mirror of
https://github.com/gorhill/uBlock.git
synced 2024-11-07 11:22:38 +01:00
new, faster version
This commit is contained in:
parent
aed66e5278
commit
84a2cbd949
229
src/lib/yamd5.js
229
src/lib/yamd5.js
@ -31,7 +31,7 @@ Advantages of YaMD5:
|
|||||||
[1] https://github.com/trentmillar/md5-o-matic
|
[1] https://github.com/trentmillar/md5-o-matic
|
||||||
[2] http://www.myersdaily.org/joseph/javascript/md5-text.html
|
[2] http://www.myersdaily.org/joseph/javascript/md5-text.html
|
||||||
[3] https://github.com/satazor/SparkMD5
|
[3] https://github.com/satazor/SparkMD5
|
||||||
[4] http://jsperf.com/md5-shootout/48
|
[4] http://jsperf.com/md5-shootout/75
|
||||||
|
|
||||||
So with that said, I don't know what license covers Joseph Myers' code (need
|
So with that said, I don't know what license covers Joseph Myers' code (need
|
||||||
to find out). In any case, concerning whatever original code I contributed in
|
to find out). In any case, concerning whatever original code I contributed in
|
||||||
@ -76,104 +76,149 @@ THE SOFTWARE.
|
|||||||
*/
|
*/
|
||||||
|
|
||||||
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence
|
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence
|
||||||
var ff = function(a, b, c, d, x, s, t) {
|
|
||||||
a += (b & c | ~b & d) + x + t;
|
|
||||||
return ((a << s | a >>> (32 - s)) + b) | 0;
|
|
||||||
};
|
|
||||||
|
|
||||||
var gg = function(a, b, c, d, x, s, t) {
|
|
||||||
a += (b & d | c & ~d) + x + t;
|
|
||||||
return ((a << s | a >>> (32 - s)) + b) | 0;
|
|
||||||
};
|
|
||||||
|
|
||||||
var hh = function(a, b, c, d, x, s, t) {
|
|
||||||
a += (b ^ c ^ d) + x + t;
|
|
||||||
return ((a << s | a >>> (32 - s)) + b) | 0;
|
|
||||||
};
|
|
||||||
|
|
||||||
var ii = function(a, b, c, d, x, s, t) {
|
|
||||||
a += (c ^ (b | ~d)) + x + t;
|
|
||||||
return ((a << s | a >>> (32 - s)) + b) | 0;
|
|
||||||
};
|
|
||||||
|
|
||||||
var md5cycle = function(x, k) {
|
var md5cycle = function(x, k) {
|
||||||
var a = x[0],
|
var a = x[0],
|
||||||
b = x[1],
|
b = x[1],
|
||||||
c = x[2],
|
c = x[2],
|
||||||
d = x[3];
|
d = x[3];
|
||||||
|
// ff()
|
||||||
|
a += (b & c | ~b & d) + k[0] - 680876936 | 0;
|
||||||
|
a = (a << 7 | a >>> 25) + b | 0;
|
||||||
|
d += (a & b | ~a & c) + k[1] - 389564586 | 0;
|
||||||
|
d = (d << 12 | d >>> 20) + a | 0;
|
||||||
|
c += (d & a | ~d & b) + k[2] + 606105819 | 0;
|
||||||
|
c = (c << 17 | c >>> 15) + d | 0;
|
||||||
|
b += (c & d | ~c & a) + k[3] - 1044525330 | 0;
|
||||||
|
b = (b << 22 | b >>> 10) + c | 0;
|
||||||
|
a += (b & c | ~b & d) + k[4] - 176418897 | 0;
|
||||||
|
a = (a << 7 | a >>> 25) + b | 0;
|
||||||
|
d += (a & b | ~a & c) + k[5] + 1200080426 | 0;
|
||||||
|
d = (d << 12 | d >>> 20) + a | 0;
|
||||||
|
c += (d & a | ~d & b) + k[6] - 1473231341 | 0;
|
||||||
|
c = (c << 17 | c >>> 15) + d | 0;
|
||||||
|
b += (c & d | ~c & a) + k[7] - 45705983 | 0;
|
||||||
|
b = (b << 22 | b >>> 10) + c | 0;
|
||||||
|
a += (b & c | ~b & d) + k[8] + 1770035416 | 0;
|
||||||
|
a = (a << 7 | a >>> 25) + b | 0;
|
||||||
|
d += (a & b | ~a & c) + k[9] - 1958414417 | 0;
|
||||||
|
d = (d << 12 | d >>> 20) + a | 0;
|
||||||
|
c += (d & a | ~d & b) + k[10] - 42063 | 0;
|
||||||
|
c = (c << 17 | c >>> 15) + d | 0;
|
||||||
|
b += (c & d | ~c & a) + k[11] - 1990404162 | 0;
|
||||||
|
b = (b << 22 | b >>> 10) + c | 0;
|
||||||
|
a += (b & c | ~b & d) + k[12] + 1804603682 | 0;
|
||||||
|
a = (a << 7 | a >>> 25) + b | 0;
|
||||||
|
d += (a & b | ~a & c) + k[13] - 40341101 | 0;
|
||||||
|
d = (d << 12 | d >>> 20) + a | 0;
|
||||||
|
c += (d & a | ~d & b) + k[14] - 1502002290 | 0;
|
||||||
|
c = (c << 17 | c >>> 15) + d | 0;
|
||||||
|
b += (c & d | ~c & a) + k[15] + 1236535329 | 0;
|
||||||
|
b = (b << 22 | b >>> 10) + c | 0;
|
||||||
|
// gg()
|
||||||
|
a += (b & d | c & ~d) + k[1] - 165796510 | 0;
|
||||||
|
a = (a << 5 | a >>> 27) + b | 0;
|
||||||
|
d += (a & c | b & ~c) + k[6] - 1069501632 | 0;
|
||||||
|
d = (d << 9 | d >>> 23) + a | 0;
|
||||||
|
c += (d & b | a & ~b) + k[11] + 643717713 | 0;
|
||||||
|
c = (c << 14 | c >>> 18) + d | 0;
|
||||||
|
b += (c & a | d & ~a) + k[0] - 373897302 | 0;
|
||||||
|
b = (b << 20 | b >>> 12) + c | 0;
|
||||||
|
a += (b & d | c & ~d) + k[5] - 701558691 | 0;
|
||||||
|
a = (a << 5 | a >>> 27) + b | 0;
|
||||||
|
d += (a & c | b & ~c) + k[10] + 38016083 | 0;
|
||||||
|
d = (d << 9 | d >>> 23) + a | 0;
|
||||||
|
c += (d & b | a & ~b) + k[15] - 660478335 | 0;
|
||||||
|
c = (c << 14 | c >>> 18) + d | 0;
|
||||||
|
b += (c & a | d & ~a) + k[4] - 405537848 | 0;
|
||||||
|
b = (b << 20 | b >>> 12) + c | 0;
|
||||||
|
a += (b & d | c & ~d) + k[9] + 568446438 | 0;
|
||||||
|
a = (a << 5 | a >>> 27) + b | 0;
|
||||||
|
d += (a & c | b & ~c) + k[14] - 1019803690 | 0;
|
||||||
|
d = (d << 9 | d >>> 23) + a | 0;
|
||||||
|
c += (d & b | a & ~b) + k[3] - 187363961 | 0;
|
||||||
|
c = (c << 14 | c >>> 18) + d | 0;
|
||||||
|
b += (c & a | d & ~a) + k[8] + 1163531501 | 0;
|
||||||
|
b = (b << 20 | b >>> 12) + c | 0;
|
||||||
|
a += (b & d | c & ~d) + k[13] - 1444681467 | 0;
|
||||||
|
a = (a << 5 | a >>> 27) + b | 0;
|
||||||
|
d += (a & c | b & ~c) + k[2] - 51403784 | 0;
|
||||||
|
d = (d << 9 | d >>> 23) + a | 0;
|
||||||
|
c += (d & b | a & ~b) + k[7] + 1735328473 | 0;
|
||||||
|
c = (c << 14 | c >>> 18) + d | 0;
|
||||||
|
b += (c & a | d & ~a) + k[12] - 1926607734 | 0;
|
||||||
|
b = (b << 20 | b >>> 12) + c | 0;
|
||||||
|
// hh()
|
||||||
|
a += (b ^ c ^ d) + k[5] - 378558 | 0;
|
||||||
|
a = (a << 4 | a >>> 28) + b | 0;
|
||||||
|
d += (a ^ b ^ c) + k[8] - 2022574463 | 0;
|
||||||
|
d = (d << 11 | d >>> 21) + a | 0;
|
||||||
|
c += (d ^ a ^ b) + k[11] + 1839030562 | 0;
|
||||||
|
c = (c << 16 | c >>> 16) + d | 0;
|
||||||
|
b += (c ^ d ^ a) + k[14] - 35309556 | 0;
|
||||||
|
b = (b << 23 | b >>> 9) + c | 0;
|
||||||
|
a += (b ^ c ^ d) + k[1] - 1530992060 | 0;
|
||||||
|
a = (a << 4 | a >>> 28) + b | 0;
|
||||||
|
d += (a ^ b ^ c) + k[4] + 1272893353 | 0;
|
||||||
|
d = (d << 11 | d >>> 21) + a | 0;
|
||||||
|
c += (d ^ a ^ b) + k[7] - 155497632 | 0;
|
||||||
|
c = (c << 16 | c >>> 16) + d | 0;
|
||||||
|
b += (c ^ d ^ a) + k[10] - 1094730640 | 0;
|
||||||
|
b = (b << 23 | b >>> 9) + c | 0;
|
||||||
|
a += (b ^ c ^ d) + k[13] + 681279174 | 0;
|
||||||
|
a = (a << 4 | a >>> 28) + b | 0;
|
||||||
|
d += (a ^ b ^ c) + k[0] - 358537222 | 0;
|
||||||
|
d = (d << 11 | d >>> 21) + a | 0;
|
||||||
|
c += (d ^ a ^ b) + k[3] - 722521979 | 0;
|
||||||
|
c = (c << 16 | c >>> 16) + d | 0;
|
||||||
|
b += (c ^ d ^ a) + k[6] + 76029189 | 0;
|
||||||
|
b = (b << 23 | b >>> 9) + c | 0;
|
||||||
|
a += (b ^ c ^ d) + k[9] - 640364487 | 0;
|
||||||
|
a = (a << 4 | a >>> 28) + b | 0;
|
||||||
|
d += (a ^ b ^ c) + k[12] - 421815835 | 0;
|
||||||
|
d = (d << 11 | d >>> 21) + a | 0;
|
||||||
|
c += (d ^ a ^ b) + k[15] + 530742520 | 0;
|
||||||
|
c = (c << 16 | c >>> 16) + d | 0;
|
||||||
|
b += (c ^ d ^ a) + k[2] - 995338651 | 0;
|
||||||
|
b = (b << 23 | b >>> 9) + c | 0;
|
||||||
|
// ii()
|
||||||
|
a += (c ^ (b | ~d)) + k[0] - 198630844 | 0;
|
||||||
|
a = (a << 6 | a >>> 26) + b | 0;
|
||||||
|
d += (b ^ (a | ~c)) + k[7] + 1126891415 | 0;
|
||||||
|
d = (d << 10 | d >>> 22) + a | 0;
|
||||||
|
c += (a ^ (d | ~b)) + k[14] - 1416354905 | 0;
|
||||||
|
c = (c << 15 | c >>> 17) + d | 0;
|
||||||
|
b += (d ^ (c | ~a)) + k[5] - 57434055 | 0;
|
||||||
|
b = (b << 21 |b >>> 11) + c | 0;
|
||||||
|
a += (c ^ (b | ~d)) + k[12] + 1700485571 | 0;
|
||||||
|
a = (a << 6 | a >>> 26) + b | 0;
|
||||||
|
d += (b ^ (a | ~c)) + k[3] - 1894986606 | 0;
|
||||||
|
d = (d << 10 | d >>> 22) + a | 0;
|
||||||
|
c += (a ^ (d | ~b)) + k[10] - 1051523 | 0;
|
||||||
|
c = (c << 15 | c >>> 17) + d | 0;
|
||||||
|
b += (d ^ (c | ~a)) + k[1] - 2054922799 | 0;
|
||||||
|
b = (b << 21 |b >>> 11) + c | 0;
|
||||||
|
a += (c ^ (b | ~d)) + k[8] + 1873313359 | 0;
|
||||||
|
a = (a << 6 | a >>> 26) + b | 0;
|
||||||
|
d += (b ^ (a | ~c)) + k[15] - 30611744 | 0;
|
||||||
|
d = (d << 10 | d >>> 22) + a | 0;
|
||||||
|
c += (a ^ (d | ~b)) + k[6] - 1560198380 | 0;
|
||||||
|
c = (c << 15 | c >>> 17) + d | 0;
|
||||||
|
b += (d ^ (c | ~a)) + k[13] + 1309151649 | 0;
|
||||||
|
b = (b << 21 |b >>> 11) + c | 0;
|
||||||
|
a += (c ^ (b | ~d)) + k[4] - 145523070 | 0;
|
||||||
|
a = (a << 6 | a >>> 26) + b | 0;
|
||||||
|
d += (b ^ (a | ~c)) + k[11] - 1120210379 | 0;
|
||||||
|
d = (d << 10 | d >>> 22) + a | 0;
|
||||||
|
c += (a ^ (d | ~b)) + k[2] + 718787259 | 0;
|
||||||
|
c = (c << 15 | c >>> 17) + d | 0;
|
||||||
|
b += (d ^ (c | ~a)) + k[9] - 343485551 | 0;
|
||||||
|
b = (b << 21 | b >>> 11) + c | 0;
|
||||||
|
|
||||||
a = ff(a, b, c, d, k[0], 7, -680876936);
|
x[0] = a + x[0] | 0;
|
||||||
d = ff(d, a, b, c, k[1], 12, -389564586);
|
x[1] = b + x[1] | 0;
|
||||||
c = ff(c, d, a, b, k[2], 17, 606105819);
|
x[2] = c + x[2] | 0;
|
||||||
b = ff(b, c, d, a, k[3], 22, -1044525330);
|
x[3] = d + x[3] | 0;
|
||||||
a = ff(a, b, c, d, k[4], 7, -176418897);
|
|
||||||
d = ff(d, a, b, c, k[5], 12, 1200080426);
|
|
||||||
c = ff(c, d, a, b, k[6], 17, -1473231341);
|
|
||||||
b = ff(b, c, d, a, k[7], 22, -45705983);
|
|
||||||
a = ff(a, b, c, d, k[8], 7, 1770035416);
|
|
||||||
d = ff(d, a, b, c, k[9], 12, -1958414417);
|
|
||||||
c = ff(c, d, a, b, k[10], 17, -42063);
|
|
||||||
b = ff(b, c, d, a, k[11], 22, -1990404162);
|
|
||||||
a = ff(a, b, c, d, k[12], 7, 1804603682);
|
|
||||||
d = ff(d, a, b, c, k[13], 12, -40341101);
|
|
||||||
c = ff(c, d, a, b, k[14], 17, -1502002290);
|
|
||||||
b = ff(b, c, d, a, k[15], 22, 1236535329);
|
|
||||||
|
|
||||||
a = gg(a, b, c, d, k[1], 5, -165796510);
|
|
||||||
d = gg(d, a, b, c, k[6], 9, -1069501632);
|
|
||||||
c = gg(c, d, a, b, k[11], 14, 643717713);
|
|
||||||
b = gg(b, c, d, a, k[0], 20, -373897302);
|
|
||||||
a = gg(a, b, c, d, k[5], 5, -701558691);
|
|
||||||
d = gg(d, a, b, c, k[10], 9, 38016083);
|
|
||||||
c = gg(c, d, a, b, k[15], 14, -660478335);
|
|
||||||
b = gg(b, c, d, a, k[4], 20, -405537848);
|
|
||||||
a = gg(a, b, c, d, k[9], 5, 568446438);
|
|
||||||
d = gg(d, a, b, c, k[14], 9, -1019803690);
|
|
||||||
c = gg(c, d, a, b, k[3], 14, -187363961);
|
|
||||||
b = gg(b, c, d, a, k[8], 20, 1163531501);
|
|
||||||
a = gg(a, b, c, d, k[13], 5, -1444681467);
|
|
||||||
d = gg(d, a, b, c, k[2], 9, -51403784);
|
|
||||||
c = gg(c, d, a, b, k[7], 14, 1735328473);
|
|
||||||
b = gg(b, c, d, a, k[12], 20, -1926607734);
|
|
||||||
|
|
||||||
a = hh(a, b, c, d, k[5], 4, -378558);
|
|
||||||
d = hh(d, a, b, c, k[8], 11, -2022574463);
|
|
||||||
c = hh(c, d, a, b, k[11], 16, 1839030562);
|
|
||||||
b = hh(b, c, d, a, k[14], 23, -35309556);
|
|
||||||
a = hh(a, b, c, d, k[1], 4, -1530992060);
|
|
||||||
d = hh(d, a, b, c, k[4], 11, 1272893353);
|
|
||||||
c = hh(c, d, a, b, k[7], 16, -155497632);
|
|
||||||
b = hh(b, c, d, a, k[10], 23, -1094730640);
|
|
||||||
a = hh(a, b, c, d, k[13], 4, 681279174);
|
|
||||||
d = hh(d, a, b, c, k[0], 11, -358537222);
|
|
||||||
c = hh(c, d, a, b, k[3], 16, -722521979);
|
|
||||||
b = hh(b, c, d, a, k[6], 23, 76029189);
|
|
||||||
a = hh(a, b, c, d, k[9], 4, -640364487);
|
|
||||||
d = hh(d, a, b, c, k[12], 11, -421815835);
|
|
||||||
c = hh(c, d, a, b, k[15], 16, 530742520);
|
|
||||||
b = hh(b, c, d, a, k[2], 23, -995338651);
|
|
||||||
|
|
||||||
a = ii(a, b, c, d, k[0], 6, -198630844);
|
|
||||||
d = ii(d, a, b, c, k[7], 10, 1126891415);
|
|
||||||
c = ii(c, d, a, b, k[14], 15, -1416354905);
|
|
||||||
b = ii(b, c, d, a, k[5], 21, -57434055);
|
|
||||||
a = ii(a, b, c, d, k[12], 6, 1700485571);
|
|
||||||
d = ii(d, a, b, c, k[3], 10, -1894986606);
|
|
||||||
c = ii(c, d, a, b, k[10], 15, -1051523);
|
|
||||||
b = ii(b, c, d, a, k[1], 21, -2054922799);
|
|
||||||
a = ii(a, b, c, d, k[8], 6, 1873313359);
|
|
||||||
d = ii(d, a, b, c, k[15], 10, -30611744);
|
|
||||||
c = ii(c, d, a, b, k[6], 15, -1560198380);
|
|
||||||
b = ii(b, c, d, a, k[13], 21, 1309151649);
|
|
||||||
a = ii(a, b, c, d, k[4], 6, -145523070);
|
|
||||||
d = ii(d, a, b, c, k[11], 10, -1120210379);
|
|
||||||
c = ii(c, d, a, b, k[2], 15, 718787259);
|
|
||||||
b = ii(b, c, d, a, k[9], 21, -343485551);
|
|
||||||
|
|
||||||
x[0] = (a + x[0]) | 0;
|
|
||||||
x[1] = (b + x[1]) | 0;
|
|
||||||
x[2] = (c + x[2]) | 0;
|
|
||||||
x[3] = (d + x[3]) | 0;
|
|
||||||
};
|
};
|
||||||
|
|
||||||
var hexChars = '0123456789abcdef';
|
var hexChars = '0123456789abcdef';
|
||||||
|
Loading…
Reference in New Issue
Block a user