mirror of
https://gitlab.com/kelteseth/ScreenPlay.git
synced 2024-11-07 11:32:42 +01:00
1177 lines
53 KiB
C++
1177 lines
53 KiB
C++
// Protocol Buffers - Google's data interchange format
|
|
// Copyright 2008 Google Inc. All rights reserved.
|
|
// https://developers.google.com/protocol-buffers/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// Author: kenton@google.com (Kenton Varda)
|
|
// Based on original Protocol Buffers design by
|
|
// Sanjay Ghemawat, Jeff Dean, and others.
|
|
//
|
|
// Defines Message, the abstract interface implemented by non-lite
|
|
// protocol message objects. Although it's possible to implement this
|
|
// interface manually, most users will use the protocol compiler to
|
|
// generate implementations.
|
|
//
|
|
// Example usage:
|
|
//
|
|
// Say you have a message defined as:
|
|
//
|
|
// message Foo {
|
|
// optional string text = 1;
|
|
// repeated int32 numbers = 2;
|
|
// }
|
|
//
|
|
// Then, if you used the protocol compiler to generate a class from the above
|
|
// definition, you could use it like so:
|
|
//
|
|
// string data; // Will store a serialized version of the message.
|
|
//
|
|
// {
|
|
// // Create a message and serialize it.
|
|
// Foo foo;
|
|
// foo.set_text("Hello World!");
|
|
// foo.add_numbers(1);
|
|
// foo.add_numbers(5);
|
|
// foo.add_numbers(42);
|
|
//
|
|
// foo.SerializeToString(&data);
|
|
// }
|
|
//
|
|
// {
|
|
// // Parse the serialized message and check that it contains the
|
|
// // correct data.
|
|
// Foo foo;
|
|
// foo.ParseFromString(data);
|
|
//
|
|
// assert(foo.text() == "Hello World!");
|
|
// assert(foo.numbers_size() == 3);
|
|
// assert(foo.numbers(0) == 1);
|
|
// assert(foo.numbers(1) == 5);
|
|
// assert(foo.numbers(2) == 42);
|
|
// }
|
|
//
|
|
// {
|
|
// // Same as the last block, but do it dynamically via the Message
|
|
// // reflection interface.
|
|
// Message* foo = new Foo;
|
|
// const Descriptor* descriptor = foo->GetDescriptor();
|
|
//
|
|
// // Get the descriptors for the fields we're interested in and verify
|
|
// // their types.
|
|
// const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
|
|
// assert(text_field != NULL);
|
|
// assert(text_field->type() == FieldDescriptor::TYPE_STRING);
|
|
// assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
|
|
// const FieldDescriptor* numbers_field = descriptor->
|
|
// FindFieldByName("numbers");
|
|
// assert(numbers_field != NULL);
|
|
// assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
|
|
// assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
|
|
//
|
|
// // Parse the message.
|
|
// foo->ParseFromString(data);
|
|
//
|
|
// // Use the reflection interface to examine the contents.
|
|
// const Reflection* reflection = foo->GetReflection();
|
|
// assert(reflection->GetString(*foo, text_field) == "Hello World!");
|
|
// assert(reflection->FieldSize(*foo, numbers_field) == 3);
|
|
// assert(reflection->GetRepeatedInt32(*foo, numbers_field, 0) == 1);
|
|
// assert(reflection->GetRepeatedInt32(*foo, numbers_field, 1) == 5);
|
|
// assert(reflection->GetRepeatedInt32(*foo, numbers_field, 2) == 42);
|
|
//
|
|
// delete foo;
|
|
// }
|
|
|
|
#ifndef GOOGLE_PROTOBUF_MESSAGE_H__
|
|
#define GOOGLE_PROTOBUF_MESSAGE_H__
|
|
|
|
#include <iosfwd>
|
|
#include <string>
|
|
#include <type_traits>
|
|
#include <vector>
|
|
|
|
#include <google/protobuf/arena.h>
|
|
#include <google/protobuf/message_lite.h>
|
|
|
|
#include <google/protobuf/stubs/common.h>
|
|
#include <google/protobuf/descriptor.h>
|
|
|
|
|
|
#define GOOGLE_PROTOBUF_HAS_ONEOF
|
|
#define GOOGLE_PROTOBUF_HAS_ARENAS
|
|
|
|
namespace google {
|
|
namespace protobuf {
|
|
|
|
// Defined in this file.
|
|
class Message;
|
|
class Reflection;
|
|
class MessageFactory;
|
|
|
|
// Defined in other files.
|
|
class MapKey;
|
|
class MapValueRef;
|
|
class MapIterator;
|
|
class MapReflectionTester;
|
|
|
|
namespace internal {
|
|
class MapFieldBase;
|
|
}
|
|
class UnknownFieldSet; // unknown_field_set.h
|
|
namespace io {
|
|
class ZeroCopyInputStream; // zero_copy_stream.h
|
|
class ZeroCopyOutputStream; // zero_copy_stream.h
|
|
class CodedInputStream; // coded_stream.h
|
|
class CodedOutputStream; // coded_stream.h
|
|
}
|
|
namespace python {
|
|
class MapReflectionFriend; // scalar_map_container.h
|
|
}
|
|
namespace expr {
|
|
class CelMapReflectionFriend; // field_backed_map_impl.cc
|
|
}
|
|
|
|
|
|
namespace internal {
|
|
class ReflectionOps; // reflection_ops.h
|
|
class MapKeySorter; // wire_format.cc
|
|
class WireFormat; // wire_format.h
|
|
class MapFieldReflectionTest; // map_test.cc
|
|
}
|
|
|
|
template<typename T>
|
|
class RepeatedField; // repeated_field.h
|
|
|
|
template<typename T>
|
|
class RepeatedPtrField; // repeated_field.h
|
|
|
|
// A container to hold message metadata.
|
|
struct Metadata {
|
|
const Descriptor* descriptor;
|
|
const Reflection* reflection;
|
|
};
|
|
|
|
// Abstract interface for protocol messages.
|
|
//
|
|
// See also MessageLite, which contains most every-day operations. Message
|
|
// adds descriptors and reflection on top of that.
|
|
//
|
|
// The methods of this class that are virtual but not pure-virtual have
|
|
// default implementations based on reflection. Message classes which are
|
|
// optimized for speed will want to override these with faster implementations,
|
|
// but classes optimized for code size may be happy with keeping them. See
|
|
// the optimize_for option in descriptor.proto.
|
|
class LIBPROTOBUF_EXPORT Message : public MessageLite {
|
|
public:
|
|
inline Message() {}
|
|
virtual ~Message() {}
|
|
|
|
// Basic Operations ------------------------------------------------
|
|
|
|
// Construct a new instance of the same type. Ownership is passed to the
|
|
// caller. (This is also defined in MessageLite, but is defined again here
|
|
// for return-type covariance.)
|
|
virtual Message* New() const = 0;
|
|
|
|
// Construct a new instance on the arena. Ownership is passed to the caller
|
|
// if arena is a NULL. Default implementation allows for API compatibility
|
|
// during the Arena transition.
|
|
virtual Message* New(::google::protobuf::Arena* arena) const {
|
|
Message* message = New();
|
|
if (arena != NULL) {
|
|
arena->Own(message);
|
|
}
|
|
return message;
|
|
}
|
|
|
|
// Make this message into a copy of the given message. The given message
|
|
// must have the same descriptor, but need not necessarily be the same class.
|
|
// By default this is just implemented as "Clear(); MergeFrom(from);".
|
|
virtual void CopyFrom(const Message& from);
|
|
|
|
// Merge the fields from the given message into this message. Singular
|
|
// fields will be overwritten, if specified in from, except for embedded
|
|
// messages which will be merged. Repeated fields will be concatenated.
|
|
// The given message must be of the same type as this message (i.e. the
|
|
// exact same class).
|
|
virtual void MergeFrom(const Message& from);
|
|
|
|
// Verifies that IsInitialized() returns true. GOOGLE_CHECK-fails otherwise, with
|
|
// a nice error message.
|
|
void CheckInitialized() const;
|
|
|
|
// Slowly build a list of all required fields that are not set.
|
|
// This is much, much slower than IsInitialized() as it is implemented
|
|
// purely via reflection. Generally, you should not call this unless you
|
|
// have already determined that an error exists by calling IsInitialized().
|
|
void FindInitializationErrors(std::vector<string>* errors) const;
|
|
|
|
// Like FindInitializationErrors, but joins all the strings, delimited by
|
|
// commas, and returns them.
|
|
string InitializationErrorString() const;
|
|
|
|
// Clears all unknown fields from this message and all embedded messages.
|
|
// Normally, if unknown tag numbers are encountered when parsing a message,
|
|
// the tag and value are stored in the message's UnknownFieldSet and
|
|
// then written back out when the message is serialized. This allows servers
|
|
// which simply route messages to other servers to pass through messages
|
|
// that have new field definitions which they don't yet know about. However,
|
|
// this behavior can have security implications. To avoid it, call this
|
|
// method after parsing.
|
|
//
|
|
// See Reflection::GetUnknownFields() for more on unknown fields.
|
|
virtual void DiscardUnknownFields();
|
|
|
|
// Computes (an estimate of) the total number of bytes currently used for
|
|
// storing the message in memory. The default implementation calls the
|
|
// Reflection object's SpaceUsed() method.
|
|
//
|
|
// SpaceUsed() is noticeably slower than ByteSize(), as it is implemented
|
|
// using reflection (rather than the generated code implementation for
|
|
// ByteSize()). Like ByteSize(), its CPU time is linear in the number of
|
|
// fields defined for the proto.
|
|
virtual size_t SpaceUsedLong() const;
|
|
|
|
PROTOBUF_RUNTIME_DEPRECATED("Please use SpaceUsedLong() instead")
|
|
int SpaceUsed() const { return internal::ToIntSize(SpaceUsedLong()); }
|
|
|
|
// Debugging & Testing----------------------------------------------
|
|
|
|
// Generates a human readable form of this message, useful for debugging
|
|
// and other purposes.
|
|
string DebugString() const;
|
|
// Like DebugString(), but with less whitespace.
|
|
string ShortDebugString() const;
|
|
// Like DebugString(), but do not escape UTF-8 byte sequences.
|
|
string Utf8DebugString() const;
|
|
// Convenience function useful in GDB. Prints DebugString() to stdout.
|
|
void PrintDebugString() const;
|
|
|
|
// Heavy I/O -------------------------------------------------------
|
|
// Additional parsing and serialization methods not implemented by
|
|
// MessageLite because they are not supported by the lite library.
|
|
|
|
// Parse a protocol buffer from a file descriptor. If successful, the entire
|
|
// input will be consumed.
|
|
bool ParseFromFileDescriptor(int file_descriptor);
|
|
// Like ParseFromFileDescriptor(), but accepts messages that are missing
|
|
// required fields.
|
|
bool ParsePartialFromFileDescriptor(int file_descriptor);
|
|
// Parse a protocol buffer from a C++ istream. If successful, the entire
|
|
// input will be consumed.
|
|
bool ParseFromIstream(std::istream* input);
|
|
// Like ParseFromIstream(), but accepts messages that are missing
|
|
// required fields.
|
|
bool ParsePartialFromIstream(std::istream* input);
|
|
|
|
// Serialize the message and write it to the given file descriptor. All
|
|
// required fields must be set.
|
|
bool SerializeToFileDescriptor(int file_descriptor) const;
|
|
// Like SerializeToFileDescriptor(), but allows missing required fields.
|
|
bool SerializePartialToFileDescriptor(int file_descriptor) const;
|
|
// Serialize the message and write it to the given C++ ostream. All
|
|
// required fields must be set.
|
|
bool SerializeToOstream(std::ostream* output) const;
|
|
// Like SerializeToOstream(), but allows missing required fields.
|
|
bool SerializePartialToOstream(std::ostream* output) const;
|
|
|
|
|
|
// Reflection-based methods ----------------------------------------
|
|
// These methods are pure-virtual in MessageLite, but Message provides
|
|
// reflection-based default implementations.
|
|
|
|
virtual string GetTypeName() const;
|
|
virtual void Clear();
|
|
virtual bool IsInitialized() const;
|
|
virtual void CheckTypeAndMergeFrom(const MessageLite& other);
|
|
virtual bool MergePartialFromCodedStream(io::CodedInputStream* input);
|
|
virtual size_t ByteSizeLong() const;
|
|
virtual void SerializeWithCachedSizes(io::CodedOutputStream* output) const;
|
|
|
|
private:
|
|
// This is called only by the default implementation of ByteSize(), to
|
|
// update the cached size. If you override ByteSize(), you do not need
|
|
// to override this. If you do not override ByteSize(), you MUST override
|
|
// this; the default implementation will crash.
|
|
//
|
|
// The method is private because subclasses should never call it; only
|
|
// override it. Yes, C++ lets you do that. Crazy, huh?
|
|
virtual void SetCachedSize(int size) const;
|
|
|
|
public:
|
|
|
|
// Introspection ---------------------------------------------------
|
|
|
|
// Typedef for backwards-compatibility.
|
|
typedef google::protobuf::Reflection Reflection;
|
|
|
|
// Get a non-owning pointer to a Descriptor for this message's type. This
|
|
// describes what fields the message contains, the types of those fields, etc.
|
|
// This object remains property of the Message.
|
|
const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
|
|
|
|
// Get a non-owning pointer to the Reflection interface for this Message,
|
|
// which can be used to read and modify the fields of the Message dynamically
|
|
// (in other words, without knowing the message type at compile time). This
|
|
// object remains property of the Message.
|
|
//
|
|
// This method remains virtual in case a subclass does not implement
|
|
// reflection and wants to override the default behavior.
|
|
virtual const Reflection* GetReflection() const final {
|
|
return GetMetadata().reflection;
|
|
}
|
|
|
|
protected:
|
|
// Get a struct containing the metadata for the Message. Most subclasses only
|
|
// need to implement this method, rather than the GetDescriptor() and
|
|
// GetReflection() wrappers.
|
|
virtual Metadata GetMetadata() const = 0;
|
|
|
|
|
|
private:
|
|
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
|
|
};
|
|
|
|
namespace internal {
|
|
// Forward-declare interfaces used to implement RepeatedFieldRef.
|
|
// These are protobuf internals that users shouldn't care about.
|
|
class RepeatedFieldAccessor;
|
|
} // namespace internal
|
|
|
|
// Forward-declare RepeatedFieldRef templates. The second type parameter is
|
|
// used for SFINAE tricks. Users should ignore it.
|
|
template<typename T, typename Enable = void>
|
|
class RepeatedFieldRef;
|
|
|
|
template<typename T, typename Enable = void>
|
|
class MutableRepeatedFieldRef;
|
|
|
|
// This interface contains methods that can be used to dynamically access
|
|
// and modify the fields of a protocol message. Their semantics are
|
|
// similar to the accessors the protocol compiler generates.
|
|
//
|
|
// To get the Reflection for a given Message, call Message::GetReflection().
|
|
//
|
|
// This interface is separate from Message only for efficiency reasons;
|
|
// the vast majority of implementations of Message will share the same
|
|
// implementation of Reflection (GeneratedMessageReflection,
|
|
// defined in generated_message.h), and all Messages of a particular class
|
|
// should share the same Reflection object (though you should not rely on
|
|
// the latter fact).
|
|
//
|
|
// There are several ways that these methods can be used incorrectly. For
|
|
// example, any of the following conditions will lead to undefined
|
|
// results (probably assertion failures):
|
|
// - The FieldDescriptor is not a field of this message type.
|
|
// - The method called is not appropriate for the field's type. For
|
|
// each field type in FieldDescriptor::TYPE_*, there is only one
|
|
// Get*() method, one Set*() method, and one Add*() method that is
|
|
// valid for that type. It should be obvious which (except maybe
|
|
// for TYPE_BYTES, which are represented using strings in C++).
|
|
// - A Get*() or Set*() method for singular fields is called on a repeated
|
|
// field.
|
|
// - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
|
|
// field.
|
|
// - The Message object passed to any method is not of the right type for
|
|
// this Reflection object (i.e. message.GetReflection() != reflection).
|
|
//
|
|
// You might wonder why there is not any abstract representation for a field
|
|
// of arbitrary type. E.g., why isn't there just a "GetField()" method that
|
|
// returns "const Field&", where "Field" is some class with accessors like
|
|
// "GetInt32Value()". The problem is that someone would have to deal with
|
|
// allocating these Field objects. For generated message classes, having to
|
|
// allocate space for an additional object to wrap every field would at least
|
|
// double the message's memory footprint, probably worse. Allocating the
|
|
// objects on-demand, on the other hand, would be expensive and prone to
|
|
// memory leaks. So, instead we ended up with this flat interface.
|
|
class LIBPROTOBUF_EXPORT Reflection {
|
|
public:
|
|
inline Reflection() {}
|
|
virtual ~Reflection();
|
|
|
|
// Get the UnknownFieldSet for the message. This contains fields which
|
|
// were seen when the Message was parsed but were not recognized according
|
|
// to the Message's definition. For proto3 protos, this method will always
|
|
// return an empty UnknownFieldSet.
|
|
virtual const UnknownFieldSet& GetUnknownFields(
|
|
const Message& message) const = 0;
|
|
// Get a mutable pointer to the UnknownFieldSet for the message. This
|
|
// contains fields which were seen when the Message was parsed but were not
|
|
// recognized according to the Message's definition. For proto3 protos, this
|
|
// method will return a valid mutable UnknownFieldSet pointer but modifying
|
|
// it won't affect the serialized bytes of the message.
|
|
virtual UnknownFieldSet* MutableUnknownFields(Message* message) const = 0;
|
|
|
|
// Estimate the amount of memory used by the message object.
|
|
virtual size_t SpaceUsedLong(const Message& message) const = 0;
|
|
|
|
PROTOBUF_RUNTIME_DEPRECATED("Please use SpaceUsedLong() instead")
|
|
int SpaceUsed(const Message& message) const {
|
|
return internal::ToIntSize(SpaceUsedLong(message));
|
|
}
|
|
|
|
// Check if the given non-repeated field is set.
|
|
virtual bool HasField(const Message& message,
|
|
const FieldDescriptor* field) const = 0;
|
|
|
|
// Get the number of elements of a repeated field.
|
|
virtual int FieldSize(const Message& message,
|
|
const FieldDescriptor* field) const = 0;
|
|
|
|
// Clear the value of a field, so that HasField() returns false or
|
|
// FieldSize() returns zero.
|
|
virtual void ClearField(Message* message,
|
|
const FieldDescriptor* field) const = 0;
|
|
|
|
// Check if the oneof is set. Returns true if any field in oneof
|
|
// is set, false otherwise.
|
|
// TODO(jieluo) - make it pure virtual after updating all
|
|
// the subclasses.
|
|
virtual bool HasOneof(const Message& /*message*/,
|
|
const OneofDescriptor* /*oneof_descriptor*/) const {
|
|
return false;
|
|
}
|
|
|
|
virtual void ClearOneof(Message* /*message*/,
|
|
const OneofDescriptor* /*oneof_descriptor*/) const {}
|
|
|
|
// Returns the field descriptor if the oneof is set. NULL otherwise.
|
|
// TODO(jieluo) - make it pure virtual.
|
|
virtual const FieldDescriptor* GetOneofFieldDescriptor(
|
|
const Message& /*message*/,
|
|
const OneofDescriptor* /*oneof_descriptor*/) const {
|
|
return NULL;
|
|
}
|
|
|
|
// Removes the last element of a repeated field.
|
|
// We don't provide a way to remove any element other than the last
|
|
// because it invites inefficient use, such as O(n^2) filtering loops
|
|
// that should have been O(n). If you want to remove an element other
|
|
// than the last, the best way to do it is to re-arrange the elements
|
|
// (using Swap()) so that the one you want removed is at the end, then
|
|
// call RemoveLast().
|
|
virtual void RemoveLast(Message* message,
|
|
const FieldDescriptor* field) const = 0;
|
|
// Removes the last element of a repeated message field, and returns the
|
|
// pointer to the caller. Caller takes ownership of the returned pointer.
|
|
virtual Message* ReleaseLast(Message* message,
|
|
const FieldDescriptor* field) const = 0;
|
|
|
|
// Swap the complete contents of two messages.
|
|
virtual void Swap(Message* message1, Message* message2) const = 0;
|
|
|
|
// Swap fields listed in fields vector of two messages.
|
|
virtual void SwapFields(Message* message1,
|
|
Message* message2,
|
|
const std::vector<const FieldDescriptor*>& fields)
|
|
const = 0;
|
|
|
|
// Swap two elements of a repeated field.
|
|
virtual void SwapElements(Message* message,
|
|
const FieldDescriptor* field,
|
|
int index1,
|
|
int index2) const = 0;
|
|
|
|
// List all fields of the message which are currently set, except for unknown
|
|
// fields, but including extension known to the parser (i.e. compiled in).
|
|
// Singular fields will only be listed if HasField(field) would return true
|
|
// and repeated fields will only be listed if FieldSize(field) would return
|
|
// non-zero. Fields (both normal fields and extension fields) will be listed
|
|
// ordered by field number.
|
|
// Use Reflection::GetUnknownFields() or message.unknown_fields() to also get
|
|
// access to fields/extensions unknown to the parser.
|
|
virtual void ListFields(
|
|
const Message& message,
|
|
std::vector<const FieldDescriptor*>* output) const = 0;
|
|
|
|
// Singular field getters ------------------------------------------
|
|
// These get the value of a non-repeated field. They return the default
|
|
// value for fields that aren't set.
|
|
|
|
virtual int32 GetInt32 (const Message& message,
|
|
const FieldDescriptor* field) const = 0;
|
|
virtual int64 GetInt64 (const Message& message,
|
|
const FieldDescriptor* field) const = 0;
|
|
virtual uint32 GetUInt32(const Message& message,
|
|
const FieldDescriptor* field) const = 0;
|
|
virtual uint64 GetUInt64(const Message& message,
|
|
const FieldDescriptor* field) const = 0;
|
|
virtual float GetFloat (const Message& message,
|
|
const FieldDescriptor* field) const = 0;
|
|
virtual double GetDouble(const Message& message,
|
|
const FieldDescriptor* field) const = 0;
|
|
virtual bool GetBool (const Message& message,
|
|
const FieldDescriptor* field) const = 0;
|
|
virtual string GetString(const Message& message,
|
|
const FieldDescriptor* field) const = 0;
|
|
virtual const EnumValueDescriptor* GetEnum(
|
|
const Message& message, const FieldDescriptor* field) const = 0;
|
|
|
|
// GetEnumValue() returns an enum field's value as an integer rather than
|
|
// an EnumValueDescriptor*. If the integer value does not correspond to a
|
|
// known value descriptor, a new value descriptor is created. (Such a value
|
|
// will only be present when the new unknown-enum-value semantics are enabled
|
|
// for a message.)
|
|
virtual int GetEnumValue(
|
|
const Message& message, const FieldDescriptor* field) const = 0;
|
|
|
|
// See MutableMessage() for the meaning of the "factory" parameter.
|
|
virtual const Message& GetMessage(const Message& message,
|
|
const FieldDescriptor* field,
|
|
MessageFactory* factory = NULL) const = 0;
|
|
|
|
// Get a string value without copying, if possible.
|
|
//
|
|
// GetString() necessarily returns a copy of the string. This can be
|
|
// inefficient when the string is already stored in a string object in the
|
|
// underlying message. GetStringReference() will return a reference to the
|
|
// underlying string in this case. Otherwise, it will copy the string into
|
|
// *scratch and return that.
|
|
//
|
|
// Note: It is perfectly reasonable and useful to write code like:
|
|
// str = reflection->GetStringReference(field, &str);
|
|
// This line would ensure that only one copy of the string is made
|
|
// regardless of the field's underlying representation. When initializing
|
|
// a newly-constructed string, though, it's just as fast and more readable
|
|
// to use code like:
|
|
// string str = reflection->GetString(message, field);
|
|
virtual const string& GetStringReference(const Message& message,
|
|
const FieldDescriptor* field,
|
|
string* scratch) const = 0;
|
|
|
|
|
|
// Singular field mutators -----------------------------------------
|
|
// These mutate the value of a non-repeated field.
|
|
|
|
virtual void SetInt32 (Message* message,
|
|
const FieldDescriptor* field, int32 value) const = 0;
|
|
virtual void SetInt64 (Message* message,
|
|
const FieldDescriptor* field, int64 value) const = 0;
|
|
virtual void SetUInt32(Message* message,
|
|
const FieldDescriptor* field, uint32 value) const = 0;
|
|
virtual void SetUInt64(Message* message,
|
|
const FieldDescriptor* field, uint64 value) const = 0;
|
|
virtual void SetFloat (Message* message,
|
|
const FieldDescriptor* field, float value) const = 0;
|
|
virtual void SetDouble(Message* message,
|
|
const FieldDescriptor* field, double value) const = 0;
|
|
virtual void SetBool (Message* message,
|
|
const FieldDescriptor* field, bool value) const = 0;
|
|
virtual void SetString(Message* message,
|
|
const FieldDescriptor* field,
|
|
const string& value) const = 0;
|
|
virtual void SetEnum (Message* message,
|
|
const FieldDescriptor* field,
|
|
const EnumValueDescriptor* value) const = 0;
|
|
// Set an enum field's value with an integer rather than EnumValueDescriptor.
|
|
// If the value does not correspond to a known enum value, either behavior is
|
|
// undefined (for proto2 messages), or the value is accepted silently for
|
|
// messages with new unknown-enum-value semantics.
|
|
virtual void SetEnumValue(Message* message,
|
|
const FieldDescriptor* field,
|
|
int value) const = 0;
|
|
|
|
// Get a mutable pointer to a field with a message type. If a MessageFactory
|
|
// is provided, it will be used to construct instances of the sub-message;
|
|
// otherwise, the default factory is used. If the field is an extension that
|
|
// does not live in the same pool as the containing message's descriptor (e.g.
|
|
// it lives in an overlay pool), then a MessageFactory must be provided.
|
|
// If you have no idea what that meant, then you probably don't need to worry
|
|
// about it (don't provide a MessageFactory). WARNING: If the
|
|
// FieldDescriptor is for a compiled-in extension, then
|
|
// factory->GetPrototype(field->message_type()) MUST return an instance of
|
|
// the compiled-in class for this type, NOT DynamicMessage.
|
|
virtual Message* MutableMessage(Message* message,
|
|
const FieldDescriptor* field,
|
|
MessageFactory* factory = NULL) const = 0;
|
|
// Replaces the message specified by 'field' with the already-allocated object
|
|
// sub_message, passing ownership to the message. If the field contained a
|
|
// message, that message is deleted. If sub_message is NULL, the field is
|
|
// cleared.
|
|
virtual void SetAllocatedMessage(Message* message,
|
|
Message* sub_message,
|
|
const FieldDescriptor* field) const = 0;
|
|
// Releases the message specified by 'field' and returns the pointer,
|
|
// ReleaseMessage() will return the message the message object if it exists.
|
|
// Otherwise, it may or may not return NULL. In any case, if the return value
|
|
// is non-NULL, the caller takes ownership of the pointer.
|
|
// If the field existed (HasField() is true), then the returned pointer will
|
|
// be the same as the pointer returned by MutableMessage().
|
|
// This function has the same effect as ClearField().
|
|
virtual Message* ReleaseMessage(Message* message,
|
|
const FieldDescriptor* field,
|
|
MessageFactory* factory = NULL) const = 0;
|
|
|
|
|
|
// Repeated field getters ------------------------------------------
|
|
// These get the value of one element of a repeated field.
|
|
|
|
virtual int32 GetRepeatedInt32 (const Message& message,
|
|
const FieldDescriptor* field,
|
|
int index) const = 0;
|
|
virtual int64 GetRepeatedInt64 (const Message& message,
|
|
const FieldDescriptor* field,
|
|
int index) const = 0;
|
|
virtual uint32 GetRepeatedUInt32(const Message& message,
|
|
const FieldDescriptor* field,
|
|
int index) const = 0;
|
|
virtual uint64 GetRepeatedUInt64(const Message& message,
|
|
const FieldDescriptor* field,
|
|
int index) const = 0;
|
|
virtual float GetRepeatedFloat (const Message& message,
|
|
const FieldDescriptor* field,
|
|
int index) const = 0;
|
|
virtual double GetRepeatedDouble(const Message& message,
|
|
const FieldDescriptor* field,
|
|
int index) const = 0;
|
|
virtual bool GetRepeatedBool (const Message& message,
|
|
const FieldDescriptor* field,
|
|
int index) const = 0;
|
|
virtual string GetRepeatedString(const Message& message,
|
|
const FieldDescriptor* field,
|
|
int index) const = 0;
|
|
virtual const EnumValueDescriptor* GetRepeatedEnum(
|
|
const Message& message,
|
|
const FieldDescriptor* field, int index) const = 0;
|
|
// GetRepeatedEnumValue() returns an enum field's value as an integer rather
|
|
// than an EnumValueDescriptor*. If the integer value does not correspond to a
|
|
// known value descriptor, a new value descriptor is created. (Such a value
|
|
// will only be present when the new unknown-enum-value semantics are enabled
|
|
// for a message.)
|
|
virtual int GetRepeatedEnumValue(
|
|
const Message& message,
|
|
const FieldDescriptor* field, int index) const = 0;
|
|
virtual const Message& GetRepeatedMessage(
|
|
const Message& message,
|
|
const FieldDescriptor* field, int index) const = 0;
|
|
|
|
// See GetStringReference(), above.
|
|
virtual const string& GetRepeatedStringReference(
|
|
const Message& message, const FieldDescriptor* field,
|
|
int index, string* scratch) const = 0;
|
|
|
|
|
|
// Repeated field mutators -----------------------------------------
|
|
// These mutate the value of one element of a repeated field.
|
|
|
|
virtual void SetRepeatedInt32 (Message* message,
|
|
const FieldDescriptor* field,
|
|
int index, int32 value) const = 0;
|
|
virtual void SetRepeatedInt64 (Message* message,
|
|
const FieldDescriptor* field,
|
|
int index, int64 value) const = 0;
|
|
virtual void SetRepeatedUInt32(Message* message,
|
|
const FieldDescriptor* field,
|
|
int index, uint32 value) const = 0;
|
|
virtual void SetRepeatedUInt64(Message* message,
|
|
const FieldDescriptor* field,
|
|
int index, uint64 value) const = 0;
|
|
virtual void SetRepeatedFloat (Message* message,
|
|
const FieldDescriptor* field,
|
|
int index, float value) const = 0;
|
|
virtual void SetRepeatedDouble(Message* message,
|
|
const FieldDescriptor* field,
|
|
int index, double value) const = 0;
|
|
virtual void SetRepeatedBool (Message* message,
|
|
const FieldDescriptor* field,
|
|
int index, bool value) const = 0;
|
|
virtual void SetRepeatedString(Message* message,
|
|
const FieldDescriptor* field,
|
|
int index, const string& value) const = 0;
|
|
virtual void SetRepeatedEnum(Message* message,
|
|
const FieldDescriptor* field, int index,
|
|
const EnumValueDescriptor* value) const = 0;
|
|
// Set an enum field's value with an integer rather than EnumValueDescriptor.
|
|
// If the value does not correspond to a known enum value, either behavior is
|
|
// undefined (for proto2 messages), or the value is accepted silently for
|
|
// messages with new unknown-enum-value semantics.
|
|
virtual void SetRepeatedEnumValue(Message* message,
|
|
const FieldDescriptor* field, int index,
|
|
int value) const = 0;
|
|
// Get a mutable pointer to an element of a repeated field with a message
|
|
// type.
|
|
virtual Message* MutableRepeatedMessage(
|
|
Message* message, const FieldDescriptor* field, int index) const = 0;
|
|
|
|
|
|
// Repeated field adders -------------------------------------------
|
|
// These add an element to a repeated field.
|
|
|
|
virtual void AddInt32 (Message* message,
|
|
const FieldDescriptor* field, int32 value) const = 0;
|
|
virtual void AddInt64 (Message* message,
|
|
const FieldDescriptor* field, int64 value) const = 0;
|
|
virtual void AddUInt32(Message* message,
|
|
const FieldDescriptor* field, uint32 value) const = 0;
|
|
virtual void AddUInt64(Message* message,
|
|
const FieldDescriptor* field, uint64 value) const = 0;
|
|
virtual void AddFloat (Message* message,
|
|
const FieldDescriptor* field, float value) const = 0;
|
|
virtual void AddDouble(Message* message,
|
|
const FieldDescriptor* field, double value) const = 0;
|
|
virtual void AddBool (Message* message,
|
|
const FieldDescriptor* field, bool value) const = 0;
|
|
virtual void AddString(Message* message,
|
|
const FieldDescriptor* field,
|
|
const string& value) const = 0;
|
|
virtual void AddEnum (Message* message,
|
|
const FieldDescriptor* field,
|
|
const EnumValueDescriptor* value) const = 0;
|
|
// Set an enum field's value with an integer rather than EnumValueDescriptor.
|
|
// If the value does not correspond to a known enum value, either behavior is
|
|
// undefined (for proto2 messages), or the value is accepted silently for
|
|
// messages with new unknown-enum-value semantics.
|
|
virtual void AddEnumValue(Message* message,
|
|
const FieldDescriptor* field,
|
|
int value) const = 0;
|
|
// See MutableMessage() for comments on the "factory" parameter.
|
|
virtual Message* AddMessage(Message* message,
|
|
const FieldDescriptor* field,
|
|
MessageFactory* factory = NULL) const = 0;
|
|
|
|
// Appends an already-allocated object 'new_entry' to the repeated field
|
|
// specifyed by 'field' passing ownership to the message.
|
|
// TODO(tmarek): Make virtual after all subclasses have been
|
|
// updated.
|
|
virtual void AddAllocatedMessage(Message* message,
|
|
const FieldDescriptor* field,
|
|
Message* new_entry) const;
|
|
|
|
|
|
// Get a RepeatedFieldRef object that can be used to read the underlying
|
|
// repeated field. The type parameter T must be set according to the
|
|
// field's cpp type. The following table shows the mapping from cpp type
|
|
// to acceptable T.
|
|
//
|
|
// field->cpp_type() T
|
|
// CPPTYPE_INT32 int32
|
|
// CPPTYPE_UINT32 uint32
|
|
// CPPTYPE_INT64 int64
|
|
// CPPTYPE_UINT64 uint64
|
|
// CPPTYPE_DOUBLE double
|
|
// CPPTYPE_FLOAT float
|
|
// CPPTYPE_BOOL bool
|
|
// CPPTYPE_ENUM generated enum type or int32
|
|
// CPPTYPE_STRING string
|
|
// CPPTYPE_MESSAGE generated message type or google::protobuf::Message
|
|
//
|
|
// A RepeatedFieldRef object can be copied and the resulted object will point
|
|
// to the same repeated field in the same message. The object can be used as
|
|
// long as the message is not destroyed.
|
|
//
|
|
// Note that to use this method users need to include the header file
|
|
// "google/protobuf/reflection.h" (which defines the RepeatedFieldRef
|
|
// class templates).
|
|
template<typename T>
|
|
RepeatedFieldRef<T> GetRepeatedFieldRef(
|
|
const Message& message, const FieldDescriptor* field) const;
|
|
|
|
// Like GetRepeatedFieldRef() but return an object that can also be used
|
|
// manipulate the underlying repeated field.
|
|
template<typename T>
|
|
MutableRepeatedFieldRef<T> GetMutableRepeatedFieldRef(
|
|
Message* message, const FieldDescriptor* field) const;
|
|
|
|
// DEPRECATED. Please use Get(Mutable)RepeatedFieldRef() for repeated field
|
|
// access. The following repeated field accesors will be removed in the
|
|
// future.
|
|
//
|
|
// Repeated field accessors -------------------------------------------------
|
|
// The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
|
|
// access to the data in a RepeatedField. The methods below provide aggregate
|
|
// access by exposing the RepeatedField object itself with the Message.
|
|
// Applying these templates to inappropriate types will lead to an undefined
|
|
// reference at link time (e.g. GetRepeatedField<***double>), or possibly a
|
|
// template matching error at compile time (e.g. GetRepeatedPtrField<File>).
|
|
//
|
|
// Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);
|
|
|
|
// DEPRECATED. Please use GetRepeatedFieldRef().
|
|
//
|
|
// for T = Cord and all protobuf scalar types except enums.
|
|
template<typename T>
|
|
PROTOBUF_RUNTIME_DEPRECATED("Please use GetRepeatedFieldRef() instead")
|
|
const RepeatedField<T>& GetRepeatedField(
|
|
const Message&, const FieldDescriptor*) const;
|
|
|
|
// DEPRECATED. Please use GetMutableRepeatedFieldRef().
|
|
//
|
|
// for T = Cord and all protobuf scalar types except enums.
|
|
template<typename T>
|
|
PROTOBUF_RUNTIME_DEPRECATED("Please use GetMutableRepeatedFieldRef() instead")
|
|
RepeatedField<T>* MutableRepeatedField(
|
|
Message*, const FieldDescriptor*) const;
|
|
|
|
// DEPRECATED. Please use GetRepeatedFieldRef().
|
|
//
|
|
// for T = string, google::protobuf::internal::StringPieceField
|
|
// google::protobuf::Message & descendants.
|
|
template<typename T>
|
|
PROTOBUF_RUNTIME_DEPRECATED("Please use GetRepeatedFieldRef() instead")
|
|
const RepeatedPtrField<T>& GetRepeatedPtrField(
|
|
const Message&, const FieldDescriptor*) const;
|
|
|
|
// DEPRECATED. Please use GetMutableRepeatedFieldRef().
|
|
//
|
|
// for T = string, google::protobuf::internal::StringPieceField
|
|
// google::protobuf::Message & descendants.
|
|
template<typename T>
|
|
PROTOBUF_RUNTIME_DEPRECATED("Please use GetMutableRepeatedFieldRef() instead")
|
|
RepeatedPtrField<T>* MutableRepeatedPtrField(
|
|
Message*, const FieldDescriptor*) const;
|
|
|
|
// Extensions ----------------------------------------------------------------
|
|
|
|
// Try to find an extension of this message type by fully-qualified field
|
|
// name. Returns NULL if no extension is known for this name or number.
|
|
virtual const FieldDescriptor* FindKnownExtensionByName(
|
|
const string& name) const = 0;
|
|
|
|
// Try to find an extension of this message type by field number.
|
|
// Returns NULL if no extension is known for this name or number.
|
|
virtual const FieldDescriptor* FindKnownExtensionByNumber(
|
|
int number) const = 0;
|
|
|
|
// Feature Flags -------------------------------------------------------------
|
|
|
|
// Does this message support storing arbitrary integer values in enum fields?
|
|
// If |true|, GetEnumValue/SetEnumValue and associated repeated-field versions
|
|
// take arbitrary integer values, and the legacy GetEnum() getter will
|
|
// dynamically create an EnumValueDescriptor for any integer value without
|
|
// one. If |false|, setting an unknown enum value via the integer-based
|
|
// setters results in undefined behavior (in practice, GOOGLE_DCHECK-fails).
|
|
//
|
|
// Generic code that uses reflection to handle messages with enum fields
|
|
// should check this flag before using the integer-based setter, and either
|
|
// downgrade to a compatible value or use the UnknownFieldSet if not. For
|
|
// example:
|
|
//
|
|
// int new_value = GetValueFromApplicationLogic();
|
|
// if (reflection->SupportsUnknownEnumValues()) {
|
|
// reflection->SetEnumValue(message, field, new_value);
|
|
// } else {
|
|
// if (field_descriptor->enum_type()->
|
|
// FindValueByNumber(new_value) != NULL) {
|
|
// reflection->SetEnumValue(message, field, new_value);
|
|
// } else if (emit_unknown_enum_values) {
|
|
// reflection->MutableUnknownFields(message)->AddVarint(
|
|
// field->number(), new_value);
|
|
// } else {
|
|
// // convert value to a compatible/default value.
|
|
// new_value = CompatibleDowngrade(new_value);
|
|
// reflection->SetEnumValue(message, field, new_value);
|
|
// }
|
|
// }
|
|
virtual bool SupportsUnknownEnumValues() const { return false; }
|
|
|
|
// Returns the MessageFactory associated with this message. This can be
|
|
// useful for determining if a message is a generated message or not, for
|
|
// example:
|
|
// if (message->GetReflection()->GetMessageFactory() ==
|
|
// google::protobuf::MessageFactory::generated_factory()) {
|
|
// // This is a generated message.
|
|
// }
|
|
// It can also be used to create more messages of this type, though
|
|
// Message::New() is an easier way to accomplish this.
|
|
virtual MessageFactory* GetMessageFactory() const;
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
protected:
|
|
// Obtain a pointer to a Repeated Field Structure and do some type checking:
|
|
// on field->cpp_type(),
|
|
// on field->field_option().ctype() (if ctype >= 0)
|
|
// of field->message_type() (if message_type != NULL).
|
|
// We use 2 routine rather than 4 (const vs mutable) x (scalar vs pointer).
|
|
virtual void* MutableRawRepeatedField(
|
|
Message* message, const FieldDescriptor* field, FieldDescriptor::CppType,
|
|
int ctype, const Descriptor* message_type) const = 0;
|
|
|
|
// TODO(jieluo) - make it pure virtual after updating all the subclasses.
|
|
virtual const void* GetRawRepeatedField(
|
|
const Message& message, const FieldDescriptor* field,
|
|
FieldDescriptor::CppType cpptype, int ctype,
|
|
const Descriptor* message_type) const {
|
|
return MutableRawRepeatedField(
|
|
const_cast<Message*>(&message), field, cpptype, ctype, message_type);
|
|
}
|
|
|
|
// The following methods are used to implement (Mutable)RepeatedFieldRef.
|
|
// A Ref object will store a raw pointer to the repeated field data (obtained
|
|
// from RepeatedFieldData()) and a pointer to a Accessor (obtained from
|
|
// RepeatedFieldAccessor) which will be used to access the raw data.
|
|
//
|
|
// TODO(xiaofeng): Make these methods pure-virtual.
|
|
|
|
// Returns a raw pointer to the repeated field
|
|
//
|
|
// "cpp_type" and "message_type" are deduced from the type parameter T passed
|
|
// to Get(Mutable)RepeatedFieldRef. If T is a generated message type,
|
|
// "message_type" should be set to its descriptor. Otherwise "message_type"
|
|
// should be set to NULL. Implementations of this method should check whether
|
|
// "cpp_type"/"message_type" is consistent with the actual type of the field.
|
|
// We use 1 routine rather than 2 (const vs mutable) because it is protected
|
|
// and it doesn't change the message.
|
|
virtual void* RepeatedFieldData(
|
|
Message* message, const FieldDescriptor* field,
|
|
FieldDescriptor::CppType cpp_type,
|
|
const Descriptor* message_type) const;
|
|
|
|
// The returned pointer should point to a singleton instance which implements
|
|
// the RepeatedFieldAccessor interface.
|
|
virtual const internal::RepeatedFieldAccessor* RepeatedFieldAccessor(
|
|
const FieldDescriptor* field) const;
|
|
|
|
private:
|
|
template<typename T, typename Enable>
|
|
friend class RepeatedFieldRef;
|
|
template<typename T, typename Enable>
|
|
friend class MutableRepeatedFieldRef;
|
|
friend class ::google::protobuf::python::MapReflectionFriend;
|
|
#define GOOGLE_PROTOBUF_HAS_CEL_MAP_REFLECTION_FRIEND
|
|
friend class ::google::protobuf::expr::CelMapReflectionFriend;
|
|
friend class internal::MapFieldReflectionTest;
|
|
friend class internal::MapKeySorter;
|
|
friend class internal::WireFormat;
|
|
friend class internal::ReflectionOps;
|
|
|
|
// Special version for specialized implementations of string. We can't call
|
|
// MutableRawRepeatedField directly here because we don't have access to
|
|
// FieldOptions::* which are defined in descriptor.pb.h. Including that
|
|
// file here is not possible because it would cause a circular include cycle.
|
|
// We use 1 routine rather than 2 (const vs mutable) because it is private
|
|
// and mutable a repeated string field doesn't change the message.
|
|
void* MutableRawRepeatedString(
|
|
Message* message, const FieldDescriptor* field, bool is_string) const;
|
|
|
|
friend class MapReflectionTester;
|
|
// TODO(jieluo) - make the map APIs pure virtual after updating
|
|
// all the subclasses.
|
|
// Returns true if key is in map. Returns false if key is not in map field.
|
|
virtual bool ContainsMapKey(const Message& /* message */,
|
|
const FieldDescriptor* /* field */,
|
|
const MapKey& /* key */) const {
|
|
return false;
|
|
}
|
|
|
|
// If key is in map field: Saves the value pointer to val and returns
|
|
// false. If key in not in map field: Insert the key into map, saves
|
|
// value pointer to val and retuns true.
|
|
virtual bool InsertOrLookupMapValue(Message* /* message */,
|
|
const FieldDescriptor* /* field */,
|
|
const MapKey& /* key */,
|
|
MapValueRef* /* val */) const {
|
|
return false;
|
|
}
|
|
|
|
// Delete and returns true if key is in the map field. Returns false
|
|
// otherwise.
|
|
virtual bool DeleteMapValue(Message* /* message */,
|
|
const FieldDescriptor* /* field */,
|
|
const MapKey& /* key */) const {
|
|
return false;
|
|
}
|
|
|
|
// Returns a MapIterator referring to the first element in the map field.
|
|
// If the map field is empty, this function returns the same as
|
|
// reflection::MapEnd. Mutation to the field may invalidate the iterator.
|
|
virtual MapIterator MapBegin(
|
|
Message* message,
|
|
const FieldDescriptor* field) const;
|
|
|
|
// Returns a MapIterator referring to the theoretical element that would
|
|
// follow the last element in the map field. It does not point to any
|
|
// real element. Mutation to the field may invalidate the iterator.
|
|
virtual MapIterator MapEnd(
|
|
Message* message,
|
|
const FieldDescriptor* field) const;
|
|
|
|
// Get the number of <key, value> pair of a map field. The result may be
|
|
// different from FieldSize which can have duplicate keys.
|
|
virtual int MapSize(const Message& /* message */,
|
|
const FieldDescriptor* /* field */) const {
|
|
return 0;
|
|
}
|
|
|
|
// Help method for MapIterator.
|
|
friend class MapIterator;
|
|
virtual internal::MapFieldBase* MapData(
|
|
Message* /* message */, const FieldDescriptor* /* field */) const {
|
|
return NULL;
|
|
}
|
|
|
|
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
|
|
};
|
|
|
|
// Abstract interface for a factory for message objects.
|
|
class LIBPROTOBUF_EXPORT MessageFactory {
|
|
public:
|
|
inline MessageFactory() {}
|
|
virtual ~MessageFactory();
|
|
|
|
// Given a Descriptor, gets or constructs the default (prototype) Message
|
|
// of that type. You can then call that message's New() method to construct
|
|
// a mutable message of that type.
|
|
//
|
|
// Calling this method twice with the same Descriptor returns the same
|
|
// object. The returned object remains property of the factory. Also, any
|
|
// objects created by calling the prototype's New() method share some data
|
|
// with the prototype, so these must be destroyed before the MessageFactory
|
|
// is destroyed.
|
|
//
|
|
// The given descriptor must outlive the returned message, and hence must
|
|
// outlive the MessageFactory.
|
|
//
|
|
// Some implementations do not support all types. GetPrototype() will
|
|
// return NULL if the descriptor passed in is not supported.
|
|
//
|
|
// This method may or may not be thread-safe depending on the implementation.
|
|
// Each implementation should document its own degree thread-safety.
|
|
virtual const Message* GetPrototype(const Descriptor* type) = 0;
|
|
|
|
// Gets a MessageFactory which supports all generated, compiled-in messages.
|
|
// In other words, for any compiled-in type FooMessage, the following is true:
|
|
// MessageFactory::generated_factory()->GetPrototype(
|
|
// FooMessage::descriptor()) == FooMessage::default_instance()
|
|
// This factory supports all types which are found in
|
|
// DescriptorPool::generated_pool(). If given a descriptor from any other
|
|
// pool, GetPrototype() will return NULL. (You can also check if a
|
|
// descriptor is for a generated message by checking if
|
|
// descriptor->file()->pool() == DescriptorPool::generated_pool().)
|
|
//
|
|
// This factory is 100% thread-safe; calling GetPrototype() does not modify
|
|
// any shared data.
|
|
//
|
|
// This factory is a singleton. The caller must not delete the object.
|
|
static MessageFactory* generated_factory();
|
|
|
|
// For internal use only: Registers a .proto file at static initialization
|
|
// time, to be placed in generated_factory. The first time GetPrototype()
|
|
// is called with a descriptor from this file, |register_messages| will be
|
|
// called, with the file name as the parameter. It must call
|
|
// InternalRegisterGeneratedMessage() (below) to register each message type
|
|
// in the file. This strange mechanism is necessary because descriptors are
|
|
// built lazily, so we can't register types by their descriptor until we
|
|
// know that the descriptor exists. |filename| must be a permanent string.
|
|
static void InternalRegisterGeneratedFile(
|
|
const char* filename, void (*register_messages)(const string&));
|
|
|
|
// For internal use only: Registers a message type. Called only by the
|
|
// functions which are registered with InternalRegisterGeneratedFile(),
|
|
// above.
|
|
static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
|
|
const Message* prototype);
|
|
|
|
|
|
private:
|
|
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
|
|
};
|
|
|
|
#define DECLARE_GET_REPEATED_FIELD(TYPE) \
|
|
template<> \
|
|
LIBPROTOBUF_EXPORT \
|
|
const RepeatedField<TYPE>& Reflection::GetRepeatedField<TYPE>( \
|
|
const Message& message, const FieldDescriptor* field) const; \
|
|
\
|
|
template<> \
|
|
LIBPROTOBUF_EXPORT \
|
|
RepeatedField<TYPE>* Reflection::MutableRepeatedField<TYPE>( \
|
|
Message* message, const FieldDescriptor* field) const;
|
|
|
|
DECLARE_GET_REPEATED_FIELD(int32)
|
|
DECLARE_GET_REPEATED_FIELD(int64)
|
|
DECLARE_GET_REPEATED_FIELD(uint32)
|
|
DECLARE_GET_REPEATED_FIELD(uint64)
|
|
DECLARE_GET_REPEATED_FIELD(float)
|
|
DECLARE_GET_REPEATED_FIELD(double)
|
|
DECLARE_GET_REPEATED_FIELD(bool)
|
|
|
|
#undef DECLARE_GET_REPEATED_FIELD
|
|
|
|
// =============================================================================
|
|
// Implementation details for {Get,Mutable}RawRepeatedPtrField. We provide
|
|
// specializations for <string>, <StringPieceField> and <Message> and handle
|
|
// everything else with the default template which will match any type having
|
|
// a method with signature "static const google::protobuf::Descriptor* descriptor()".
|
|
// Such a type presumably is a descendant of google::protobuf::Message.
|
|
|
|
template<>
|
|
inline const RepeatedPtrField<string>& Reflection::GetRepeatedPtrField<string>(
|
|
const Message& message, const FieldDescriptor* field) const {
|
|
return *static_cast<RepeatedPtrField<string>* >(
|
|
MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
|
|
}
|
|
|
|
template<>
|
|
inline RepeatedPtrField<string>* Reflection::MutableRepeatedPtrField<string>(
|
|
Message* message, const FieldDescriptor* field) const {
|
|
return static_cast<RepeatedPtrField<string>* >(
|
|
MutableRawRepeatedString(message, field, true));
|
|
}
|
|
|
|
|
|
// -----
|
|
|
|
template<>
|
|
inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrField(
|
|
const Message& message, const FieldDescriptor* field) const {
|
|
return *static_cast<const RepeatedPtrField<Message>* >(
|
|
GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE,
|
|
-1, NULL));
|
|
}
|
|
|
|
template<>
|
|
inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrField(
|
|
Message* message, const FieldDescriptor* field) const {
|
|
return static_cast<RepeatedPtrField<Message>* >(
|
|
MutableRawRepeatedField(message, field,
|
|
FieldDescriptor::CPPTYPE_MESSAGE, -1,
|
|
NULL));
|
|
}
|
|
|
|
template<typename PB>
|
|
inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrField(
|
|
const Message& message, const FieldDescriptor* field) const {
|
|
return *static_cast<const RepeatedPtrField<PB>* >(
|
|
GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE,
|
|
-1, PB::default_instance().GetDescriptor()));
|
|
}
|
|
|
|
template<typename PB>
|
|
inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrField(
|
|
Message* message, const FieldDescriptor* field) const {
|
|
return static_cast<RepeatedPtrField<PB>* >(
|
|
MutableRawRepeatedField(message, field,
|
|
FieldDescriptor::CPPTYPE_MESSAGE, -1,
|
|
PB::default_instance().GetDescriptor()));
|
|
}
|
|
} // namespace protobuf
|
|
|
|
} // namespace google
|
|
#endif // GOOGLE_PROTOBUF_MESSAGE_H__
|