1
0
mirror of https://gitlab.com/kelteseth/ScreenPlay.git synced 2024-11-07 11:32:42 +01:00
ScreenPlay/Common/ProtocolBuffer/google/protobuf/message.h
2018-11-17 11:31:38 +01:00

1177 lines
53 KiB
C++

// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// Defines Message, the abstract interface implemented by non-lite
// protocol message objects. Although it's possible to implement this
// interface manually, most users will use the protocol compiler to
// generate implementations.
//
// Example usage:
//
// Say you have a message defined as:
//
// message Foo {
// optional string text = 1;
// repeated int32 numbers = 2;
// }
//
// Then, if you used the protocol compiler to generate a class from the above
// definition, you could use it like so:
//
// string data; // Will store a serialized version of the message.
//
// {
// // Create a message and serialize it.
// Foo foo;
// foo.set_text("Hello World!");
// foo.add_numbers(1);
// foo.add_numbers(5);
// foo.add_numbers(42);
//
// foo.SerializeToString(&data);
// }
//
// {
// // Parse the serialized message and check that it contains the
// // correct data.
// Foo foo;
// foo.ParseFromString(data);
//
// assert(foo.text() == "Hello World!");
// assert(foo.numbers_size() == 3);
// assert(foo.numbers(0) == 1);
// assert(foo.numbers(1) == 5);
// assert(foo.numbers(2) == 42);
// }
//
// {
// // Same as the last block, but do it dynamically via the Message
// // reflection interface.
// Message* foo = new Foo;
// const Descriptor* descriptor = foo->GetDescriptor();
//
// // Get the descriptors for the fields we're interested in and verify
// // their types.
// const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
// assert(text_field != NULL);
// assert(text_field->type() == FieldDescriptor::TYPE_STRING);
// assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
// const FieldDescriptor* numbers_field = descriptor->
// FindFieldByName("numbers");
// assert(numbers_field != NULL);
// assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
// assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
//
// // Parse the message.
// foo->ParseFromString(data);
//
// // Use the reflection interface to examine the contents.
// const Reflection* reflection = foo->GetReflection();
// assert(reflection->GetString(*foo, text_field) == "Hello World!");
// assert(reflection->FieldSize(*foo, numbers_field) == 3);
// assert(reflection->GetRepeatedInt32(*foo, numbers_field, 0) == 1);
// assert(reflection->GetRepeatedInt32(*foo, numbers_field, 1) == 5);
// assert(reflection->GetRepeatedInt32(*foo, numbers_field, 2) == 42);
//
// delete foo;
// }
#ifndef GOOGLE_PROTOBUF_MESSAGE_H__
#define GOOGLE_PROTOBUF_MESSAGE_H__
#include <iosfwd>
#include <string>
#include <type_traits>
#include <vector>
#include <google/protobuf/arena.h>
#include <google/protobuf/message_lite.h>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/descriptor.h>
#define GOOGLE_PROTOBUF_HAS_ONEOF
#define GOOGLE_PROTOBUF_HAS_ARENAS
namespace google {
namespace protobuf {
// Defined in this file.
class Message;
class Reflection;
class MessageFactory;
// Defined in other files.
class MapKey;
class MapValueRef;
class MapIterator;
class MapReflectionTester;
namespace internal {
class MapFieldBase;
}
class UnknownFieldSet; // unknown_field_set.h
namespace io {
class ZeroCopyInputStream; // zero_copy_stream.h
class ZeroCopyOutputStream; // zero_copy_stream.h
class CodedInputStream; // coded_stream.h
class CodedOutputStream; // coded_stream.h
}
namespace python {
class MapReflectionFriend; // scalar_map_container.h
}
namespace expr {
class CelMapReflectionFriend; // field_backed_map_impl.cc
}
namespace internal {
class ReflectionOps; // reflection_ops.h
class MapKeySorter; // wire_format.cc
class WireFormat; // wire_format.h
class MapFieldReflectionTest; // map_test.cc
}
template<typename T>
class RepeatedField; // repeated_field.h
template<typename T>
class RepeatedPtrField; // repeated_field.h
// A container to hold message metadata.
struct Metadata {
const Descriptor* descriptor;
const Reflection* reflection;
};
// Abstract interface for protocol messages.
//
// See also MessageLite, which contains most every-day operations. Message
// adds descriptors and reflection on top of that.
//
// The methods of this class that are virtual but not pure-virtual have
// default implementations based on reflection. Message classes which are
// optimized for speed will want to override these with faster implementations,
// but classes optimized for code size may be happy with keeping them. See
// the optimize_for option in descriptor.proto.
class LIBPROTOBUF_EXPORT Message : public MessageLite {
public:
inline Message() {}
virtual ~Message() {}
// Basic Operations ------------------------------------------------
// Construct a new instance of the same type. Ownership is passed to the
// caller. (This is also defined in MessageLite, but is defined again here
// for return-type covariance.)
virtual Message* New() const = 0;
// Construct a new instance on the arena. Ownership is passed to the caller
// if arena is a NULL. Default implementation allows for API compatibility
// during the Arena transition.
virtual Message* New(::google::protobuf::Arena* arena) const {
Message* message = New();
if (arena != NULL) {
arena->Own(message);
}
return message;
}
// Make this message into a copy of the given message. The given message
// must have the same descriptor, but need not necessarily be the same class.
// By default this is just implemented as "Clear(); MergeFrom(from);".
virtual void CopyFrom(const Message& from);
// Merge the fields from the given message into this message. Singular
// fields will be overwritten, if specified in from, except for embedded
// messages which will be merged. Repeated fields will be concatenated.
// The given message must be of the same type as this message (i.e. the
// exact same class).
virtual void MergeFrom(const Message& from);
// Verifies that IsInitialized() returns true. GOOGLE_CHECK-fails otherwise, with
// a nice error message.
void CheckInitialized() const;
// Slowly build a list of all required fields that are not set.
// This is much, much slower than IsInitialized() as it is implemented
// purely via reflection. Generally, you should not call this unless you
// have already determined that an error exists by calling IsInitialized().
void FindInitializationErrors(std::vector<string>* errors) const;
// Like FindInitializationErrors, but joins all the strings, delimited by
// commas, and returns them.
string InitializationErrorString() const;
// Clears all unknown fields from this message and all embedded messages.
// Normally, if unknown tag numbers are encountered when parsing a message,
// the tag and value are stored in the message's UnknownFieldSet and
// then written back out when the message is serialized. This allows servers
// which simply route messages to other servers to pass through messages
// that have new field definitions which they don't yet know about. However,
// this behavior can have security implications. To avoid it, call this
// method after parsing.
//
// See Reflection::GetUnknownFields() for more on unknown fields.
virtual void DiscardUnknownFields();
// Computes (an estimate of) the total number of bytes currently used for
// storing the message in memory. The default implementation calls the
// Reflection object's SpaceUsed() method.
//
// SpaceUsed() is noticeably slower than ByteSize(), as it is implemented
// using reflection (rather than the generated code implementation for
// ByteSize()). Like ByteSize(), its CPU time is linear in the number of
// fields defined for the proto.
virtual size_t SpaceUsedLong() const;
PROTOBUF_RUNTIME_DEPRECATED("Please use SpaceUsedLong() instead")
int SpaceUsed() const { return internal::ToIntSize(SpaceUsedLong()); }
// Debugging & Testing----------------------------------------------
// Generates a human readable form of this message, useful for debugging
// and other purposes.
string DebugString() const;
// Like DebugString(), but with less whitespace.
string ShortDebugString() const;
// Like DebugString(), but do not escape UTF-8 byte sequences.
string Utf8DebugString() const;
// Convenience function useful in GDB. Prints DebugString() to stdout.
void PrintDebugString() const;
// Heavy I/O -------------------------------------------------------
// Additional parsing and serialization methods not implemented by
// MessageLite because they are not supported by the lite library.
// Parse a protocol buffer from a file descriptor. If successful, the entire
// input will be consumed.
bool ParseFromFileDescriptor(int file_descriptor);
// Like ParseFromFileDescriptor(), but accepts messages that are missing
// required fields.
bool ParsePartialFromFileDescriptor(int file_descriptor);
// Parse a protocol buffer from a C++ istream. If successful, the entire
// input will be consumed.
bool ParseFromIstream(std::istream* input);
// Like ParseFromIstream(), but accepts messages that are missing
// required fields.
bool ParsePartialFromIstream(std::istream* input);
// Serialize the message and write it to the given file descriptor. All
// required fields must be set.
bool SerializeToFileDescriptor(int file_descriptor) const;
// Like SerializeToFileDescriptor(), but allows missing required fields.
bool SerializePartialToFileDescriptor(int file_descriptor) const;
// Serialize the message and write it to the given C++ ostream. All
// required fields must be set.
bool SerializeToOstream(std::ostream* output) const;
// Like SerializeToOstream(), but allows missing required fields.
bool SerializePartialToOstream(std::ostream* output) const;
// Reflection-based methods ----------------------------------------
// These methods are pure-virtual in MessageLite, but Message provides
// reflection-based default implementations.
virtual string GetTypeName() const;
virtual void Clear();
virtual bool IsInitialized() const;
virtual void CheckTypeAndMergeFrom(const MessageLite& other);
virtual bool MergePartialFromCodedStream(io::CodedInputStream* input);
virtual size_t ByteSizeLong() const;
virtual void SerializeWithCachedSizes(io::CodedOutputStream* output) const;
private:
// This is called only by the default implementation of ByteSize(), to
// update the cached size. If you override ByteSize(), you do not need
// to override this. If you do not override ByteSize(), you MUST override
// this; the default implementation will crash.
//
// The method is private because subclasses should never call it; only
// override it. Yes, C++ lets you do that. Crazy, huh?
virtual void SetCachedSize(int size) const;
public:
// Introspection ---------------------------------------------------
// Typedef for backwards-compatibility.
typedef google::protobuf::Reflection Reflection;
// Get a non-owning pointer to a Descriptor for this message's type. This
// describes what fields the message contains, the types of those fields, etc.
// This object remains property of the Message.
const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
// Get a non-owning pointer to the Reflection interface for this Message,
// which can be used to read and modify the fields of the Message dynamically
// (in other words, without knowing the message type at compile time). This
// object remains property of the Message.
//
// This method remains virtual in case a subclass does not implement
// reflection and wants to override the default behavior.
virtual const Reflection* GetReflection() const final {
return GetMetadata().reflection;
}
protected:
// Get a struct containing the metadata for the Message. Most subclasses only
// need to implement this method, rather than the GetDescriptor() and
// GetReflection() wrappers.
virtual Metadata GetMetadata() const = 0;
private:
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
};
namespace internal {
// Forward-declare interfaces used to implement RepeatedFieldRef.
// These are protobuf internals that users shouldn't care about.
class RepeatedFieldAccessor;
} // namespace internal
// Forward-declare RepeatedFieldRef templates. The second type parameter is
// used for SFINAE tricks. Users should ignore it.
template<typename T, typename Enable = void>
class RepeatedFieldRef;
template<typename T, typename Enable = void>
class MutableRepeatedFieldRef;
// This interface contains methods that can be used to dynamically access
// and modify the fields of a protocol message. Their semantics are
// similar to the accessors the protocol compiler generates.
//
// To get the Reflection for a given Message, call Message::GetReflection().
//
// This interface is separate from Message only for efficiency reasons;
// the vast majority of implementations of Message will share the same
// implementation of Reflection (GeneratedMessageReflection,
// defined in generated_message.h), and all Messages of a particular class
// should share the same Reflection object (though you should not rely on
// the latter fact).
//
// There are several ways that these methods can be used incorrectly. For
// example, any of the following conditions will lead to undefined
// results (probably assertion failures):
// - The FieldDescriptor is not a field of this message type.
// - The method called is not appropriate for the field's type. For
// each field type in FieldDescriptor::TYPE_*, there is only one
// Get*() method, one Set*() method, and one Add*() method that is
// valid for that type. It should be obvious which (except maybe
// for TYPE_BYTES, which are represented using strings in C++).
// - A Get*() or Set*() method for singular fields is called on a repeated
// field.
// - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
// field.
// - The Message object passed to any method is not of the right type for
// this Reflection object (i.e. message.GetReflection() != reflection).
//
// You might wonder why there is not any abstract representation for a field
// of arbitrary type. E.g., why isn't there just a "GetField()" method that
// returns "const Field&", where "Field" is some class with accessors like
// "GetInt32Value()". The problem is that someone would have to deal with
// allocating these Field objects. For generated message classes, having to
// allocate space for an additional object to wrap every field would at least
// double the message's memory footprint, probably worse. Allocating the
// objects on-demand, on the other hand, would be expensive and prone to
// memory leaks. So, instead we ended up with this flat interface.
class LIBPROTOBUF_EXPORT Reflection {
public:
inline Reflection() {}
virtual ~Reflection();
// Get the UnknownFieldSet for the message. This contains fields which
// were seen when the Message was parsed but were not recognized according
// to the Message's definition. For proto3 protos, this method will always
// return an empty UnknownFieldSet.
virtual const UnknownFieldSet& GetUnknownFields(
const Message& message) const = 0;
// Get a mutable pointer to the UnknownFieldSet for the message. This
// contains fields which were seen when the Message was parsed but were not
// recognized according to the Message's definition. For proto3 protos, this
// method will return a valid mutable UnknownFieldSet pointer but modifying
// it won't affect the serialized bytes of the message.
virtual UnknownFieldSet* MutableUnknownFields(Message* message) const = 0;
// Estimate the amount of memory used by the message object.
virtual size_t SpaceUsedLong(const Message& message) const = 0;
PROTOBUF_RUNTIME_DEPRECATED("Please use SpaceUsedLong() instead")
int SpaceUsed(const Message& message) const {
return internal::ToIntSize(SpaceUsedLong(message));
}
// Check if the given non-repeated field is set.
virtual bool HasField(const Message& message,
const FieldDescriptor* field) const = 0;
// Get the number of elements of a repeated field.
virtual int FieldSize(const Message& message,
const FieldDescriptor* field) const = 0;
// Clear the value of a field, so that HasField() returns false or
// FieldSize() returns zero.
virtual void ClearField(Message* message,
const FieldDescriptor* field) const = 0;
// Check if the oneof is set. Returns true if any field in oneof
// is set, false otherwise.
// TODO(jieluo) - make it pure virtual after updating all
// the subclasses.
virtual bool HasOneof(const Message& /*message*/,
const OneofDescriptor* /*oneof_descriptor*/) const {
return false;
}
virtual void ClearOneof(Message* /*message*/,
const OneofDescriptor* /*oneof_descriptor*/) const {}
// Returns the field descriptor if the oneof is set. NULL otherwise.
// TODO(jieluo) - make it pure virtual.
virtual const FieldDescriptor* GetOneofFieldDescriptor(
const Message& /*message*/,
const OneofDescriptor* /*oneof_descriptor*/) const {
return NULL;
}
// Removes the last element of a repeated field.
// We don't provide a way to remove any element other than the last
// because it invites inefficient use, such as O(n^2) filtering loops
// that should have been O(n). If you want to remove an element other
// than the last, the best way to do it is to re-arrange the elements
// (using Swap()) so that the one you want removed is at the end, then
// call RemoveLast().
virtual void RemoveLast(Message* message,
const FieldDescriptor* field) const = 0;
// Removes the last element of a repeated message field, and returns the
// pointer to the caller. Caller takes ownership of the returned pointer.
virtual Message* ReleaseLast(Message* message,
const FieldDescriptor* field) const = 0;
// Swap the complete contents of two messages.
virtual void Swap(Message* message1, Message* message2) const = 0;
// Swap fields listed in fields vector of two messages.
virtual void SwapFields(Message* message1,
Message* message2,
const std::vector<const FieldDescriptor*>& fields)
const = 0;
// Swap two elements of a repeated field.
virtual void SwapElements(Message* message,
const FieldDescriptor* field,
int index1,
int index2) const = 0;
// List all fields of the message which are currently set, except for unknown
// fields, but including extension known to the parser (i.e. compiled in).
// Singular fields will only be listed if HasField(field) would return true
// and repeated fields will only be listed if FieldSize(field) would return
// non-zero. Fields (both normal fields and extension fields) will be listed
// ordered by field number.
// Use Reflection::GetUnknownFields() or message.unknown_fields() to also get
// access to fields/extensions unknown to the parser.
virtual void ListFields(
const Message& message,
std::vector<const FieldDescriptor*>* output) const = 0;
// Singular field getters ------------------------------------------
// These get the value of a non-repeated field. They return the default
// value for fields that aren't set.
virtual int32 GetInt32 (const Message& message,
const FieldDescriptor* field) const = 0;
virtual int64 GetInt64 (const Message& message,
const FieldDescriptor* field) const = 0;
virtual uint32 GetUInt32(const Message& message,
const FieldDescriptor* field) const = 0;
virtual uint64 GetUInt64(const Message& message,
const FieldDescriptor* field) const = 0;
virtual float GetFloat (const Message& message,
const FieldDescriptor* field) const = 0;
virtual double GetDouble(const Message& message,
const FieldDescriptor* field) const = 0;
virtual bool GetBool (const Message& message,
const FieldDescriptor* field) const = 0;
virtual string GetString(const Message& message,
const FieldDescriptor* field) const = 0;
virtual const EnumValueDescriptor* GetEnum(
const Message& message, const FieldDescriptor* field) const = 0;
// GetEnumValue() returns an enum field's value as an integer rather than
// an EnumValueDescriptor*. If the integer value does not correspond to a
// known value descriptor, a new value descriptor is created. (Such a value
// will only be present when the new unknown-enum-value semantics are enabled
// for a message.)
virtual int GetEnumValue(
const Message& message, const FieldDescriptor* field) const = 0;
// See MutableMessage() for the meaning of the "factory" parameter.
virtual const Message& GetMessage(const Message& message,
const FieldDescriptor* field,
MessageFactory* factory = NULL) const = 0;
// Get a string value without copying, if possible.
//
// GetString() necessarily returns a copy of the string. This can be
// inefficient when the string is already stored in a string object in the
// underlying message. GetStringReference() will return a reference to the
// underlying string in this case. Otherwise, it will copy the string into
// *scratch and return that.
//
// Note: It is perfectly reasonable and useful to write code like:
// str = reflection->GetStringReference(field, &str);
// This line would ensure that only one copy of the string is made
// regardless of the field's underlying representation. When initializing
// a newly-constructed string, though, it's just as fast and more readable
// to use code like:
// string str = reflection->GetString(message, field);
virtual const string& GetStringReference(const Message& message,
const FieldDescriptor* field,
string* scratch) const = 0;
// Singular field mutators -----------------------------------------
// These mutate the value of a non-repeated field.
virtual void SetInt32 (Message* message,
const FieldDescriptor* field, int32 value) const = 0;
virtual void SetInt64 (Message* message,
const FieldDescriptor* field, int64 value) const = 0;
virtual void SetUInt32(Message* message,
const FieldDescriptor* field, uint32 value) const = 0;
virtual void SetUInt64(Message* message,
const FieldDescriptor* field, uint64 value) const = 0;
virtual void SetFloat (Message* message,
const FieldDescriptor* field, float value) const = 0;
virtual void SetDouble(Message* message,
const FieldDescriptor* field, double value) const = 0;
virtual void SetBool (Message* message,
const FieldDescriptor* field, bool value) const = 0;
virtual void SetString(Message* message,
const FieldDescriptor* field,
const string& value) const = 0;
virtual void SetEnum (Message* message,
const FieldDescriptor* field,
const EnumValueDescriptor* value) const = 0;
// Set an enum field's value with an integer rather than EnumValueDescriptor.
// If the value does not correspond to a known enum value, either behavior is
// undefined (for proto2 messages), or the value is accepted silently for
// messages with new unknown-enum-value semantics.
virtual void SetEnumValue(Message* message,
const FieldDescriptor* field,
int value) const = 0;
// Get a mutable pointer to a field with a message type. If a MessageFactory
// is provided, it will be used to construct instances of the sub-message;
// otherwise, the default factory is used. If the field is an extension that
// does not live in the same pool as the containing message's descriptor (e.g.
// it lives in an overlay pool), then a MessageFactory must be provided.
// If you have no idea what that meant, then you probably don't need to worry
// about it (don't provide a MessageFactory). WARNING: If the
// FieldDescriptor is for a compiled-in extension, then
// factory->GetPrototype(field->message_type()) MUST return an instance of
// the compiled-in class for this type, NOT DynamicMessage.
virtual Message* MutableMessage(Message* message,
const FieldDescriptor* field,
MessageFactory* factory = NULL) const = 0;
// Replaces the message specified by 'field' with the already-allocated object
// sub_message, passing ownership to the message. If the field contained a
// message, that message is deleted. If sub_message is NULL, the field is
// cleared.
virtual void SetAllocatedMessage(Message* message,
Message* sub_message,
const FieldDescriptor* field) const = 0;
// Releases the message specified by 'field' and returns the pointer,
// ReleaseMessage() will return the message the message object if it exists.
// Otherwise, it may or may not return NULL. In any case, if the return value
// is non-NULL, the caller takes ownership of the pointer.
// If the field existed (HasField() is true), then the returned pointer will
// be the same as the pointer returned by MutableMessage().
// This function has the same effect as ClearField().
virtual Message* ReleaseMessage(Message* message,
const FieldDescriptor* field,
MessageFactory* factory = NULL) const = 0;
// Repeated field getters ------------------------------------------
// These get the value of one element of a repeated field.
virtual int32 GetRepeatedInt32 (const Message& message,
const FieldDescriptor* field,
int index) const = 0;
virtual int64 GetRepeatedInt64 (const Message& message,
const FieldDescriptor* field,
int index) const = 0;
virtual uint32 GetRepeatedUInt32(const Message& message,
const FieldDescriptor* field,
int index) const = 0;
virtual uint64 GetRepeatedUInt64(const Message& message,
const FieldDescriptor* field,
int index) const = 0;
virtual float GetRepeatedFloat (const Message& message,
const FieldDescriptor* field,
int index) const = 0;
virtual double GetRepeatedDouble(const Message& message,
const FieldDescriptor* field,
int index) const = 0;
virtual bool GetRepeatedBool (const Message& message,
const FieldDescriptor* field,
int index) const = 0;
virtual string GetRepeatedString(const Message& message,
const FieldDescriptor* field,
int index) const = 0;
virtual const EnumValueDescriptor* GetRepeatedEnum(
const Message& message,
const FieldDescriptor* field, int index) const = 0;
// GetRepeatedEnumValue() returns an enum field's value as an integer rather
// than an EnumValueDescriptor*. If the integer value does not correspond to a
// known value descriptor, a new value descriptor is created. (Such a value
// will only be present when the new unknown-enum-value semantics are enabled
// for a message.)
virtual int GetRepeatedEnumValue(
const Message& message,
const FieldDescriptor* field, int index) const = 0;
virtual const Message& GetRepeatedMessage(
const Message& message,
const FieldDescriptor* field, int index) const = 0;
// See GetStringReference(), above.
virtual const string& GetRepeatedStringReference(
const Message& message, const FieldDescriptor* field,
int index, string* scratch) const = 0;
// Repeated field mutators -----------------------------------------
// These mutate the value of one element of a repeated field.
virtual void SetRepeatedInt32 (Message* message,
const FieldDescriptor* field,
int index, int32 value) const = 0;
virtual void SetRepeatedInt64 (Message* message,
const FieldDescriptor* field,
int index, int64 value) const = 0;
virtual void SetRepeatedUInt32(Message* message,
const FieldDescriptor* field,
int index, uint32 value) const = 0;
virtual void SetRepeatedUInt64(Message* message,
const FieldDescriptor* field,
int index, uint64 value) const = 0;
virtual void SetRepeatedFloat (Message* message,
const FieldDescriptor* field,
int index, float value) const = 0;
virtual void SetRepeatedDouble(Message* message,
const FieldDescriptor* field,
int index, double value) const = 0;
virtual void SetRepeatedBool (Message* message,
const FieldDescriptor* field,
int index, bool value) const = 0;
virtual void SetRepeatedString(Message* message,
const FieldDescriptor* field,
int index, const string& value) const = 0;
virtual void SetRepeatedEnum(Message* message,
const FieldDescriptor* field, int index,
const EnumValueDescriptor* value) const = 0;
// Set an enum field's value with an integer rather than EnumValueDescriptor.
// If the value does not correspond to a known enum value, either behavior is
// undefined (for proto2 messages), or the value is accepted silently for
// messages with new unknown-enum-value semantics.
virtual void SetRepeatedEnumValue(Message* message,
const FieldDescriptor* field, int index,
int value) const = 0;
// Get a mutable pointer to an element of a repeated field with a message
// type.
virtual Message* MutableRepeatedMessage(
Message* message, const FieldDescriptor* field, int index) const = 0;
// Repeated field adders -------------------------------------------
// These add an element to a repeated field.
virtual void AddInt32 (Message* message,
const FieldDescriptor* field, int32 value) const = 0;
virtual void AddInt64 (Message* message,
const FieldDescriptor* field, int64 value) const = 0;
virtual void AddUInt32(Message* message,
const FieldDescriptor* field, uint32 value) const = 0;
virtual void AddUInt64(Message* message,
const FieldDescriptor* field, uint64 value) const = 0;
virtual void AddFloat (Message* message,
const FieldDescriptor* field, float value) const = 0;
virtual void AddDouble(Message* message,
const FieldDescriptor* field, double value) const = 0;
virtual void AddBool (Message* message,
const FieldDescriptor* field, bool value) const = 0;
virtual void AddString(Message* message,
const FieldDescriptor* field,
const string& value) const = 0;
virtual void AddEnum (Message* message,
const FieldDescriptor* field,
const EnumValueDescriptor* value) const = 0;
// Set an enum field's value with an integer rather than EnumValueDescriptor.
// If the value does not correspond to a known enum value, either behavior is
// undefined (for proto2 messages), or the value is accepted silently for
// messages with new unknown-enum-value semantics.
virtual void AddEnumValue(Message* message,
const FieldDescriptor* field,
int value) const = 0;
// See MutableMessage() for comments on the "factory" parameter.
virtual Message* AddMessage(Message* message,
const FieldDescriptor* field,
MessageFactory* factory = NULL) const = 0;
// Appends an already-allocated object 'new_entry' to the repeated field
// specifyed by 'field' passing ownership to the message.
// TODO(tmarek): Make virtual after all subclasses have been
// updated.
virtual void AddAllocatedMessage(Message* message,
const FieldDescriptor* field,
Message* new_entry) const;
// Get a RepeatedFieldRef object that can be used to read the underlying
// repeated field. The type parameter T must be set according to the
// field's cpp type. The following table shows the mapping from cpp type
// to acceptable T.
//
// field->cpp_type() T
// CPPTYPE_INT32 int32
// CPPTYPE_UINT32 uint32
// CPPTYPE_INT64 int64
// CPPTYPE_UINT64 uint64
// CPPTYPE_DOUBLE double
// CPPTYPE_FLOAT float
// CPPTYPE_BOOL bool
// CPPTYPE_ENUM generated enum type or int32
// CPPTYPE_STRING string
// CPPTYPE_MESSAGE generated message type or google::protobuf::Message
//
// A RepeatedFieldRef object can be copied and the resulted object will point
// to the same repeated field in the same message. The object can be used as
// long as the message is not destroyed.
//
// Note that to use this method users need to include the header file
// "google/protobuf/reflection.h" (which defines the RepeatedFieldRef
// class templates).
template<typename T>
RepeatedFieldRef<T> GetRepeatedFieldRef(
const Message& message, const FieldDescriptor* field) const;
// Like GetRepeatedFieldRef() but return an object that can also be used
// manipulate the underlying repeated field.
template<typename T>
MutableRepeatedFieldRef<T> GetMutableRepeatedFieldRef(
Message* message, const FieldDescriptor* field) const;
// DEPRECATED. Please use Get(Mutable)RepeatedFieldRef() for repeated field
// access. The following repeated field accesors will be removed in the
// future.
//
// Repeated field accessors -------------------------------------------------
// The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
// access to the data in a RepeatedField. The methods below provide aggregate
// access by exposing the RepeatedField object itself with the Message.
// Applying these templates to inappropriate types will lead to an undefined
// reference at link time (e.g. GetRepeatedField<***double>), or possibly a
// template matching error at compile time (e.g. GetRepeatedPtrField<File>).
//
// Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);
// DEPRECATED. Please use GetRepeatedFieldRef().
//
// for T = Cord and all protobuf scalar types except enums.
template<typename T>
PROTOBUF_RUNTIME_DEPRECATED("Please use GetRepeatedFieldRef() instead")
const RepeatedField<T>& GetRepeatedField(
const Message&, const FieldDescriptor*) const;
// DEPRECATED. Please use GetMutableRepeatedFieldRef().
//
// for T = Cord and all protobuf scalar types except enums.
template<typename T>
PROTOBUF_RUNTIME_DEPRECATED("Please use GetMutableRepeatedFieldRef() instead")
RepeatedField<T>* MutableRepeatedField(
Message*, const FieldDescriptor*) const;
// DEPRECATED. Please use GetRepeatedFieldRef().
//
// for T = string, google::protobuf::internal::StringPieceField
// google::protobuf::Message & descendants.
template<typename T>
PROTOBUF_RUNTIME_DEPRECATED("Please use GetRepeatedFieldRef() instead")
const RepeatedPtrField<T>& GetRepeatedPtrField(
const Message&, const FieldDescriptor*) const;
// DEPRECATED. Please use GetMutableRepeatedFieldRef().
//
// for T = string, google::protobuf::internal::StringPieceField
// google::protobuf::Message & descendants.
template<typename T>
PROTOBUF_RUNTIME_DEPRECATED("Please use GetMutableRepeatedFieldRef() instead")
RepeatedPtrField<T>* MutableRepeatedPtrField(
Message*, const FieldDescriptor*) const;
// Extensions ----------------------------------------------------------------
// Try to find an extension of this message type by fully-qualified field
// name. Returns NULL if no extension is known for this name or number.
virtual const FieldDescriptor* FindKnownExtensionByName(
const string& name) const = 0;
// Try to find an extension of this message type by field number.
// Returns NULL if no extension is known for this name or number.
virtual const FieldDescriptor* FindKnownExtensionByNumber(
int number) const = 0;
// Feature Flags -------------------------------------------------------------
// Does this message support storing arbitrary integer values in enum fields?
// If |true|, GetEnumValue/SetEnumValue and associated repeated-field versions
// take arbitrary integer values, and the legacy GetEnum() getter will
// dynamically create an EnumValueDescriptor for any integer value without
// one. If |false|, setting an unknown enum value via the integer-based
// setters results in undefined behavior (in practice, GOOGLE_DCHECK-fails).
//
// Generic code that uses reflection to handle messages with enum fields
// should check this flag before using the integer-based setter, and either
// downgrade to a compatible value or use the UnknownFieldSet if not. For
// example:
//
// int new_value = GetValueFromApplicationLogic();
// if (reflection->SupportsUnknownEnumValues()) {
// reflection->SetEnumValue(message, field, new_value);
// } else {
// if (field_descriptor->enum_type()->
// FindValueByNumber(new_value) != NULL) {
// reflection->SetEnumValue(message, field, new_value);
// } else if (emit_unknown_enum_values) {
// reflection->MutableUnknownFields(message)->AddVarint(
// field->number(), new_value);
// } else {
// // convert value to a compatible/default value.
// new_value = CompatibleDowngrade(new_value);
// reflection->SetEnumValue(message, field, new_value);
// }
// }
virtual bool SupportsUnknownEnumValues() const { return false; }
// Returns the MessageFactory associated with this message. This can be
// useful for determining if a message is a generated message or not, for
// example:
// if (message->GetReflection()->GetMessageFactory() ==
// google::protobuf::MessageFactory::generated_factory()) {
// // This is a generated message.
// }
// It can also be used to create more messages of this type, though
// Message::New() is an easier way to accomplish this.
virtual MessageFactory* GetMessageFactory() const;
// ---------------------------------------------------------------------------
protected:
// Obtain a pointer to a Repeated Field Structure and do some type checking:
// on field->cpp_type(),
// on field->field_option().ctype() (if ctype >= 0)
// of field->message_type() (if message_type != NULL).
// We use 2 routine rather than 4 (const vs mutable) x (scalar vs pointer).
virtual void* MutableRawRepeatedField(
Message* message, const FieldDescriptor* field, FieldDescriptor::CppType,
int ctype, const Descriptor* message_type) const = 0;
// TODO(jieluo) - make it pure virtual after updating all the subclasses.
virtual const void* GetRawRepeatedField(
const Message& message, const FieldDescriptor* field,
FieldDescriptor::CppType cpptype, int ctype,
const Descriptor* message_type) const {
return MutableRawRepeatedField(
const_cast<Message*>(&message), field, cpptype, ctype, message_type);
}
// The following methods are used to implement (Mutable)RepeatedFieldRef.
// A Ref object will store a raw pointer to the repeated field data (obtained
// from RepeatedFieldData()) and a pointer to a Accessor (obtained from
// RepeatedFieldAccessor) which will be used to access the raw data.
//
// TODO(xiaofeng): Make these methods pure-virtual.
// Returns a raw pointer to the repeated field
//
// "cpp_type" and "message_type" are deduced from the type parameter T passed
// to Get(Mutable)RepeatedFieldRef. If T is a generated message type,
// "message_type" should be set to its descriptor. Otherwise "message_type"
// should be set to NULL. Implementations of this method should check whether
// "cpp_type"/"message_type" is consistent with the actual type of the field.
// We use 1 routine rather than 2 (const vs mutable) because it is protected
// and it doesn't change the message.
virtual void* RepeatedFieldData(
Message* message, const FieldDescriptor* field,
FieldDescriptor::CppType cpp_type,
const Descriptor* message_type) const;
// The returned pointer should point to a singleton instance which implements
// the RepeatedFieldAccessor interface.
virtual const internal::RepeatedFieldAccessor* RepeatedFieldAccessor(
const FieldDescriptor* field) const;
private:
template<typename T, typename Enable>
friend class RepeatedFieldRef;
template<typename T, typename Enable>
friend class MutableRepeatedFieldRef;
friend class ::google::protobuf::python::MapReflectionFriend;
#define GOOGLE_PROTOBUF_HAS_CEL_MAP_REFLECTION_FRIEND
friend class ::google::protobuf::expr::CelMapReflectionFriend;
friend class internal::MapFieldReflectionTest;
friend class internal::MapKeySorter;
friend class internal::WireFormat;
friend class internal::ReflectionOps;
// Special version for specialized implementations of string. We can't call
// MutableRawRepeatedField directly here because we don't have access to
// FieldOptions::* which are defined in descriptor.pb.h. Including that
// file here is not possible because it would cause a circular include cycle.
// We use 1 routine rather than 2 (const vs mutable) because it is private
// and mutable a repeated string field doesn't change the message.
void* MutableRawRepeatedString(
Message* message, const FieldDescriptor* field, bool is_string) const;
friend class MapReflectionTester;
// TODO(jieluo) - make the map APIs pure virtual after updating
// all the subclasses.
// Returns true if key is in map. Returns false if key is not in map field.
virtual bool ContainsMapKey(const Message& /* message */,
const FieldDescriptor* /* field */,
const MapKey& /* key */) const {
return false;
}
// If key is in map field: Saves the value pointer to val and returns
// false. If key in not in map field: Insert the key into map, saves
// value pointer to val and retuns true.
virtual bool InsertOrLookupMapValue(Message* /* message */,
const FieldDescriptor* /* field */,
const MapKey& /* key */,
MapValueRef* /* val */) const {
return false;
}
// Delete and returns true if key is in the map field. Returns false
// otherwise.
virtual bool DeleteMapValue(Message* /* message */,
const FieldDescriptor* /* field */,
const MapKey& /* key */) const {
return false;
}
// Returns a MapIterator referring to the first element in the map field.
// If the map field is empty, this function returns the same as
// reflection::MapEnd. Mutation to the field may invalidate the iterator.
virtual MapIterator MapBegin(
Message* message,
const FieldDescriptor* field) const;
// Returns a MapIterator referring to the theoretical element that would
// follow the last element in the map field. It does not point to any
// real element. Mutation to the field may invalidate the iterator.
virtual MapIterator MapEnd(
Message* message,
const FieldDescriptor* field) const;
// Get the number of <key, value> pair of a map field. The result may be
// different from FieldSize which can have duplicate keys.
virtual int MapSize(const Message& /* message */,
const FieldDescriptor* /* field */) const {
return 0;
}
// Help method for MapIterator.
friend class MapIterator;
virtual internal::MapFieldBase* MapData(
Message* /* message */, const FieldDescriptor* /* field */) const {
return NULL;
}
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
};
// Abstract interface for a factory for message objects.
class LIBPROTOBUF_EXPORT MessageFactory {
public:
inline MessageFactory() {}
virtual ~MessageFactory();
// Given a Descriptor, gets or constructs the default (prototype) Message
// of that type. You can then call that message's New() method to construct
// a mutable message of that type.
//
// Calling this method twice with the same Descriptor returns the same
// object. The returned object remains property of the factory. Also, any
// objects created by calling the prototype's New() method share some data
// with the prototype, so these must be destroyed before the MessageFactory
// is destroyed.
//
// The given descriptor must outlive the returned message, and hence must
// outlive the MessageFactory.
//
// Some implementations do not support all types. GetPrototype() will
// return NULL if the descriptor passed in is not supported.
//
// This method may or may not be thread-safe depending on the implementation.
// Each implementation should document its own degree thread-safety.
virtual const Message* GetPrototype(const Descriptor* type) = 0;
// Gets a MessageFactory which supports all generated, compiled-in messages.
// In other words, for any compiled-in type FooMessage, the following is true:
// MessageFactory::generated_factory()->GetPrototype(
// FooMessage::descriptor()) == FooMessage::default_instance()
// This factory supports all types which are found in
// DescriptorPool::generated_pool(). If given a descriptor from any other
// pool, GetPrototype() will return NULL. (You can also check if a
// descriptor is for a generated message by checking if
// descriptor->file()->pool() == DescriptorPool::generated_pool().)
//
// This factory is 100% thread-safe; calling GetPrototype() does not modify
// any shared data.
//
// This factory is a singleton. The caller must not delete the object.
static MessageFactory* generated_factory();
// For internal use only: Registers a .proto file at static initialization
// time, to be placed in generated_factory. The first time GetPrototype()
// is called with a descriptor from this file, |register_messages| will be
// called, with the file name as the parameter. It must call
// InternalRegisterGeneratedMessage() (below) to register each message type
// in the file. This strange mechanism is necessary because descriptors are
// built lazily, so we can't register types by their descriptor until we
// know that the descriptor exists. |filename| must be a permanent string.
static void InternalRegisterGeneratedFile(
const char* filename, void (*register_messages)(const string&));
// For internal use only: Registers a message type. Called only by the
// functions which are registered with InternalRegisterGeneratedFile(),
// above.
static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
const Message* prototype);
private:
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
};
#define DECLARE_GET_REPEATED_FIELD(TYPE) \
template<> \
LIBPROTOBUF_EXPORT \
const RepeatedField<TYPE>& Reflection::GetRepeatedField<TYPE>( \
const Message& message, const FieldDescriptor* field) const; \
\
template<> \
LIBPROTOBUF_EXPORT \
RepeatedField<TYPE>* Reflection::MutableRepeatedField<TYPE>( \
Message* message, const FieldDescriptor* field) const;
DECLARE_GET_REPEATED_FIELD(int32)
DECLARE_GET_REPEATED_FIELD(int64)
DECLARE_GET_REPEATED_FIELD(uint32)
DECLARE_GET_REPEATED_FIELD(uint64)
DECLARE_GET_REPEATED_FIELD(float)
DECLARE_GET_REPEATED_FIELD(double)
DECLARE_GET_REPEATED_FIELD(bool)
#undef DECLARE_GET_REPEATED_FIELD
// =============================================================================
// Implementation details for {Get,Mutable}RawRepeatedPtrField. We provide
// specializations for <string>, <StringPieceField> and <Message> and handle
// everything else with the default template which will match any type having
// a method with signature "static const google::protobuf::Descriptor* descriptor()".
// Such a type presumably is a descendant of google::protobuf::Message.
template<>
inline const RepeatedPtrField<string>& Reflection::GetRepeatedPtrField<string>(
const Message& message, const FieldDescriptor* field) const {
return *static_cast<RepeatedPtrField<string>* >(
MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
}
template<>
inline RepeatedPtrField<string>* Reflection::MutableRepeatedPtrField<string>(
Message* message, const FieldDescriptor* field) const {
return static_cast<RepeatedPtrField<string>* >(
MutableRawRepeatedString(message, field, true));
}
// -----
template<>
inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrField(
const Message& message, const FieldDescriptor* field) const {
return *static_cast<const RepeatedPtrField<Message>* >(
GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE,
-1, NULL));
}
template<>
inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrField(
Message* message, const FieldDescriptor* field) const {
return static_cast<RepeatedPtrField<Message>* >(
MutableRawRepeatedField(message, field,
FieldDescriptor::CPPTYPE_MESSAGE, -1,
NULL));
}
template<typename PB>
inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrField(
const Message& message, const FieldDescriptor* field) const {
return *static_cast<const RepeatedPtrField<PB>* >(
GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE,
-1, PB::default_instance().GetDescriptor()));
}
template<typename PB>
inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrField(
Message* message, const FieldDescriptor* field) const {
return static_cast<RepeatedPtrField<PB>* >(
MutableRawRepeatedField(message, field,
FieldDescriptor::CPPTYPE_MESSAGE, -1,
PB::default_instance().GetDescriptor()));
}
} // namespace protobuf
} // namespace google
#endif // GOOGLE_PROTOBUF_MESSAGE_H__