1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/unittests/Frontend/OpenMPIRBuilderTest.cpp

1348 lines
49 KiB
C++
Raw Normal View History

//===- llvm/unittest/IR/OpenMPIRBuilderTest.cpp - OpenMPIRBuilder tests ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Frontend/OpenMP/OMPConstants.h"
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "gtest/gtest.h"
using namespace llvm;
using namespace omp;
namespace {
class OpenMPIRBuilderTest : public testing::Test {
protected:
void SetUp() override {
M.reset(new Module("MyModule", Ctx));
FunctionType *FTy =
FunctionType::get(Type::getVoidTy(Ctx), {Type::getInt32Ty(Ctx)},
/*isVarArg=*/false);
F = Function::Create(FTy, Function::ExternalLinkage, "", M.get());
BB = BasicBlock::Create(Ctx, "", F);
DIBuilder DIB(*M);
auto File = DIB.createFile("test.dbg", "/src", llvm::None,
Optional<StringRef>("/src/test.dbg"));
auto CU =
DIB.createCompileUnit(dwarf::DW_LANG_C, File, "llvm-C", true, "", 0);
auto Type = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
auto SP = DIB.createFunction(
CU, "foo", "", File, 1, Type, 1, DINode::FlagZero,
DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
F->setSubprogram(SP);
auto Scope = DIB.createLexicalBlockFile(SP, File, 0);
DIB.finalize();
DL = DebugLoc::get(3, 7, Scope);
}
void TearDown() override {
BB = nullptr;
M.reset();
}
LLVMContext Ctx;
std::unique_ptr<Module> M;
Function *F;
BasicBlock *BB;
DebugLoc DL;
};
// Returns the value stored in the given allocation. Returns null if the given
// value is not a result of an allocation, if no value is stored or if there is
// more than one store.
static Value *findStoredValue(Value *AllocaValue) {
Instruction *Alloca = dyn_cast<AllocaInst>(AllocaValue);
if (!Alloca)
return nullptr;
StoreInst *Store = nullptr;
for (Use &U : Alloca->uses()) {
if (auto *CandidateStore = dyn_cast<StoreInst>(U.getUser())) {
EXPECT_EQ(Store, nullptr);
Store = CandidateStore;
}
}
if (!Store)
return nullptr;
return Store->getValueOperand();
};
TEST_F(OpenMPIRBuilderTest, CreateBarrier) {
OpenMPIRBuilder OMPBuilder(*M);
OMPBuilder.initialize();
IRBuilder<> Builder(BB);
OMPBuilder.createBarrier({IRBuilder<>::InsertPoint()}, OMPD_for);
EXPECT_TRUE(M->global_empty());
EXPECT_EQ(M->size(), 1U);
EXPECT_EQ(F->size(), 1U);
EXPECT_EQ(BB->size(), 0U);
OpenMPIRBuilder::LocationDescription Loc({Builder.saveIP()});
OMPBuilder.createBarrier(Loc, OMPD_for);
EXPECT_FALSE(M->global_empty());
EXPECT_EQ(M->size(), 3U);
EXPECT_EQ(F->size(), 1U);
EXPECT_EQ(BB->size(), 2U);
CallInst *GTID = dyn_cast<CallInst>(&BB->front());
EXPECT_NE(GTID, nullptr);
EXPECT_EQ(GTID->getNumArgOperands(), 1U);
EXPECT_EQ(GTID->getCalledFunction()->getName(), "__kmpc_global_thread_num");
EXPECT_FALSE(GTID->getCalledFunction()->doesNotAccessMemory());
EXPECT_FALSE(GTID->getCalledFunction()->doesNotFreeMemory());
CallInst *Barrier = dyn_cast<CallInst>(GTID->getNextNode());
EXPECT_NE(Barrier, nullptr);
EXPECT_EQ(Barrier->getNumArgOperands(), 2U);
EXPECT_EQ(Barrier->getCalledFunction()->getName(), "__kmpc_barrier");
EXPECT_FALSE(Barrier->getCalledFunction()->doesNotAccessMemory());
EXPECT_FALSE(Barrier->getCalledFunction()->doesNotFreeMemory());
EXPECT_EQ(cast<CallInst>(Barrier)->getArgOperand(1), GTID);
Builder.CreateUnreachable();
EXPECT_FALSE(verifyModule(*M, &errs()));
}
TEST_F(OpenMPIRBuilderTest, CreateCancel) {
using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
OpenMPIRBuilder OMPBuilder(*M);
OMPBuilder.initialize();
BasicBlock *CBB = BasicBlock::Create(Ctx, "", F);
new UnreachableInst(Ctx, CBB);
auto FiniCB = [&](InsertPointTy IP) {
ASSERT_NE(IP.getBlock(), nullptr);
ASSERT_EQ(IP.getBlock()->end(), IP.getPoint());
BranchInst::Create(CBB, IP.getBlock());
};
OMPBuilder.pushFinalizationCB({FiniCB, OMPD_parallel, true});
IRBuilder<> Builder(BB);
OpenMPIRBuilder::LocationDescription Loc({Builder.saveIP()});
auto NewIP = OMPBuilder.createCancel(Loc, nullptr, OMPD_parallel);
Builder.restoreIP(NewIP);
EXPECT_FALSE(M->global_empty());
EXPECT_EQ(M->size(), 3U);
EXPECT_EQ(F->size(), 4U);
EXPECT_EQ(BB->size(), 4U);
CallInst *GTID = dyn_cast<CallInst>(&BB->front());
EXPECT_NE(GTID, nullptr);
EXPECT_EQ(GTID->getNumArgOperands(), 1U);
EXPECT_EQ(GTID->getCalledFunction()->getName(), "__kmpc_global_thread_num");
EXPECT_FALSE(GTID->getCalledFunction()->doesNotAccessMemory());
EXPECT_FALSE(GTID->getCalledFunction()->doesNotFreeMemory());
CallInst *Cancel = dyn_cast<CallInst>(GTID->getNextNode());
EXPECT_NE(Cancel, nullptr);
EXPECT_EQ(Cancel->getNumArgOperands(), 3U);
EXPECT_EQ(Cancel->getCalledFunction()->getName(), "__kmpc_cancel");
EXPECT_FALSE(Cancel->getCalledFunction()->doesNotAccessMemory());
EXPECT_FALSE(Cancel->getCalledFunction()->doesNotFreeMemory());
EXPECT_EQ(Cancel->getNumUses(), 1U);
Instruction *CancelBBTI = Cancel->getParent()->getTerminator();
EXPECT_EQ(CancelBBTI->getNumSuccessors(), 2U);
EXPECT_EQ(CancelBBTI->getSuccessor(0), NewIP.getBlock());
EXPECT_EQ(CancelBBTI->getSuccessor(1)->size(), 1U);
EXPECT_EQ(CancelBBTI->getSuccessor(1)->getTerminator()->getNumSuccessors(),
1U);
EXPECT_EQ(CancelBBTI->getSuccessor(1)->getTerminator()->getSuccessor(0),
CBB);
EXPECT_EQ(cast<CallInst>(Cancel)->getArgOperand(1), GTID);
OMPBuilder.popFinalizationCB();
Builder.CreateUnreachable();
EXPECT_FALSE(verifyModule(*M, &errs()));
}
TEST_F(OpenMPIRBuilderTest, CreateCancelIfCond) {
using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
OpenMPIRBuilder OMPBuilder(*M);
OMPBuilder.initialize();
BasicBlock *CBB = BasicBlock::Create(Ctx, "", F);
new UnreachableInst(Ctx, CBB);
auto FiniCB = [&](InsertPointTy IP) {
ASSERT_NE(IP.getBlock(), nullptr);
ASSERT_EQ(IP.getBlock()->end(), IP.getPoint());
BranchInst::Create(CBB, IP.getBlock());
};
OMPBuilder.pushFinalizationCB({FiniCB, OMPD_parallel, true});
IRBuilder<> Builder(BB);
OpenMPIRBuilder::LocationDescription Loc({Builder.saveIP()});
auto NewIP = OMPBuilder.createCancel(Loc, Builder.getTrue(), OMPD_parallel);
Builder.restoreIP(NewIP);
EXPECT_FALSE(M->global_empty());
EXPECT_EQ(M->size(), 3U);
EXPECT_EQ(F->size(), 7U);
EXPECT_EQ(BB->size(), 1U);
ASSERT_TRUE(isa<BranchInst>(BB->getTerminator()));
ASSERT_EQ(BB->getTerminator()->getNumSuccessors(), 2U);
BB = BB->getTerminator()->getSuccessor(0);
EXPECT_EQ(BB->size(), 4U);
CallInst *GTID = dyn_cast<CallInst>(&BB->front());
EXPECT_NE(GTID, nullptr);
EXPECT_EQ(GTID->getNumArgOperands(), 1U);
EXPECT_EQ(GTID->getCalledFunction()->getName(), "__kmpc_global_thread_num");
EXPECT_FALSE(GTID->getCalledFunction()->doesNotAccessMemory());
EXPECT_FALSE(GTID->getCalledFunction()->doesNotFreeMemory());
CallInst *Cancel = dyn_cast<CallInst>(GTID->getNextNode());
EXPECT_NE(Cancel, nullptr);
EXPECT_EQ(Cancel->getNumArgOperands(), 3U);
EXPECT_EQ(Cancel->getCalledFunction()->getName(), "__kmpc_cancel");
EXPECT_FALSE(Cancel->getCalledFunction()->doesNotAccessMemory());
EXPECT_FALSE(Cancel->getCalledFunction()->doesNotFreeMemory());
EXPECT_EQ(Cancel->getNumUses(), 1U);
Instruction *CancelBBTI = Cancel->getParent()->getTerminator();
EXPECT_EQ(CancelBBTI->getNumSuccessors(), 2U);
EXPECT_EQ(CancelBBTI->getSuccessor(0)->size(), 1U);
EXPECT_EQ(CancelBBTI->getSuccessor(0)->getUniqueSuccessor(), NewIP.getBlock());
EXPECT_EQ(CancelBBTI->getSuccessor(1)->size(), 1U);
EXPECT_EQ(CancelBBTI->getSuccessor(1)->getTerminator()->getNumSuccessors(),
1U);
EXPECT_EQ(CancelBBTI->getSuccessor(1)->getTerminator()->getSuccessor(0),
CBB);
EXPECT_EQ(cast<CallInst>(Cancel)->getArgOperand(1), GTID);
OMPBuilder.popFinalizationCB();
Builder.CreateUnreachable();
EXPECT_FALSE(verifyModule(*M, &errs()));
}
TEST_F(OpenMPIRBuilderTest, CreateCancelBarrier) {
using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
OpenMPIRBuilder OMPBuilder(*M);
OMPBuilder.initialize();
BasicBlock *CBB = BasicBlock::Create(Ctx, "", F);
new UnreachableInst(Ctx, CBB);
auto FiniCB = [&](InsertPointTy IP) {
ASSERT_NE(IP.getBlock(), nullptr);
ASSERT_EQ(IP.getBlock()->end(), IP.getPoint());
BranchInst::Create(CBB, IP.getBlock());
};
OMPBuilder.pushFinalizationCB({FiniCB, OMPD_parallel, true});
IRBuilder<> Builder(BB);
OpenMPIRBuilder::LocationDescription Loc({Builder.saveIP()});
auto NewIP = OMPBuilder.createBarrier(Loc, OMPD_for);
Builder.restoreIP(NewIP);
EXPECT_FALSE(M->global_empty());
EXPECT_EQ(M->size(), 3U);
EXPECT_EQ(F->size(), 4U);
EXPECT_EQ(BB->size(), 4U);
CallInst *GTID = dyn_cast<CallInst>(&BB->front());
EXPECT_NE(GTID, nullptr);
EXPECT_EQ(GTID->getNumArgOperands(), 1U);
EXPECT_EQ(GTID->getCalledFunction()->getName(), "__kmpc_global_thread_num");
EXPECT_FALSE(GTID->getCalledFunction()->doesNotAccessMemory());
EXPECT_FALSE(GTID->getCalledFunction()->doesNotFreeMemory());
CallInst *Barrier = dyn_cast<CallInst>(GTID->getNextNode());
EXPECT_NE(Barrier, nullptr);
EXPECT_EQ(Barrier->getNumArgOperands(), 2U);
EXPECT_EQ(Barrier->getCalledFunction()->getName(), "__kmpc_cancel_barrier");
EXPECT_FALSE(Barrier->getCalledFunction()->doesNotAccessMemory());
EXPECT_FALSE(Barrier->getCalledFunction()->doesNotFreeMemory());
EXPECT_EQ(Barrier->getNumUses(), 1U);
Instruction *BarrierBBTI = Barrier->getParent()->getTerminator();
EXPECT_EQ(BarrierBBTI->getNumSuccessors(), 2U);
EXPECT_EQ(BarrierBBTI->getSuccessor(0), NewIP.getBlock());
EXPECT_EQ(BarrierBBTI->getSuccessor(1)->size(), 1U);
EXPECT_EQ(BarrierBBTI->getSuccessor(1)->getTerminator()->getNumSuccessors(),
1U);
EXPECT_EQ(BarrierBBTI->getSuccessor(1)->getTerminator()->getSuccessor(0),
CBB);
EXPECT_EQ(cast<CallInst>(Barrier)->getArgOperand(1), GTID);
OMPBuilder.popFinalizationCB();
Builder.CreateUnreachable();
EXPECT_FALSE(verifyModule(*M, &errs()));
}
TEST_F(OpenMPIRBuilderTest, DbgLoc) {
OpenMPIRBuilder OMPBuilder(*M);
OMPBuilder.initialize();
F->setName("func");
IRBuilder<> Builder(BB);
OpenMPIRBuilder::LocationDescription Loc({Builder.saveIP(), DL});
OMPBuilder.createBarrier(Loc, OMPD_for);
CallInst *GTID = dyn_cast<CallInst>(&BB->front());
CallInst *Barrier = dyn_cast<CallInst>(GTID->getNextNode());
EXPECT_EQ(GTID->getDebugLoc(), DL);
EXPECT_EQ(Barrier->getDebugLoc(), DL);
EXPECT_TRUE(isa<GlobalVariable>(Barrier->getOperand(0)));
if (!isa<GlobalVariable>(Barrier->getOperand(0)))
return;
GlobalVariable *Ident = cast<GlobalVariable>(Barrier->getOperand(0));
EXPECT_TRUE(Ident->hasInitializer());
if (!Ident->hasInitializer())
return;
Constant *Initializer = Ident->getInitializer();
EXPECT_TRUE(
isa<GlobalVariable>(Initializer->getOperand(4)->stripPointerCasts()));
GlobalVariable *SrcStrGlob =
cast<GlobalVariable>(Initializer->getOperand(4)->stripPointerCasts());
if (!SrcStrGlob)
return;
EXPECT_TRUE(isa<ConstantDataArray>(SrcStrGlob->getInitializer()));
ConstantDataArray *SrcSrc =
dyn_cast<ConstantDataArray>(SrcStrGlob->getInitializer());
if (!SrcSrc)
return;
EXPECT_EQ(SrcSrc->getAsCString(), ";/src/test.dbg;foo;3;7;;");
}
TEST_F(OpenMPIRBuilderTest, ParallelSimple) {
using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
OpenMPIRBuilder OMPBuilder(*M);
OMPBuilder.initialize();
F->setName("func");
IRBuilder<> Builder(BB);
OpenMPIRBuilder::LocationDescription Loc({Builder.saveIP(), DL});
AllocaInst *PrivAI = nullptr;
unsigned NumBodiesGenerated = 0;
unsigned NumPrivatizedVars = 0;
unsigned NumFinalizationPoints = 0;
auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
BasicBlock &ContinuationIP) {
++NumBodiesGenerated;
Builder.restoreIP(AllocaIP);
PrivAI = Builder.CreateAlloca(F->arg_begin()->getType());
Builder.CreateStore(F->arg_begin(), PrivAI);
Builder.restoreIP(CodeGenIP);
Value *PrivLoad = Builder.CreateLoad(PrivAI, "local.use");
Value *Cmp = Builder.CreateICmpNE(F->arg_begin(), PrivLoad);
Instruction *ThenTerm, *ElseTerm;
SplitBlockAndInsertIfThenElse(Cmp, CodeGenIP.getBlock()->getTerminator(),
&ThenTerm, &ElseTerm);
Builder.SetInsertPoint(ThenTerm);
Builder.CreateBr(&ContinuationIP);
ThenTerm->eraseFromParent();
};
auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
Value &Orig, Value &Inner,
Value *&ReplacementValue) -> InsertPointTy {
++NumPrivatizedVars;
if (!isa<AllocaInst>(Orig)) {
EXPECT_EQ(&Orig, F->arg_begin());
ReplacementValue = &Inner;
return CodeGenIP;
}
// Since the original value is an allocation, it has a pointer type and
// therefore no additional wrapping should happen.
EXPECT_EQ(&Orig, &Inner);
// Trivial copy (=firstprivate).
Builder.restoreIP(AllocaIP);
Type *VTy = Inner.getType()->getPointerElementType();
Value *V = Builder.CreateLoad(VTy, &Inner, Orig.getName() + ".reload");
ReplacementValue = Builder.CreateAlloca(VTy, 0, Orig.getName() + ".copy");
Builder.restoreIP(CodeGenIP);
Builder.CreateStore(V, ReplacementValue);
return CodeGenIP;
};
auto FiniCB = [&](InsertPointTy CodeGenIP) { ++NumFinalizationPoints; };
IRBuilder<>::InsertPoint AllocaIP(&F->getEntryBlock(),
F->getEntryBlock().getFirstInsertionPt());
IRBuilder<>::InsertPoint AfterIP =
OMPBuilder.createParallel(Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB,
nullptr, nullptr, OMP_PROC_BIND_default, false);
EXPECT_EQ(NumBodiesGenerated, 1U);
EXPECT_EQ(NumPrivatizedVars, 1U);
EXPECT_EQ(NumFinalizationPoints, 1U);
Builder.restoreIP(AfterIP);
Builder.CreateRetVoid();
OMPBuilder.finalize();
EXPECT_NE(PrivAI, nullptr);
Function *OutlinedFn = PrivAI->getFunction();
EXPECT_NE(F, OutlinedFn);
EXPECT_FALSE(verifyModule(*M, &errs()));
EXPECT_TRUE(OutlinedFn->hasFnAttribute(Attribute::NoUnwind));
EXPECT_TRUE(OutlinedFn->hasFnAttribute(Attribute::NoRecurse));
EXPECT_TRUE(OutlinedFn->hasParamAttribute(0, Attribute::NoAlias));
EXPECT_TRUE(OutlinedFn->hasParamAttribute(1, Attribute::NoAlias));
EXPECT_TRUE(OutlinedFn->hasInternalLinkage());
EXPECT_EQ(OutlinedFn->arg_size(), 3U);
EXPECT_EQ(&OutlinedFn->getEntryBlock(), PrivAI->getParent());
EXPECT_EQ(OutlinedFn->getNumUses(), 1U);
User *Usr = OutlinedFn->user_back();
ASSERT_TRUE(isa<ConstantExpr>(Usr));
CallInst *ForkCI = dyn_cast<CallInst>(Usr->user_back());
ASSERT_NE(ForkCI, nullptr);
EXPECT_EQ(ForkCI->getCalledFunction()->getName(), "__kmpc_fork_call");
EXPECT_EQ(ForkCI->getNumArgOperands(), 4U);
EXPECT_TRUE(isa<GlobalVariable>(ForkCI->getArgOperand(0)));
EXPECT_EQ(ForkCI->getArgOperand(1),
ConstantInt::get(Type::getInt32Ty(Ctx), 1U));
EXPECT_EQ(ForkCI->getArgOperand(2), Usr);
EXPECT_EQ(findStoredValue(ForkCI->getArgOperand(3)), F->arg_begin());
}
TEST_F(OpenMPIRBuilderTest, ParallelNested) {
using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
OpenMPIRBuilder OMPBuilder(*M);
OMPBuilder.initialize();
F->setName("func");
IRBuilder<> Builder(BB);
OpenMPIRBuilder::LocationDescription Loc({Builder.saveIP(), DL});
unsigned NumInnerBodiesGenerated = 0;
unsigned NumOuterBodiesGenerated = 0;
unsigned NumFinalizationPoints = 0;
auto InnerBodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
BasicBlock &ContinuationIP) {
++NumInnerBodiesGenerated;
};
auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
Value &Orig, Value &Inner,
Value *&ReplacementValue) -> InsertPointTy {
// Trivial copy (=firstprivate).
Builder.restoreIP(AllocaIP);
Type *VTy = Inner.getType()->getPointerElementType();
Value *V = Builder.CreateLoad(VTy, &Inner, Orig.getName() + ".reload");
ReplacementValue = Builder.CreateAlloca(VTy, 0, Orig.getName() + ".copy");
Builder.restoreIP(CodeGenIP);
Builder.CreateStore(V, ReplacementValue);
return CodeGenIP;
};
auto FiniCB = [&](InsertPointTy CodeGenIP) { ++NumFinalizationPoints; };
auto OuterBodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
BasicBlock &ContinuationIP) {
++NumOuterBodiesGenerated;
Builder.restoreIP(CodeGenIP);
BasicBlock *CGBB = CodeGenIP.getBlock();
BasicBlock *NewBB = SplitBlock(CGBB, &*CodeGenIP.getPoint());
CGBB->getTerminator()->eraseFromParent();
;
IRBuilder<>::InsertPoint AfterIP = OMPBuilder.createParallel(
InsertPointTy(CGBB, CGBB->end()), AllocaIP, InnerBodyGenCB, PrivCB,
FiniCB, nullptr, nullptr, OMP_PROC_BIND_default, false);
Builder.restoreIP(AfterIP);
Builder.CreateBr(NewBB);
};
IRBuilder<>::InsertPoint AllocaIP(&F->getEntryBlock(),
F->getEntryBlock().getFirstInsertionPt());
IRBuilder<>::InsertPoint AfterIP =
OMPBuilder.createParallel(Loc, AllocaIP, OuterBodyGenCB, PrivCB, FiniCB,
nullptr, nullptr, OMP_PROC_BIND_default, false);
EXPECT_EQ(NumInnerBodiesGenerated, 1U);
EXPECT_EQ(NumOuterBodiesGenerated, 1U);
EXPECT_EQ(NumFinalizationPoints, 2U);
Builder.restoreIP(AfterIP);
Builder.CreateRetVoid();
OMPBuilder.finalize();
EXPECT_EQ(M->size(), 5U);
for (Function &OutlinedFn : *M) {
if (F == &OutlinedFn || OutlinedFn.isDeclaration())
continue;
EXPECT_FALSE(verifyModule(*M, &errs()));
EXPECT_TRUE(OutlinedFn.hasFnAttribute(Attribute::NoUnwind));
EXPECT_TRUE(OutlinedFn.hasFnAttribute(Attribute::NoRecurse));
EXPECT_TRUE(OutlinedFn.hasParamAttribute(0, Attribute::NoAlias));
EXPECT_TRUE(OutlinedFn.hasParamAttribute(1, Attribute::NoAlias));
EXPECT_TRUE(OutlinedFn.hasInternalLinkage());
EXPECT_EQ(OutlinedFn.arg_size(), 2U);
EXPECT_EQ(OutlinedFn.getNumUses(), 1U);
User *Usr = OutlinedFn.user_back();
ASSERT_TRUE(isa<ConstantExpr>(Usr));
CallInst *ForkCI = dyn_cast<CallInst>(Usr->user_back());
ASSERT_NE(ForkCI, nullptr);
EXPECT_EQ(ForkCI->getCalledFunction()->getName(), "__kmpc_fork_call");
EXPECT_EQ(ForkCI->getNumArgOperands(), 3U);
EXPECT_TRUE(isa<GlobalVariable>(ForkCI->getArgOperand(0)));
EXPECT_EQ(ForkCI->getArgOperand(1),
ConstantInt::get(Type::getInt32Ty(Ctx), 0U));
EXPECT_EQ(ForkCI->getArgOperand(2), Usr);
}
}
TEST_F(OpenMPIRBuilderTest, ParallelNested2Inner) {
using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
OpenMPIRBuilder OMPBuilder(*M);
OMPBuilder.initialize();
F->setName("func");
IRBuilder<> Builder(BB);
OpenMPIRBuilder::LocationDescription Loc({Builder.saveIP(), DL});
unsigned NumInnerBodiesGenerated = 0;
unsigned NumOuterBodiesGenerated = 0;
unsigned NumFinalizationPoints = 0;
auto InnerBodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
BasicBlock &ContinuationIP) {
++NumInnerBodiesGenerated;
};
auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
Value &Orig, Value &Inner,
Value *&ReplacementValue) -> InsertPointTy {
// Trivial copy (=firstprivate).
Builder.restoreIP(AllocaIP);
Type *VTy = Inner.getType()->getPointerElementType();
Value *V = Builder.CreateLoad(VTy, &Inner, Orig.getName() + ".reload");
ReplacementValue = Builder.CreateAlloca(VTy, 0, Orig.getName() + ".copy");
Builder.restoreIP(CodeGenIP);
Builder.CreateStore(V, ReplacementValue);
return CodeGenIP;
};
auto FiniCB = [&](InsertPointTy CodeGenIP) { ++NumFinalizationPoints; };
auto OuterBodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
BasicBlock &ContinuationIP) {
++NumOuterBodiesGenerated;
Builder.restoreIP(CodeGenIP);
BasicBlock *CGBB = CodeGenIP.getBlock();
BasicBlock *NewBB1 = SplitBlock(CGBB, &*CodeGenIP.getPoint());
BasicBlock *NewBB2 = SplitBlock(NewBB1, &*NewBB1->getFirstInsertionPt());
CGBB->getTerminator()->eraseFromParent();
;
NewBB1->getTerminator()->eraseFromParent();
;
IRBuilder<>::InsertPoint AfterIP1 = OMPBuilder.createParallel(
InsertPointTy(CGBB, CGBB->end()), AllocaIP, InnerBodyGenCB, PrivCB,
FiniCB, nullptr, nullptr, OMP_PROC_BIND_default, false);
Builder.restoreIP(AfterIP1);
Builder.CreateBr(NewBB1);
IRBuilder<>::InsertPoint AfterIP2 = OMPBuilder.createParallel(
InsertPointTy(NewBB1, NewBB1->end()), AllocaIP, InnerBodyGenCB, PrivCB,
FiniCB, nullptr, nullptr, OMP_PROC_BIND_default, false);
Builder.restoreIP(AfterIP2);
Builder.CreateBr(NewBB2);
};
IRBuilder<>::InsertPoint AllocaIP(&F->getEntryBlock(),
F->getEntryBlock().getFirstInsertionPt());
IRBuilder<>::InsertPoint AfterIP =
OMPBuilder.createParallel(Loc, AllocaIP, OuterBodyGenCB, PrivCB, FiniCB,
nullptr, nullptr, OMP_PROC_BIND_default, false);
EXPECT_EQ(NumInnerBodiesGenerated, 2U);
EXPECT_EQ(NumOuterBodiesGenerated, 1U);
EXPECT_EQ(NumFinalizationPoints, 3U);
Builder.restoreIP(AfterIP);
Builder.CreateRetVoid();
OMPBuilder.finalize();
EXPECT_EQ(M->size(), 6U);
for (Function &OutlinedFn : *M) {
if (F == &OutlinedFn || OutlinedFn.isDeclaration())
continue;
EXPECT_FALSE(verifyModule(*M, &errs()));
EXPECT_TRUE(OutlinedFn.hasFnAttribute(Attribute::NoUnwind));
EXPECT_TRUE(OutlinedFn.hasFnAttribute(Attribute::NoRecurse));
EXPECT_TRUE(OutlinedFn.hasParamAttribute(0, Attribute::NoAlias));
EXPECT_TRUE(OutlinedFn.hasParamAttribute(1, Attribute::NoAlias));
EXPECT_TRUE(OutlinedFn.hasInternalLinkage());
EXPECT_EQ(OutlinedFn.arg_size(), 2U);
unsigned NumAllocas = 0;
for (Instruction &I : instructions(OutlinedFn))
NumAllocas += isa<AllocaInst>(I);
EXPECT_EQ(NumAllocas, 1U);
EXPECT_EQ(OutlinedFn.getNumUses(), 1U);
User *Usr = OutlinedFn.user_back();
ASSERT_TRUE(isa<ConstantExpr>(Usr));
CallInst *ForkCI = dyn_cast<CallInst>(Usr->user_back());
ASSERT_NE(ForkCI, nullptr);
EXPECT_EQ(ForkCI->getCalledFunction()->getName(), "__kmpc_fork_call");
EXPECT_EQ(ForkCI->getNumArgOperands(), 3U);
EXPECT_TRUE(isa<GlobalVariable>(ForkCI->getArgOperand(0)));
EXPECT_EQ(ForkCI->getArgOperand(1),
ConstantInt::get(Type::getInt32Ty(Ctx), 0U));
EXPECT_EQ(ForkCI->getArgOperand(2), Usr);
}
}
TEST_F(OpenMPIRBuilderTest, ParallelIfCond) {
using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
OpenMPIRBuilder OMPBuilder(*M);
OMPBuilder.initialize();
F->setName("func");
IRBuilder<> Builder(BB);
OpenMPIRBuilder::LocationDescription Loc({Builder.saveIP(), DL});
AllocaInst *PrivAI = nullptr;
unsigned NumBodiesGenerated = 0;
unsigned NumPrivatizedVars = 0;
unsigned NumFinalizationPoints = 0;
auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
BasicBlock &ContinuationIP) {
++NumBodiesGenerated;
Builder.restoreIP(AllocaIP);
PrivAI = Builder.CreateAlloca(F->arg_begin()->getType());
Builder.CreateStore(F->arg_begin(), PrivAI);
Builder.restoreIP(CodeGenIP);
Value *PrivLoad = Builder.CreateLoad(PrivAI, "local.use");
Value *Cmp = Builder.CreateICmpNE(F->arg_begin(), PrivLoad);
Instruction *ThenTerm, *ElseTerm;
SplitBlockAndInsertIfThenElse(Cmp, CodeGenIP.getBlock()->getTerminator(),
&ThenTerm, &ElseTerm);
Builder.SetInsertPoint(ThenTerm);
Builder.CreateBr(&ContinuationIP);
ThenTerm->eraseFromParent();
};
auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
Value &Orig, Value &Inner,
Value *&ReplacementValue) -> InsertPointTy {
++NumPrivatizedVars;
if (!isa<AllocaInst>(Orig)) {
EXPECT_EQ(&Orig, F->arg_begin());
ReplacementValue = &Inner;
return CodeGenIP;
}
// Since the original value is an allocation, it has a pointer type and
// therefore no additional wrapping should happen.
EXPECT_EQ(&Orig, &Inner);
// Trivial copy (=firstprivate).
Builder.restoreIP(AllocaIP);
Type *VTy = Inner.getType()->getPointerElementType();
Value *V = Builder.CreateLoad(VTy, &Inner, Orig.getName() + ".reload");
ReplacementValue = Builder.CreateAlloca(VTy, 0, Orig.getName() + ".copy");
Builder.restoreIP(CodeGenIP);
Builder.CreateStore(V, ReplacementValue);
return CodeGenIP;
};
auto FiniCB = [&](InsertPointTy CodeGenIP) {
++NumFinalizationPoints;
// No destructors.
};
IRBuilder<>::InsertPoint AllocaIP(&F->getEntryBlock(),
F->getEntryBlock().getFirstInsertionPt());
IRBuilder<>::InsertPoint AfterIP =
OMPBuilder.createParallel(Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB,
Builder.CreateIsNotNull(F->arg_begin()),
nullptr, OMP_PROC_BIND_default, false);
EXPECT_EQ(NumBodiesGenerated, 1U);
EXPECT_EQ(NumPrivatizedVars, 1U);
EXPECT_EQ(NumFinalizationPoints, 1U);
Builder.restoreIP(AfterIP);
Builder.CreateRetVoid();
OMPBuilder.finalize();
EXPECT_NE(PrivAI, nullptr);
Function *OutlinedFn = PrivAI->getFunction();
EXPECT_NE(F, OutlinedFn);
EXPECT_FALSE(verifyModule(*M, &errs()));
EXPECT_TRUE(OutlinedFn->hasInternalLinkage());
EXPECT_EQ(OutlinedFn->arg_size(), 3U);
EXPECT_EQ(&OutlinedFn->getEntryBlock(), PrivAI->getParent());
ASSERT_EQ(OutlinedFn->getNumUses(), 2U);
CallInst *DirectCI = nullptr;
CallInst *ForkCI = nullptr;
for (User *Usr : OutlinedFn->users()) {
if (isa<CallInst>(Usr)) {
ASSERT_EQ(DirectCI, nullptr);
DirectCI = cast<CallInst>(Usr);
} else {
ASSERT_TRUE(isa<ConstantExpr>(Usr));
ASSERT_EQ(Usr->getNumUses(), 1U);
ASSERT_TRUE(isa<CallInst>(Usr->user_back()));
ForkCI = cast<CallInst>(Usr->user_back());
}
}
EXPECT_EQ(ForkCI->getCalledFunction()->getName(), "__kmpc_fork_call");
EXPECT_EQ(ForkCI->getNumArgOperands(), 4U);
EXPECT_TRUE(isa<GlobalVariable>(ForkCI->getArgOperand(0)));
EXPECT_EQ(ForkCI->getArgOperand(1),
ConstantInt::get(Type::getInt32Ty(Ctx), 1));
Value *StoredForkArg = findStoredValue(ForkCI->getArgOperand(3));
EXPECT_EQ(StoredForkArg, F->arg_begin());
EXPECT_EQ(DirectCI->getCalledFunction(), OutlinedFn);
EXPECT_EQ(DirectCI->getNumArgOperands(), 3U);
EXPECT_TRUE(isa<AllocaInst>(DirectCI->getArgOperand(0)));
EXPECT_TRUE(isa<AllocaInst>(DirectCI->getArgOperand(1)));
Value *StoredDirectArg = findStoredValue(DirectCI->getArgOperand(2));
EXPECT_EQ(StoredDirectArg, F->arg_begin());
}
TEST_F(OpenMPIRBuilderTest, ParallelCancelBarrier) {
using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
OpenMPIRBuilder OMPBuilder(*M);
OMPBuilder.initialize();
F->setName("func");
IRBuilder<> Builder(BB);
OpenMPIRBuilder::LocationDescription Loc({Builder.saveIP(), DL});
unsigned NumBodiesGenerated = 0;
unsigned NumPrivatizedVars = 0;
unsigned NumFinalizationPoints = 0;
CallInst *CheckedBarrier = nullptr;
auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
BasicBlock &ContinuationIP) {
++NumBodiesGenerated;
Builder.restoreIP(CodeGenIP);
// Create three barriers, two cancel barriers but only one checked.
Function *CBFn, *BFn;
Builder.restoreIP(
OMPBuilder.createBarrier(Builder.saveIP(), OMPD_parallel));
CBFn = M->getFunction("__kmpc_cancel_barrier");
BFn = M->getFunction("__kmpc_barrier");
ASSERT_NE(CBFn, nullptr);
ASSERT_EQ(BFn, nullptr);
ASSERT_EQ(CBFn->getNumUses(), 1U);
ASSERT_TRUE(isa<CallInst>(CBFn->user_back()));
ASSERT_EQ(CBFn->user_back()->getNumUses(), 1U);
CheckedBarrier = cast<CallInst>(CBFn->user_back());
Builder.restoreIP(
OMPBuilder.createBarrier(Builder.saveIP(), OMPD_parallel, true));
CBFn = M->getFunction("__kmpc_cancel_barrier");
BFn = M->getFunction("__kmpc_barrier");
ASSERT_NE(CBFn, nullptr);
ASSERT_NE(BFn, nullptr);
ASSERT_EQ(CBFn->getNumUses(), 1U);
ASSERT_EQ(BFn->getNumUses(), 1U);
ASSERT_TRUE(isa<CallInst>(BFn->user_back()));
ASSERT_EQ(BFn->user_back()->getNumUses(), 0U);
Builder.restoreIP(OMPBuilder.createBarrier(Builder.saveIP(), OMPD_parallel,
false, false));
ASSERT_EQ(CBFn->getNumUses(), 2U);
ASSERT_EQ(BFn->getNumUses(), 1U);
ASSERT_TRUE(CBFn->user_back() != CheckedBarrier);
ASSERT_TRUE(isa<CallInst>(CBFn->user_back()));
ASSERT_EQ(CBFn->user_back()->getNumUses(), 0U);
};
auto PrivCB = [&](InsertPointTy, InsertPointTy, Value &V, Value &,
Value *&) -> InsertPointTy {
++NumPrivatizedVars;
llvm_unreachable("No privatization callback call expected!");
};
FunctionType *FakeDestructorTy =
FunctionType::get(Type::getVoidTy(Ctx), {Type::getInt32Ty(Ctx)},
/*isVarArg=*/false);
auto *FakeDestructor = Function::Create(
FakeDestructorTy, Function::ExternalLinkage, "fakeDestructor", M.get());
auto FiniCB = [&](InsertPointTy IP) {
++NumFinalizationPoints;
Builder.restoreIP(IP);
Builder.CreateCall(FakeDestructor,
{Builder.getInt32(NumFinalizationPoints)});
};
IRBuilder<>::InsertPoint AllocaIP(&F->getEntryBlock(),
F->getEntryBlock().getFirstInsertionPt());
IRBuilder<>::InsertPoint AfterIP =
OMPBuilder.createParallel(Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB,
Builder.CreateIsNotNull(F->arg_begin()),
nullptr, OMP_PROC_BIND_default, true);
EXPECT_EQ(NumBodiesGenerated, 1U);
EXPECT_EQ(NumPrivatizedVars, 0U);
EXPECT_EQ(NumFinalizationPoints, 2U);
EXPECT_EQ(FakeDestructor->getNumUses(), 2U);
Builder.restoreIP(AfterIP);
Builder.CreateRetVoid();
OMPBuilder.finalize();
EXPECT_FALSE(verifyModule(*M, &errs()));
BasicBlock *ExitBB = nullptr;
for (const User *Usr : FakeDestructor->users()) {
const CallInst *CI = dyn_cast<CallInst>(Usr);
ASSERT_EQ(CI->getCalledFunction(), FakeDestructor);
ASSERT_TRUE(isa<BranchInst>(CI->getNextNode()));
ASSERT_EQ(CI->getNextNode()->getNumSuccessors(), 1U);
if (ExitBB)
ASSERT_EQ(CI->getNextNode()->getSuccessor(0), ExitBB);
else
ExitBB = CI->getNextNode()->getSuccessor(0);
ASSERT_EQ(ExitBB->size(), 1U);
if (!isa<ReturnInst>(ExitBB->front())) {
ASSERT_TRUE(isa<BranchInst>(ExitBB->front()));
ASSERT_EQ(cast<BranchInst>(ExitBB->front()).getNumSuccessors(), 1U);
ASSERT_TRUE(isa<ReturnInst>(
cast<BranchInst>(ExitBB->front()).getSuccessor(0)->front()));
}
}
}
TEST_F(OpenMPIRBuilderTest, ParallelForwardAsPointers) {
OpenMPIRBuilder OMPBuilder(*M);
OMPBuilder.initialize();
F->setName("func");
IRBuilder<> Builder(BB);
OpenMPIRBuilder::LocationDescription Loc({Builder.saveIP(), DL});
using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
Type *I32Ty = Type::getInt32Ty(M->getContext());
Type *I32PtrTy = Type::getInt32PtrTy(M->getContext());
Type *StructTy = StructType::get(I32Ty, I32PtrTy);
Type *StructPtrTy = StructTy->getPointerTo();
Type *VoidTy = Type::getVoidTy(M->getContext());
FunctionCallee RetI32Func = M->getOrInsertFunction("ret_i32", I32Ty);
FunctionCallee TakeI32Func =
M->getOrInsertFunction("take_i32", VoidTy, I32Ty);
FunctionCallee RetI32PtrFunc = M->getOrInsertFunction("ret_i32ptr", I32PtrTy);
FunctionCallee TakeI32PtrFunc =
M->getOrInsertFunction("take_i32ptr", VoidTy, I32PtrTy);
FunctionCallee RetStructFunc = M->getOrInsertFunction("ret_struct", StructTy);
FunctionCallee TakeStructFunc =
M->getOrInsertFunction("take_struct", VoidTy, StructTy);
FunctionCallee RetStructPtrFunc =
M->getOrInsertFunction("ret_structptr", StructPtrTy);
FunctionCallee TakeStructPtrFunc =
M->getOrInsertFunction("take_structPtr", VoidTy, StructPtrTy);
Value *I32Val = Builder.CreateCall(RetI32Func);
Value *I32PtrVal = Builder.CreateCall(RetI32PtrFunc);
Value *StructVal = Builder.CreateCall(RetStructFunc);
Value *StructPtrVal = Builder.CreateCall(RetStructPtrFunc);
Instruction *Internal;
auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
BasicBlock &ContinuationBB) {
IRBuilder<>::InsertPointGuard Guard(Builder);
Builder.restoreIP(CodeGenIP);
Internal = Builder.CreateCall(TakeI32Func, I32Val);
Builder.CreateCall(TakeI32PtrFunc, I32PtrVal);
Builder.CreateCall(TakeStructFunc, StructVal);
Builder.CreateCall(TakeStructPtrFunc, StructPtrVal);
};
auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &,
Value &Inner, Value *&ReplacementValue) {
ReplacementValue = &Inner;
return CodeGenIP;
};
auto FiniCB = [](InsertPointTy) {};
IRBuilder<>::InsertPoint AllocaIP(&F->getEntryBlock(),
F->getEntryBlock().getFirstInsertionPt());
IRBuilder<>::InsertPoint AfterIP =
OMPBuilder.createParallel(Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB,
nullptr, nullptr, OMP_PROC_BIND_default, false);
Builder.restoreIP(AfterIP);
Builder.CreateRetVoid();
OMPBuilder.finalize();
EXPECT_FALSE(verifyModule(*M, &errs()));
Function *OutlinedFn = Internal->getFunction();
Type *Arg2Type = OutlinedFn->getArg(2)->getType();
EXPECT_TRUE(Arg2Type->isPointerTy());
EXPECT_EQ(Arg2Type->getPointerElementType(), I32Ty);
// Arguments that need to be passed through pointers and reloaded will get
// used earlier in the functions and therefore will appear first in the
// argument list after outlining.
Type *Arg3Type = OutlinedFn->getArg(3)->getType();
EXPECT_TRUE(Arg3Type->isPointerTy());
EXPECT_EQ(Arg3Type->getPointerElementType(), StructTy);
Type *Arg4Type = OutlinedFn->getArg(4)->getType();
EXPECT_EQ(Arg4Type, I32PtrTy);
Type *Arg5Type = OutlinedFn->getArg(5)->getType();
EXPECT_EQ(Arg5Type, StructPtrTy);
}
[OpenMPIRBuilder] Implement CreateCanonicalLoop. CreateCanonicalLoop generates a standardized control flow structure for OpenMP canonical for loops. The structure can be consumed by loop-associated directives such as worksharing-loop, distribute, simd etc. as well as loop transformations such as tile and unroll. This is a first design without considering all complexities yet. The control-flow emits more basic block than strictly necessary, but these will be optimized by CFGSimplify anyway, provide a nice separation of concerns and might later be useful with more complex scenarios. I successfully implemented a basic tile construct using this API, which is not part of this patch. The fundamental building block is the CreateCanonicalLoop that only takes the loop trip count and operates on the logical iteration spaces only. An overloaded CreateCanonicalLoop for using LB, UB, Increment is provided as well, but at least for C++, Clang will need to implement a loop counter to logical induction variable mapping anyway, since iterator overload resolution cannot be done in LLVMFrontend. As there currently is no user for CreateCanonicalLoop, it is only called from unittests. Similarly, CanonicalLoopInfo::eraseFromParent() is used in my file implementation and might be generally useful for implementing loop-associated constructs, but is not used in this patch itself. The following non-exhaustive list describes not yet covered items: * collapse clause (including non-rectangular and non-perfectly nested); idea is to provide a OpenMPIRBuilder::collapseLoopNest method consuming multiple nested loops and returning a new CanonicalLoopInfo that can be used for loop-associated directives. * simarly: ordered clause for DOACROSS loops * branch weights * Cancellation point (?) * AllocaIP * break statement (if needed at all) * Exceptions (if not completely handled in the front-end) * Using it in Clang; this requires implementing at least one loop-associated construct. * ... Reviewed By: jdoerfert Differential Revision: https://reviews.llvm.org/D90830
2020-11-09 21:13:17 +01:00
TEST_F(OpenMPIRBuilderTest, CanonicalLoopSimple) {
using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
OpenMPIRBuilder OMPBuilder(*M);
OMPBuilder.initialize();
IRBuilder<> Builder(BB);
OpenMPIRBuilder::LocationDescription Loc({Builder.saveIP(), DL});
Value *TripCount = F->getArg(0);
unsigned NumBodiesGenerated = 0;
auto LoopBodyGenCB = [&](InsertPointTy CodeGenIP, llvm::Value *LC) {
NumBodiesGenerated += 1;
Builder.restoreIP(CodeGenIP);
Value *Cmp = Builder.CreateICmpEQ(LC, TripCount);
Instruction *ThenTerm, *ElseTerm;
SplitBlockAndInsertIfThenElse(Cmp, CodeGenIP.getBlock()->getTerminator(),
&ThenTerm, &ElseTerm);
};
CanonicalLoopInfo *Loop =
OMPBuilder.createCanonicalLoop(Loc, LoopBodyGenCB, TripCount);
[OpenMPIRBuilder] Implement CreateCanonicalLoop. CreateCanonicalLoop generates a standardized control flow structure for OpenMP canonical for loops. The structure can be consumed by loop-associated directives such as worksharing-loop, distribute, simd etc. as well as loop transformations such as tile and unroll. This is a first design without considering all complexities yet. The control-flow emits more basic block than strictly necessary, but these will be optimized by CFGSimplify anyway, provide a nice separation of concerns and might later be useful with more complex scenarios. I successfully implemented a basic tile construct using this API, which is not part of this patch. The fundamental building block is the CreateCanonicalLoop that only takes the loop trip count and operates on the logical iteration spaces only. An overloaded CreateCanonicalLoop for using LB, UB, Increment is provided as well, but at least for C++, Clang will need to implement a loop counter to logical induction variable mapping anyway, since iterator overload resolution cannot be done in LLVMFrontend. As there currently is no user for CreateCanonicalLoop, it is only called from unittests. Similarly, CanonicalLoopInfo::eraseFromParent() is used in my file implementation and might be generally useful for implementing loop-associated constructs, but is not used in this patch itself. The following non-exhaustive list describes not yet covered items: * collapse clause (including non-rectangular and non-perfectly nested); idea is to provide a OpenMPIRBuilder::collapseLoopNest method consuming multiple nested loops and returning a new CanonicalLoopInfo that can be used for loop-associated directives. * simarly: ordered clause for DOACROSS loops * branch weights * Cancellation point (?) * AllocaIP * break statement (if needed at all) * Exceptions (if not completely handled in the front-end) * Using it in Clang; this requires implementing at least one loop-associated construct. * ... Reviewed By: jdoerfert Differential Revision: https://reviews.llvm.org/D90830
2020-11-09 21:13:17 +01:00
Builder.restoreIP(Loop->getAfterIP());
ReturnInst *RetInst = Builder.CreateRetVoid();
OMPBuilder.finalize();
Loop->assertOK();
EXPECT_FALSE(verifyModule(*M, &errs()));
EXPECT_EQ(NumBodiesGenerated, 1U);
// Verify control flow structure (in addition to Loop->assertOK()).
EXPECT_EQ(Loop->getPreheader()->getSinglePredecessor(), &F->getEntryBlock());
EXPECT_EQ(Loop->getAfter(), Builder.GetInsertBlock());
Instruction *IndVar = Loop->getIndVar();
EXPECT_TRUE(isa<PHINode>(IndVar));
EXPECT_EQ(IndVar->getType(), TripCount->getType());
EXPECT_EQ(IndVar->getParent(), Loop->getHeader());
EXPECT_EQ(Loop->getTripCount(), TripCount);
BasicBlock *Body = Loop->getBody();
Instruction *CmpInst = &Body->getInstList().front();
EXPECT_TRUE(isa<ICmpInst>(CmpInst));
EXPECT_EQ(CmpInst->getOperand(0), IndVar);
BasicBlock *LatchPred = Loop->getLatch()->getSinglePredecessor();
EXPECT_TRUE(llvm::all_of(successors(Body), [=](BasicBlock *SuccBB) {
return SuccBB->getSingleSuccessor() == LatchPred;
}));
EXPECT_EQ(&Loop->getAfter()->front(), RetInst);
}
TEST_F(OpenMPIRBuilderTest, CanonicalLoopBounds) {
using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
OpenMPIRBuilder OMPBuilder(*M);
OMPBuilder.initialize();
IRBuilder<> Builder(BB);
// Check the trip count is computed correctly. We generate the canonical loop
// but rely on the IRBuilder's constant folder to compute the final result
// since all inputs are constant. To verify overflow situations, limit the
// trip count / loop counter widths to 16 bits.
auto EvalTripCount = [&](int64_t Start, int64_t Stop, int64_t Step,
bool IsSigned, bool InclusiveStop) -> int64_t {
OpenMPIRBuilder::LocationDescription Loc({Builder.saveIP(), DL});
Type *LCTy = Type::getInt16Ty(Ctx);
Value *StartVal = ConstantInt::get(LCTy, Start);
Value *StopVal = ConstantInt::get(LCTy, Stop);
Value *StepVal = ConstantInt::get(LCTy, Step);
auto LoopBodyGenCB = [&](InsertPointTy CodeGenIP, llvm::Value *LC) {};
CanonicalLoopInfo *Loop =
OMPBuilder.createCanonicalLoop(Loc, LoopBodyGenCB, StartVal, StopVal,
[OpenMPIRBuilder] Implement CreateCanonicalLoop. CreateCanonicalLoop generates a standardized control flow structure for OpenMP canonical for loops. The structure can be consumed by loop-associated directives such as worksharing-loop, distribute, simd etc. as well as loop transformations such as tile and unroll. This is a first design without considering all complexities yet. The control-flow emits more basic block than strictly necessary, but these will be optimized by CFGSimplify anyway, provide a nice separation of concerns and might later be useful with more complex scenarios. I successfully implemented a basic tile construct using this API, which is not part of this patch. The fundamental building block is the CreateCanonicalLoop that only takes the loop trip count and operates on the logical iteration spaces only. An overloaded CreateCanonicalLoop for using LB, UB, Increment is provided as well, but at least for C++, Clang will need to implement a loop counter to logical induction variable mapping anyway, since iterator overload resolution cannot be done in LLVMFrontend. As there currently is no user for CreateCanonicalLoop, it is only called from unittests. Similarly, CanonicalLoopInfo::eraseFromParent() is used in my file implementation and might be generally useful for implementing loop-associated constructs, but is not used in this patch itself. The following non-exhaustive list describes not yet covered items: * collapse clause (including non-rectangular and non-perfectly nested); idea is to provide a OpenMPIRBuilder::collapseLoopNest method consuming multiple nested loops and returning a new CanonicalLoopInfo that can be used for loop-associated directives. * simarly: ordered clause for DOACROSS loops * branch weights * Cancellation point (?) * AllocaIP * break statement (if needed at all) * Exceptions (if not completely handled in the front-end) * Using it in Clang; this requires implementing at least one loop-associated construct. * ... Reviewed By: jdoerfert Differential Revision: https://reviews.llvm.org/D90830
2020-11-09 21:13:17 +01:00
StepVal, IsSigned, InclusiveStop);
Loop->assertOK();
Builder.restoreIP(Loop->getAfterIP());
Value *TripCount = Loop->getTripCount();
return cast<ConstantInt>(TripCount)->getValue().getZExtValue();
};
ASSERT_EQ(EvalTripCount(0, 0, 1, false, false), 0);
ASSERT_EQ(EvalTripCount(0, 1, 2, false, false), 1);
ASSERT_EQ(EvalTripCount(0, 42, 1, false, false), 42);
ASSERT_EQ(EvalTripCount(0, 42, 2, false, false), 21);
ASSERT_EQ(EvalTripCount(21, 42, 1, false, false), 21);
ASSERT_EQ(EvalTripCount(0, 5, 5, false, false), 1);
ASSERT_EQ(EvalTripCount(0, 9, 5, false, false), 2);
ASSERT_EQ(EvalTripCount(0, 11, 5, false, false), 3);
ASSERT_EQ(EvalTripCount(0, 0xFFFF, 1, false, false), 0xFFFF);
ASSERT_EQ(EvalTripCount(0xFFFF, 0, 1, false, false), 0);
ASSERT_EQ(EvalTripCount(0xFFFE, 0xFFFF, 1, false, false), 1);
ASSERT_EQ(EvalTripCount(0, 0xFFFF, 0x100, false, false), 0x100);
ASSERT_EQ(EvalTripCount(0, 0xFFFF, 0xFFFF, false, false), 1);
ASSERT_EQ(EvalTripCount(0, 6, 5, false, false), 2);
ASSERT_EQ(EvalTripCount(0, 0xFFFF, 0xFFFE, false, false), 2);
ASSERT_EQ(EvalTripCount(0, 0, 1, false, true), 1);
ASSERT_EQ(EvalTripCount(0, 0, 0xFFFF, false, true), 1);
ASSERT_EQ(EvalTripCount(0, 0xFFFE, 1, false, true), 0xFFFF);
ASSERT_EQ(EvalTripCount(0, 0xFFFE, 2, false, true), 0x8000);
ASSERT_EQ(EvalTripCount(0, 0, -1, true, false), 0);
ASSERT_EQ(EvalTripCount(0, 1, -1, true, true), 0);
ASSERT_EQ(EvalTripCount(20, 5, -5, true, false), 3);
ASSERT_EQ(EvalTripCount(20, 5, -5, true, true), 4);
ASSERT_EQ(EvalTripCount(-4, -2, 2, true, false), 1);
ASSERT_EQ(EvalTripCount(-4, -3, 2, true, false), 1);
ASSERT_EQ(EvalTripCount(-4, -2, 2, true, true), 2);
ASSERT_EQ(EvalTripCount(INT16_MIN, 0, 1, true, false), 0x8000);
ASSERT_EQ(EvalTripCount(INT16_MIN, 0, 1, true, true), 0x8001);
ASSERT_EQ(EvalTripCount(INT16_MIN, 0x7FFF, 1, true, false), 0xFFFF);
ASSERT_EQ(EvalTripCount(INT16_MIN + 1, 0x7FFF, 1, true, true), 0xFFFF);
ASSERT_EQ(EvalTripCount(INT16_MIN, 0, 0x7FFF, true, false), 2);
ASSERT_EQ(EvalTripCount(0x7FFF, 0, -1, true, false), 0x7FFF);
ASSERT_EQ(EvalTripCount(0, INT16_MIN, -1, true, false), 0x8000);
ASSERT_EQ(EvalTripCount(0, INT16_MIN, -16, true, false), 0x800);
ASSERT_EQ(EvalTripCount(0x7FFF, INT16_MIN, -1, true, false), 0xFFFF);
ASSERT_EQ(EvalTripCount(0x7FFF, 1, INT16_MIN, true, false), 1);
ASSERT_EQ(EvalTripCount(0x7FFF, -1, INT16_MIN, true, true), 2);
// Finalize the function and verify it.
Builder.CreateRetVoid();
OMPBuilder.finalize();
EXPECT_FALSE(verifyModule(*M, &errs()));
}
TEST_F(OpenMPIRBuilderTest, MasterDirective) {
using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
OpenMPIRBuilder OMPBuilder(*M);
OMPBuilder.initialize();
F->setName("func");
IRBuilder<> Builder(BB);
OpenMPIRBuilder::LocationDescription Loc({Builder.saveIP(), DL});
AllocaInst *PrivAI = nullptr;
BasicBlock *EntryBB = nullptr;
BasicBlock *ExitBB = nullptr;
BasicBlock *ThenBB = nullptr;
auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
BasicBlock &FiniBB) {
if (AllocaIP.isSet())
Builder.restoreIP(AllocaIP);
else
Builder.SetInsertPoint(&*(F->getEntryBlock().getFirstInsertionPt()));
PrivAI = Builder.CreateAlloca(F->arg_begin()->getType());
Builder.CreateStore(F->arg_begin(), PrivAI);
llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
llvm::Instruction *CodeGenIPInst = &*CodeGenIP.getPoint();
EXPECT_EQ(CodeGenIPBB->getTerminator(), CodeGenIPInst);
Builder.restoreIP(CodeGenIP);
// collect some info for checks later
ExitBB = FiniBB.getUniqueSuccessor();
ThenBB = Builder.GetInsertBlock();
EntryBB = ThenBB->getUniquePredecessor();
// simple instructions for body
Value *PrivLoad = Builder.CreateLoad(PrivAI, "local.use");
Builder.CreateICmpNE(F->arg_begin(), PrivLoad);
};
auto FiniCB = [&](InsertPointTy IP) {
BasicBlock *IPBB = IP.getBlock();
EXPECT_NE(IPBB->end(), IP.getPoint());
};
Builder.restoreIP(OMPBuilder.createMaster(Builder, BodyGenCB, FiniCB));
Value *EntryBBTI = EntryBB->getTerminator();
EXPECT_NE(EntryBBTI, nullptr);
EXPECT_TRUE(isa<BranchInst>(EntryBBTI));
BranchInst *EntryBr = cast<BranchInst>(EntryBB->getTerminator());
EXPECT_TRUE(EntryBr->isConditional());
EXPECT_EQ(EntryBr->getSuccessor(0), ThenBB);
EXPECT_EQ(ThenBB->getUniqueSuccessor(), ExitBB);
EXPECT_EQ(EntryBr->getSuccessor(1), ExitBB);
CmpInst *CondInst = cast<CmpInst>(EntryBr->getCondition());
EXPECT_TRUE(isa<CallInst>(CondInst->getOperand(0)));
CallInst *MasterEntryCI = cast<CallInst>(CondInst->getOperand(0));
EXPECT_EQ(MasterEntryCI->getNumArgOperands(), 2U);
EXPECT_EQ(MasterEntryCI->getCalledFunction()->getName(), "__kmpc_master");
EXPECT_TRUE(isa<GlobalVariable>(MasterEntryCI->getArgOperand(0)));
CallInst *MasterEndCI = nullptr;
for (auto &FI : *ThenBB) {
Instruction *cur = &FI;
if (isa<CallInst>(cur)) {
MasterEndCI = cast<CallInst>(cur);
if (MasterEndCI->getCalledFunction()->getName() == "__kmpc_end_master")
break;
MasterEndCI = nullptr;
}
}
EXPECT_NE(MasterEndCI, nullptr);
EXPECT_EQ(MasterEndCI->getNumArgOperands(), 2U);
EXPECT_TRUE(isa<GlobalVariable>(MasterEndCI->getArgOperand(0)));
EXPECT_EQ(MasterEndCI->getArgOperand(1), MasterEntryCI->getArgOperand(1));
}
TEST_F(OpenMPIRBuilderTest, CriticalDirective) {
using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
OpenMPIRBuilder OMPBuilder(*M);
OMPBuilder.initialize();
F->setName("func");
IRBuilder<> Builder(BB);
OpenMPIRBuilder::LocationDescription Loc({Builder.saveIP(), DL});
AllocaInst *PrivAI = Builder.CreateAlloca(F->arg_begin()->getType());
BasicBlock *EntryBB = nullptr;
auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
BasicBlock &FiniBB) {
// collect some info for checks later
EntryBB = FiniBB.getUniquePredecessor();
// actual start for bodyCB
llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
llvm::Instruction *CodeGenIPInst = &*CodeGenIP.getPoint();
EXPECT_EQ(CodeGenIPBB->getTerminator(), CodeGenIPInst);
EXPECT_EQ(EntryBB, CodeGenIPBB);
// body begin
Builder.restoreIP(CodeGenIP);
Builder.CreateStore(F->arg_begin(), PrivAI);
Value *PrivLoad = Builder.CreateLoad(PrivAI, "local.use");
Builder.CreateICmpNE(F->arg_begin(), PrivLoad);
};
auto FiniCB = [&](InsertPointTy IP) {
BasicBlock *IPBB = IP.getBlock();
EXPECT_NE(IPBB->end(), IP.getPoint());
};
Builder.restoreIP(OMPBuilder.createCritical(Builder, BodyGenCB, FiniCB,
"testCRT", nullptr));
Value *EntryBBTI = EntryBB->getTerminator();
EXPECT_EQ(EntryBBTI, nullptr);
CallInst *CriticalEntryCI = nullptr;
for (auto &EI : *EntryBB) {
Instruction *cur = &EI;
if (isa<CallInst>(cur)) {
CriticalEntryCI = cast<CallInst>(cur);
if (CriticalEntryCI->getCalledFunction()->getName() == "__kmpc_critical")
break;
CriticalEntryCI = nullptr;
}
}
EXPECT_NE(CriticalEntryCI, nullptr);
EXPECT_EQ(CriticalEntryCI->getNumArgOperands(), 3U);
EXPECT_EQ(CriticalEntryCI->getCalledFunction()->getName(), "__kmpc_critical");
EXPECT_TRUE(isa<GlobalVariable>(CriticalEntryCI->getArgOperand(0)));
CallInst *CriticalEndCI = nullptr;
for (auto &FI : *EntryBB) {
Instruction *cur = &FI;
if (isa<CallInst>(cur)) {
CriticalEndCI = cast<CallInst>(cur);
if (CriticalEndCI->getCalledFunction()->getName() ==
"__kmpc_end_critical")
break;
CriticalEndCI = nullptr;
}
}
EXPECT_NE(CriticalEndCI, nullptr);
EXPECT_EQ(CriticalEndCI->getNumArgOperands(), 3U);
EXPECT_TRUE(isa<GlobalVariable>(CriticalEndCI->getArgOperand(0)));
EXPECT_EQ(CriticalEndCI->getArgOperand(1), CriticalEntryCI->getArgOperand(1));
PointerType *CriticalNamePtrTy =
PointerType::getUnqual(ArrayType::get(Type::getInt32Ty(Ctx), 8));
EXPECT_EQ(CriticalEndCI->getArgOperand(2), CriticalEntryCI->getArgOperand(2));
EXPECT_EQ(CriticalEndCI->getArgOperand(2)->getType(), CriticalNamePtrTy);
}
TEST_F(OpenMPIRBuilderTest, CopyinBlocks) {
OpenMPIRBuilder OMPBuilder(*M);
OMPBuilder.initialize();
F->setName("func");
IRBuilder<> Builder(BB);
OpenMPIRBuilder::LocationDescription Loc({Builder.saveIP(), DL});
IntegerType* Int32 = Type::getInt32Ty(M->getContext());
AllocaInst* MasterAddress = Builder.CreateAlloca(Int32->getPointerTo());
AllocaInst* PrivAddress = Builder.CreateAlloca(Int32->getPointerTo());
BasicBlock *EntryBB = BB;
OMPBuilder.createCopyinClauseBlocks(Builder.saveIP(), MasterAddress,
PrivAddress, Int32, /*BranchtoEnd*/ true);
BranchInst* EntryBr = dyn_cast_or_null<BranchInst>(EntryBB->getTerminator());
EXPECT_NE(EntryBr, nullptr);
EXPECT_TRUE(EntryBr->isConditional());
BasicBlock* NotMasterBB = EntryBr->getSuccessor(0);
BasicBlock* CopyinEnd = EntryBr->getSuccessor(1);
CmpInst* CMP = dyn_cast_or_null<CmpInst>(EntryBr->getCondition());
EXPECT_NE(CMP, nullptr);
EXPECT_NE(NotMasterBB, nullptr);
EXPECT_NE(CopyinEnd, nullptr);
BranchInst* NotMasterBr = dyn_cast_or_null<BranchInst>(NotMasterBB->getTerminator());
EXPECT_NE(NotMasterBr, nullptr);
EXPECT_FALSE(NotMasterBr->isConditional());
EXPECT_EQ(CopyinEnd,NotMasterBr->getSuccessor(0));
}
TEST_F(OpenMPIRBuilderTest, SingleDirective) {
using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
OpenMPIRBuilder OMPBuilder(*M);
OMPBuilder.initialize();
F->setName("func");
IRBuilder<> Builder(BB);
OpenMPIRBuilder::LocationDescription Loc({Builder.saveIP(), DL});
AllocaInst *PrivAI = nullptr;
BasicBlock *EntryBB = nullptr;
BasicBlock *ExitBB = nullptr;
BasicBlock *ThenBB = nullptr;
auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
BasicBlock &FiniBB) {
if (AllocaIP.isSet())
Builder.restoreIP(AllocaIP);
else
Builder.SetInsertPoint(&*(F->getEntryBlock().getFirstInsertionPt()));
PrivAI = Builder.CreateAlloca(F->arg_begin()->getType());
Builder.CreateStore(F->arg_begin(), PrivAI);
llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
llvm::Instruction *CodeGenIPInst = &*CodeGenIP.getPoint();
EXPECT_EQ(CodeGenIPBB->getTerminator(), CodeGenIPInst);
Builder.restoreIP(CodeGenIP);
// collect some info for checks later
ExitBB = FiniBB.getUniqueSuccessor();
ThenBB = Builder.GetInsertBlock();
EntryBB = ThenBB->getUniquePredecessor();
// simple instructions for body
Value *PrivLoad = Builder.CreateLoad(PrivAI, "local.use");
Builder.CreateICmpNE(F->arg_begin(), PrivLoad);
};
auto FiniCB = [&](InsertPointTy IP) {
BasicBlock *IPBB = IP.getBlock();
EXPECT_NE(IPBB->end(), IP.getPoint());
};
Builder.restoreIP(
OMPBuilder.createSingle(Builder, BodyGenCB, FiniCB, /*DidIt*/ nullptr));
Value *EntryBBTI = EntryBB->getTerminator();
EXPECT_NE(EntryBBTI, nullptr);
EXPECT_TRUE(isa<BranchInst>(EntryBBTI));
BranchInst *EntryBr = cast<BranchInst>(EntryBB->getTerminator());
EXPECT_TRUE(EntryBr->isConditional());
EXPECT_EQ(EntryBr->getSuccessor(0), ThenBB);
EXPECT_EQ(ThenBB->getUniqueSuccessor(), ExitBB);
EXPECT_EQ(EntryBr->getSuccessor(1), ExitBB);
CmpInst *CondInst = cast<CmpInst>(EntryBr->getCondition());
EXPECT_TRUE(isa<CallInst>(CondInst->getOperand(0)));
CallInst *SingleEntryCI = cast<CallInst>(CondInst->getOperand(0));
EXPECT_EQ(SingleEntryCI->getNumArgOperands(), 2U);
EXPECT_EQ(SingleEntryCI->getCalledFunction()->getName(), "__kmpc_single");
EXPECT_TRUE(isa<GlobalVariable>(SingleEntryCI->getArgOperand(0)));
CallInst *SingleEndCI = nullptr;
for (auto &FI : *ThenBB) {
Instruction *cur = &FI;
if (isa<CallInst>(cur)) {
SingleEndCI = cast<CallInst>(cur);
if (SingleEndCI->getCalledFunction()->getName() == "__kmpc_end_single")
break;
SingleEndCI = nullptr;
}
}
EXPECT_NE(SingleEndCI, nullptr);
EXPECT_EQ(SingleEndCI->getNumArgOperands(), 2U);
EXPECT_TRUE(isa<GlobalVariable>(SingleEndCI->getArgOperand(0)));
EXPECT_EQ(SingleEndCI->getArgOperand(1), SingleEntryCI->getArgOperand(1));
}
} // namespace