1089; /* [r-1][g][b] */
|
|
vwt[ind1] = vwt[ind2] + area[b];
|
|
vmr[ind1] = vmr[ind2] + area_r[b];
|
|
vmg[ind1] = vmg[ind2] + area_g[b];
|
|
vmb[ind1] = vmb[ind2] + area_b[b];
|
|
m2[ind1] = m2[ind2] + area2[b];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Compute sum over a box of any given statistic */
|
|
long int Vol(box *cube, long int *mmt)
|
|
{
|
|
return( mmt[((cube->r1)*33*33)+((cube->g1)*33)+(cube->b1)]
|
|
-mmt[((cube->r1)*33*33)+((cube->g1)*33)+(cube->b0)]
|
|
-mmt[((cube->r1)*33*33)+((cube->g0)*33)+(cube->b1)]
|
|
+mmt[((cube->r1)*33*33)+((cube->g0)*33)+(cube->b0)]
|
|
-mmt[((cube->r0)*33*33)+((cube->g1)*33)+(cube->b1)]
|
|
+mmt[((cube->r0)*33*33)+((cube->g1)*33)+(cube->b0)]
|
|
+mmt[((cube->r0)*33*33)+((cube->g0)*33)+(cube->b1)]
|
|
-mmt[((cube->r0)*33*33)+((cube->g0)*33)+(cube->b0)] );
|
|
}
|
|
|
|
/* The next two routines allow a slightly more efficient calculation
|
|
* of Vol() for a proposed subbox of a given box. The sum of Top()
|
|
* and Bottom() is the Vol() of a subbox split in the given direction
|
|
* and with the specified new upper bound.
|
|
*/
|
|
|
|
/* Compute part of Vol(cube, mmt) that doesn't depend on r1, g1, or b1 */
|
|
/* (depending on dir) */
|
|
long int Bottom(box *cube, unsigned char dir, long int *mmt)
|
|
{
|
|
switch(dir){
|
|
case RED:
|
|
return( -mmt[((cube->r0)*33*33)+((cube->g1)*33)+(cube->b1)]
|
|
+mmt[((cube->r0)*33*33)+((cube->g1)*33)+(cube->b0)]
|
|
+mmt[((cube->r0)*33*33)+((cube->g0)*33)+(cube->b1)]
|
|
-mmt[((cube->r0)*33*33)+((cube->g0)*33)+(cube->b0)] );
|
|
break;
|
|
case GREEN:
|
|
return( -mmt[((cube->r1)*33*33)+((cube->g0)*33)+(cube->b1)]
|
|
+mmt[((cube->r1)*33*33)+((cube->g0)*33)+(cube->b0)]
|
|
+mmt[((cube->r0)*33*33)+((cube->g0)*33)+(cube->b1)]
|
|
-mmt[((cube->r0)*33*33)+((cube->g0)*33)+(cube->b0)] );
|
|
break;
|
|
case BLUE:
|
|
return( -mmt[((cube->r1)*33*33)+((cube->g1)*33)+(cube->b0)]
|
|
+mmt[((cube->r1)*33*33)+((cube->g0)*33)+(cube->b0)]
|
|
+mmt[((cube->r0)*33*33)+((cube->g1)*33)+(cube->b0)]
|
|
-mmt[((cube->r0)*33*33)+((cube->g0)*33)+(cube->b0)] );
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
/* Compute remainder of Vol(cube, mmt), substituting pos for */
|
|
/* r1, g1, or b1 (depending on dir) */
|
|
long int Top(box *cube, unsigned char dir, int pos, long int *mmt)
|
|
{
|
|
switch(dir){
|
|
case RED:
|
|
return( mmt[(pos*33*33)+(cube->g1*33)+cube->b1]
|
|
-mmt[(pos*33*33)+(cube->g1*33)+cube->b0]
|
|
-mmt[(pos*33*33)+(cube->g0*33)+cube->b1]
|
|
+mmt[(pos*33*33)+(cube->g0*33)+cube->b0] );
|
|
break;
|
|
case GREEN:
|
|
return( mmt[((cube->r1)*33*33)+(pos*33)+cube->b1]
|
|
-mmt[((cube->r1)*33*33)+(pos*33)+cube->b0]
|
|
-mmt[((cube->r0)*33*33)+(pos*33)+cube->b1]
|
|
+mmt[((cube->r0)*33*33)+(pos*33)+cube->b0] );
|
|
break;
|
|
case BLUE:
|
|
return( mmt[(cube->r1*33*33)+(cube->g1*33)+pos]
|
|
-mmt[(cube->r1*33*33)+(cube->g0*33)+pos]
|
|
-mmt[(cube->r0*33*33)+(cube->g1*33)+pos]
|
|
+mmt[(cube->r0*33*33)+(cube->g0*33)+pos] );
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
/* Compute the weighted variance of a box */
|
|
/* NB: as with the raw statistics, this is really the variance * size */
|
|
float Var(box *cube)
|
|
{
|
|
float dr, dg, db, xx;
|
|
|
|
dr = (float)Vol(cube, &mr[0][0][0]);
|
|
dg = (float)Vol(cube, &mg[0][0][0]);
|
|
db = (float)Vol(cube, &mb[0][0][0]);
|
|
xx = gm2[cube->r1][cube->g1][cube->b1]
|
|
-gm2[cube->r1][cube->g1][cube->b0]
|
|
-gm2[cube->r1][cube->g0][cube->b1]
|
|
+gm2[cube->r1][cube->g0][cube->b0]
|
|
-gm2[cube->r0][cube->g1][cube->b1]
|
|
+gm2[cube->r0][cube->g1][cube->b0]
|
|
+gm2[cube->r0][cube->g0][cube->b1]
|
|
-gm2[cube->r0][cube->g0][cube->b0];
|
|
|
|
return( xx - (dr*dr+dg*dg+db*db)/(float)Vol(cube,&wt[0][0][0]) );
|
|
}
|
|
|
|
/* We want to minimize the sum of the variances of two subboxes.
|
|
* The sum(c^2) terms can be ignored since their sum over both subboxes
|
|
* is the same (the sum for the whole box) no matter where we split.
|
|
* The remaining terms have a minus sign in the variance formula,
|
|
* so we drop the minus sign and MAXIMIZE the sum of the two terms.
|
|
*/
|
|
|
|
float Maximize(box *cube, unsigned char dir, int first, int last, int *cut,long int whole_r, long int whole_g, long int whole_b, long int whole_w)
|
|
{
|
|
register long int half_r, half_g, half_b, half_w;
|
|
long int base_r, base_g, base_b, base_w;
|
|
register int i;
|
|
register float temp, max;
|
|
|
|
base_r = Bottom(cube, dir, &mr[0][0][0]);
|
|
base_g = Bottom(cube, dir, &mg[0][0][0]);
|
|
base_b = Bottom(cube, dir, &mb[0][0][0]);
|
|
base_w = Bottom(cube, dir, &wt[0][0][0]);
|
|
max = 0.0;
|
|
*cut = -1;
|
|
for(i=first; i<last; ++i)
|
|
{
|
|
half_r = base_r + Top(cube, dir, i, &mr[0][0][0]);
|
|
half_g = base_g + Top(cube, dir, i, &mg[0][0][0]);
|
|
half_b = base_b + Top(cube, dir, i, &mb[0][0][0]);
|
|
half_w = base_w + Top(cube, dir, i, &wt[0][0][0]);
|
|
/* now half_x is sum over lower half of box, if split at i */
|
|
if (half_w == 0) { /* subbox could be empty of pixels! */
|
|
continue; /* never split into an empty box */
|
|
} else
|
|
temp = ((float)half_r*half_r + (float)half_g*half_g +
|
|
(float)half_b*half_b)/half_w;
|
|
|
|
half_r = whole_r - half_r;
|
|
half_g = whole_g - half_g;
|
|
half_b = whole_b - half_b;
|
|
half_w = whole_w - half_w;
|
|
if (half_w == 0) { /* subbox could be empty of pixels! */
|
|
continue; /* never split into an empty box */
|
|
} else
|
|
temp += ((float)half_r*half_r + (float)half_g*half_g +
|
|
(float)half_b*half_b)/half_w;
|
|
|
|
if (temp > max) {max=temp; *cut=i;}
|
|
}
|
|
return(max);
|
|
}
|
|
|
|
int Cut(box *set1, box *set2)
|
|
{
|
|
unsigned char dir;
|
|
int cutr, cutg, cutb;
|
|
float maxr, maxg, maxb;
|
|
long int whole_r, whole_g, whole_b, whole_w;
|
|
|
|
whole_r = Vol(set1, &mr[0][0][0]);
|
|
whole_g = Vol(set1, &mg[0][0][0]);
|
|
whole_b = Vol(set1, &mb[0][0][0]);
|
|
whole_w = Vol(set1, &wt[0][0][0]);
|
|
|
|
maxr = Maximize(set1, RED, set1->r0+1, set1->r1, &cutr,
|
|
whole_r, whole_g, whole_b, whole_w);
|
|
maxg = Maximize(set1, GREEN, set1->g0+1, set1->g1, &cutg,
|
|
whole_r, whole_g, whole_b, whole_w);
|
|
maxb = Maximize(set1, BLUE, set1->b0+1, set1->b1, &cutb,
|
|
whole_r, whole_g, whole_b, whole_w);
|
|
|
|
if( (maxr>=maxg)&&(maxr>=maxb) )
|
|
{
|
|
dir = RED;
|
|
if (cutr < 0) return 0; /* can't split the box */
|
|
}else
|
|
if( (maxg>=maxr)&&(maxg>=maxb) )
|
|
dir = GREEN;
|
|
else
|
|
dir = BLUE;
|
|
|
|
set2->r1 = set1->r1;
|
|
set2->g1 = set1->g1;
|
|
set2->b1 = set1->b1;
|
|
|
|
switch (dir){
|
|
case RED:
|
|
set2->r0 = set1->r1 = cutr;
|
|
set2->g0 = set1->g0;
|
|
set2->b0 = set1->b0;
|
|
break;
|
|
case GREEN:
|
|
set2->g0 = set1->g1 = cutg;
|
|
set2->r0 = set1->r0;
|
|
set2->b0 = set1->b0;
|
|
break;
|
|
case BLUE:
|
|
set2->b0 = set1->b1 = cutb;
|
|
set2->r0 = set1->r0;
|
|
set2->g0 = set1->g0;
|
|
break;
|
|
}
|
|
set1->vol=(set1->r1-set1->r0)*(set1->g1-set1->g0)*(set1->b1-set1->b0);
|
|
set2->vol=(set2->r1-set2->r0)*(set2->g1-set2->g0)*(set2->b1-set2->b0);
|
|
return 1;
|
|
}
|
|
|
|
|
|
void Mark(box *cube, int label, unsigned char *tag)
|
|
{
|
|
register int r, g, b;
|
|
|
|
for(r=cube->r0+1; r<=cube->r1; ++r)
|
|
for(g=cube->g0+1; g<=cube->g1; ++g)
|
|
for(b=cube->b0+1; b<=cube->b1; ++b)
|
|
tag[(r<<10) + (r<<6) + r + (g<<5) + g + b] = label;
|
|
}
|
|
|
|
|
|
|
|
void tquant(BYTE* Src, BYTE* Dst, BYTE* Pal, int K, int size)
|
|
{
|
|
struct box cube[MAXCOLOR];
|
|
unsigned char *tag;
|
|
unsigned char lut_r[MAXCOLOR], lut_g[MAXCOLOR], lut_b[MAXCOLOR];
|
|
int next;
|
|
register long int i, weight;
|
|
register int k;
|
|
float vv[MAXCOLOR], temp;
|
|
|
|
ClearTables();
|
|
|
|
/* input R,G,B components into Ir, Ig, Ib;
|
|
set size to width*height */
|
|
|
|
// screen_debug_msg("Reducing to %d cols",K);
|
|
|
|
|
|
Ir=(BYTE*)malloc(size);
|
|
Ig=(BYTE*)malloc(size);
|
|
Ib=(BYTE*)malloc(size);
|
|
|
|
/* Split in data into RGB buffers */
|
|
for(i=0;i<size;i++)
|
|
{
|
|
Ir[i]=*Src++;
|
|
Ig[i]=*Src++;
|
|
Ib[i]=*Src++;
|
|
}
|
|
|
|
Hist3d(&wt[0][0][0], &mr[0][0][0], &mg[0][0][0], &mb[0][0][0], &gm2[0][0][0], size);
|
|
free(Ig); free(Ib); free(Ir);
|
|
|
|
M3d(&wt[0][0][0], &mr[0][0][0], &mg[0][0][0], &mb[0][0][0], &gm2[0][0][0]);
|
|
|
|
cube[0].r0 = cube[0].g0 = cube[0].b0 = 0;
|
|
cube[0].r1 = cube[0].g1 = cube[0].b1 = 32;
|
|
next = 0;
|
|
|
|
for(i=1; i<K; ++i)
|
|
{
|
|
if (Cut(&cube[next], &cube[i])) {
|
|
/* volume test ensures we won't try to cut one-cell box */
|
|
vv[next] = (cube[next].vol>1) ? Var(&cube[next]) : 0.f;
|
|
vv[i] = (cube[i].vol>1) ? Var(&cube[i]) : 0.f;
|
|
} else {
|
|
vv[next] = 0.0; /* don't try to split this box again */
|
|
i--; /* didn't create box i */
|
|
}
|
|
next = 0; temp = vv[0];
|
|
for(k=1; k<=i; ++k)
|
|
if (vv[k] > temp) {
|
|
temp = vv[k]; next = k;
|
|
}
|
|
if (temp <= 0.0) {
|
|
K = i+1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* the space for array gm2 can be freed now */
|
|
|
|
tag = (unsigned char *)malloc(33*33*33);
|
|
if (tag==NULL)
|
|
GObject::Error(ERM_OUTOFMEM);
|
|
|
|
for(k=0; k<K; ++k){
|
|
Mark(&cube[k], k, tag);
|
|
weight = Vol(&cube[k], &wt[0][0][0]);
|
|
if (weight) {
|
|
lut_r[k] = (unsigned char)(Vol(&cube[k], &mr[0][0][0]) / weight);
|
|
lut_g[k] = (unsigned char)(Vol(&cube[k], &mg[0][0][0]) / weight);
|
|
lut_b[k] = (unsigned char)(Vol(&cube[k], &mb[0][0][0]) / weight);
|
|
}
|
|
else{
|
|
lut_r[k] = lut_g[k] = lut_b[k] = 0;
|
|
}
|
|
}
|
|
|
|
for(i=0; i<size; ++i) Qadd[i] = tag[Qadd[i]];
|
|
|
|
/* output lut_r, lut_g, lut_b as color look-up table contents,
|
|
Qadd as the quantized image (array of table addresses). */
|
|
|
|
for(i=0; i<size; ++i) *Dst++ = (unsigned char)Qadd[i];
|
|
free(Qadd);
|
|
|
|
for(i=0;i<K;i++)
|
|
{
|
|
*Pal++=lut_r[i];
|
|
*Pal++=lut_g[i];
|
|
*Pal++=lut_b[i];
|
|
}
|
|
|
|
free(tag);
|
|
}
|
|
|