1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/lib/Transforms/Instrumentation/InstrProfiling.cpp

689 lines
25 KiB
C++
Raw Normal View History

//===-- InstrProfiling.cpp - Frontend instrumentation based profiling -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass lowers instrprof_* intrinsics emitted by a frontend for profiling.
// It also builds the data structures and initialization code needed for
// updating execution counts and emitting the profile at runtime.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/InstrProfiling.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Pass.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <string>
using namespace llvm;
#define DEBUG_TYPE "instrprof"
// The start and end values of precise value profile range for memory
// intrinsic sizes
cl::opt<std::string> MemOPSizeRange(
"memop-size-range",
cl::desc("Set the range of size in memory intrinsic calls to be profiled "
"precisely, in a format of <start_val>:<end_val>"),
cl::init(""));
// The value that considered to be large value in memory intrinsic.
cl::opt<unsigned> MemOPSizeLarge(
"memop-size-large",
cl::desc("Set large value thresthold in memory intrinsic size profiling. "
"Value of 0 disables the large value profiling."),
cl::init(8192));
namespace {
cl::opt<bool> DoNameCompression("enable-name-compression",
cl::desc("Enable name string compression"),
cl::init(true));
cl::opt<bool> DoHashBasedCounterSplit(
"hash-based-counter-split",
cl::desc("Rename counter variable of a comdat function based on cfg hash"),
cl::init(true));
cl::opt<bool> ValueProfileStaticAlloc(
"vp-static-alloc",
cl::desc("Do static counter allocation for value profiler"),
cl::init(true));
cl::opt<double> NumCountersPerValueSite(
"vp-counters-per-site",
cl::desc("The average number of profile counters allocated "
"per value profiling site."),
// This is set to a very small value because in real programs, only
// a very small percentage of value sites have non-zero targets, e.g, 1/30.
// For those sites with non-zero profile, the average number of targets
// is usually smaller than 2.
cl::init(1.0));
class InstrProfilingLegacyPass : public ModulePass {
InstrProfiling InstrProf;
public:
static char ID;
InstrProfilingLegacyPass() : ModulePass(ID) {}
InstrProfilingLegacyPass(const InstrProfOptions &Options)
: ModulePass(ID), InstrProf(Options) {}
StringRef getPassName() const override {
return "Frontend instrumentation-based coverage lowering";
}
bool runOnModule(Module &M) override {
return InstrProf.run(M, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<TargetLibraryInfoWrapperPass>();
}
};
} // end anonymous namespace
PreservedAnalyses InstrProfiling::run(Module &M, ModuleAnalysisManager &AM) {
auto &TLI = AM.getResult<TargetLibraryAnalysis>(M);
if (!run(M, TLI))
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}
char InstrProfilingLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(
InstrProfilingLegacyPass, "instrprof",
"Frontend instrumentation-based coverage lowering.", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(
InstrProfilingLegacyPass, "instrprof",
"Frontend instrumentation-based coverage lowering.", false, false)
ModulePass *
llvm::createInstrProfilingLegacyPass(const InstrProfOptions &Options) {
return new InstrProfilingLegacyPass(Options);
}
static InstrProfIncrementInst *castToIncrementInst(Instruction *Instr) {
InstrProfIncrementInst *Inc = dyn_cast<InstrProfIncrementInstStep>(Instr);
if (Inc)
return Inc;
return dyn_cast<InstrProfIncrementInst>(Instr);
}
bool InstrProfiling::run(Module &M, const TargetLibraryInfo &TLI) {
bool MadeChange = false;
this->M = &M;
this->TLI = &TLI;
NamesVar = nullptr;
NamesSize = 0;
ProfileDataMap.clear();
UsedVars.clear();
getMemOPSizeRangeFromOption(MemOPSizeRange, MemOPSizeRangeStart,
MemOPSizeRangeLast);
TT = Triple(M.getTargetTriple());
// We did not know how many value sites there would be inside
// the instrumented function. This is counting the number of instrumented
// target value sites to enter it as field in the profile data variable.
for (Function &F : M) {
InstrProfIncrementInst *FirstProfIncInst = nullptr;
for (BasicBlock &BB : F)
for (auto I = BB.begin(), E = BB.end(); I != E; I++)
if (auto *Ind = dyn_cast<InstrProfValueProfileInst>(I))
computeNumValueSiteCounts(Ind);
else if (FirstProfIncInst == nullptr)
FirstProfIncInst = dyn_cast<InstrProfIncrementInst>(I);
// Value profiling intrinsic lowering requires per-function profile data
// variable to be created first.
if (FirstProfIncInst != nullptr)
static_cast<void>(getOrCreateRegionCounters(FirstProfIncInst));
}
for (Function &F : M)
for (BasicBlock &BB : F)
for (auto I = BB.begin(), E = BB.end(); I != E;) {
auto Instr = I++;
InstrProfIncrementInst *Inc = castToIncrementInst(&*Instr);
if (Inc) {
lowerIncrement(Inc);
MadeChange = true;
} else if (auto *Ind = dyn_cast<InstrProfValueProfileInst>(Instr)) {
lowerValueProfileInst(Ind);
MadeChange = true;
}
}
if (GlobalVariable *CoverageNamesVar =
M.getNamedGlobal(getCoverageUnusedNamesVarName())) {
lowerCoverageData(CoverageNamesVar);
MadeChange = true;
}
if (!MadeChange)
return false;
emitVNodes();
emitNameData();
emitRegistration();
emitRuntimeHook();
emitUses();
emitInitialization();
return true;
}
static Constant *getOrInsertValueProfilingCall(Module &M,
const TargetLibraryInfo &TLI,
bool IsRange = false) {
LLVMContext &Ctx = M.getContext();
auto *ReturnTy = Type::getVoidTy(M.getContext());
Constant *Res;
if (!IsRange) {
Type *ParamTypes[] = {
#define VALUE_PROF_FUNC_PARAM(ParamType, ParamName, ParamLLVMType) ParamLLVMType
#include "llvm/ProfileData/InstrProfData.inc"
};
auto *ValueProfilingCallTy =
FunctionType::get(ReturnTy, makeArrayRef(ParamTypes), false);
Res = M.getOrInsertFunction(getInstrProfValueProfFuncName(),
ValueProfilingCallTy);
} else {
Type *RangeParamTypes[] = {
#define VALUE_RANGE_PROF 1
#define VALUE_PROF_FUNC_PARAM(ParamType, ParamName, ParamLLVMType) ParamLLVMType
#include "llvm/ProfileData/InstrProfData.inc"
#undef VALUE_RANGE_PROF
};
auto *ValueRangeProfilingCallTy =
FunctionType::get(ReturnTy, makeArrayRef(RangeParamTypes), false);
Res = M.getOrInsertFunction(getInstrProfValueRangeProfFuncName(),
ValueRangeProfilingCallTy);
}
if (Function *FunRes = dyn_cast<Function>(Res)) {
if (auto AK = TLI.getExtAttrForI32Param(false))
FunRes->addParamAttr(2, AK);
}
return Res;
}
void InstrProfiling::computeNumValueSiteCounts(InstrProfValueProfileInst *Ind) {
GlobalVariable *Name = Ind->getName();
uint64_t ValueKind = Ind->getValueKind()->getZExtValue();
uint64_t Index = Ind->getIndex()->getZExtValue();
auto It = ProfileDataMap.find(Name);
if (It == ProfileDataMap.end()) {
PerFunctionProfileData PD;
PD.NumValueSites[ValueKind] = Index + 1;
ProfileDataMap[Name] = PD;
} else if (It->second.NumValueSites[ValueKind] <= Index)
It->second.NumValueSites[ValueKind] = Index + 1;
}
void InstrProfiling::lowerValueProfileInst(InstrProfValueProfileInst *Ind) {
GlobalVariable *Name = Ind->getName();
auto It = ProfileDataMap.find(Name);
assert(It != ProfileDataMap.end() && It->second.DataVar &&
"value profiling detected in function with no counter incerement");
GlobalVariable *DataVar = It->second.DataVar;
uint64_t ValueKind = Ind->getValueKind()->getZExtValue();
uint64_t Index = Ind->getIndex()->getZExtValue();
for (uint32_t Kind = IPVK_First; Kind < ValueKind; ++Kind)
Index += It->second.NumValueSites[Kind];
IRBuilder<> Builder(Ind);
bool IsRange = (Ind->getValueKind()->getZExtValue() ==
llvm::InstrProfValueKind::IPVK_MemOPSize);
CallInst *Call = nullptr;
if (!IsRange) {
Value *Args[3] = {Ind->getTargetValue(),
Builder.CreateBitCast(DataVar, Builder.getInt8PtrTy()),
Builder.getInt32(Index)};
Call = Builder.CreateCall(getOrInsertValueProfilingCall(*M, *TLI), Args);
} else {
Value *Args[6] = {
Ind->getTargetValue(),
Builder.CreateBitCast(DataVar, Builder.getInt8PtrTy()),
Builder.getInt32(Index),
Builder.getInt64(MemOPSizeRangeStart),
Builder.getInt64(MemOPSizeRangeLast),
Builder.getInt64(MemOPSizeLarge == 0 ? INT64_MIN : MemOPSizeLarge)};
Call =
Builder.CreateCall(getOrInsertValueProfilingCall(*M, *TLI, true), Args);
}
if (auto AK = TLI->getExtAttrForI32Param(false))
Call->addParamAttr(2, AK);
Ind->replaceAllUsesWith(Call);
Ind->eraseFromParent();
}
void InstrProfiling::lowerIncrement(InstrProfIncrementInst *Inc) {
GlobalVariable *Counters = getOrCreateRegionCounters(Inc);
IRBuilder<> Builder(Inc);
uint64_t Index = Inc->getIndex()->getZExtValue();
Value *Addr = Builder.CreateConstInBoundsGEP2_64(Counters, 0, Index);
Value *Count = Builder.CreateLoad(Addr, "pgocount");
Count = Builder.CreateAdd(Count, Inc->getStep());
Inc->replaceAllUsesWith(Builder.CreateStore(Count, Addr));
Inc->eraseFromParent();
}
void InstrProfiling::lowerCoverageData(GlobalVariable *CoverageNamesVar) {
ConstantArray *Names =
cast<ConstantArray>(CoverageNamesVar->getInitializer());
for (unsigned I = 0, E = Names->getNumOperands(); I < E; ++I) {
Constant *NC = Names->getOperand(I);
Value *V = NC->stripPointerCasts();
assert(isa<GlobalVariable>(V) && "Missing reference to function name");
GlobalVariable *Name = cast<GlobalVariable>(V);
Name->setLinkage(GlobalValue::PrivateLinkage);
ReferencedNames.push_back(Name);
NC->dropAllReferences();
}
CoverageNamesVar->eraseFromParent();
}
/// Get the name of a profiling variable for a particular function.
static std::string getVarName(InstrProfIncrementInst *Inc, StringRef Prefix) {
StringRef NamePrefix = getInstrProfNameVarPrefix();
StringRef Name = Inc->getName()->getName().substr(NamePrefix.size());
Function *F = Inc->getParent()->getParent();
Module *M = F->getParent();
if (!DoHashBasedCounterSplit || !isIRPGOFlagSet(M) ||
!canRenameComdatFunc(*F))
return (Prefix + Name).str();
uint64_t FuncHash = Inc->getHash()->getZExtValue();
SmallVector<char, 24> HashPostfix;
if (Name.endswith((Twine(".") + Twine(FuncHash)).toStringRef(HashPostfix)))
return (Prefix + Name).str();
return (Prefix + Name + "." + Twine(FuncHash)).str();
}
static inline bool shouldRecordFunctionAddr(Function *F) {
// Check the linkage
if (!F->hasLinkOnceLinkage() && !F->hasLocalLinkage() &&
!F->hasAvailableExternallyLinkage())
return true;
// Prohibit function address recording if the function is both internal and
// COMDAT. This avoids the profile data variable referencing internal symbols
// in COMDAT.
if (F->hasLocalLinkage() && F->hasComdat())
return false;
// Check uses of this function for other than direct calls or invokes to it.
// Inline virtual functions have linkeOnceODR linkage. When a key method
// exists, the vtable will only be emitted in the TU where the key method
// is defined. In a TU where vtable is not available, the function won't
// be 'addresstaken'. If its address is not recorded here, the profile data
// with missing address may be picked by the linker leading to missing
// indirect call target info.
return F->hasAddressTaken() || F->hasLinkOnceLinkage();
}
static inline Comdat *getOrCreateProfileComdat(Module &M, Function &F,
InstrProfIncrementInst *Inc) {
if (!needsComdatForCounter(F, M))
return nullptr;
// COFF format requires a COMDAT section to have a key symbol with the same
// name. The linker targeting COFF also requires that the COMDAT
// a section is associated to must precede the associating section. For this
// reason, we must choose the counter var's name as the name of the comdat.
StringRef ComdatPrefix = (Triple(M.getTargetTriple()).isOSBinFormatCOFF()
? getInstrProfCountersVarPrefix()
: getInstrProfComdatPrefix());
return M.getOrInsertComdat(StringRef(getVarName(Inc, ComdatPrefix)));
}
static bool needsRuntimeRegistrationOfSectionRange(const Module &M) {
// Don't do this for Darwin. compiler-rt uses linker magic.
if (Triple(M.getTargetTriple()).isOSDarwin())
return false;
// Use linker script magic to get data/cnts/name start/end.
if (Triple(M.getTargetTriple()).isOSLinux() ||
Triple(M.getTargetTriple()).isOSFreeBSD() ||
Triple(M.getTargetTriple()).isPS4CPU())
return false;
return true;
}
GlobalVariable *
InstrProfiling::getOrCreateRegionCounters(InstrProfIncrementInst *Inc) {
GlobalVariable *NamePtr = Inc->getName();
auto It = ProfileDataMap.find(NamePtr);
PerFunctionProfileData PD;
if (It != ProfileDataMap.end()) {
if (It->second.RegionCounters)
return It->second.RegionCounters;
PD = It->second;
}
// Move the name variable to the right section. Place them in a COMDAT group
// if the associated function is a COMDAT. This will make sure that
// only one copy of counters of the COMDAT function will be emitted after
// linking.
Function *Fn = Inc->getParent()->getParent();
Comdat *ProfileVarsComdat = nullptr;
ProfileVarsComdat = getOrCreateProfileComdat(*M, *Fn, Inc);
uint64_t NumCounters = Inc->getNumCounters()->getZExtValue();
LLVMContext &Ctx = M->getContext();
ArrayType *CounterTy = ArrayType::get(Type::getInt64Ty(Ctx), NumCounters);
// Create the counters variable.
auto *CounterPtr =
new GlobalVariable(*M, CounterTy, false, NamePtr->getLinkage(),
Constant::getNullValue(CounterTy),
getVarName(Inc, getInstrProfCountersVarPrefix()));
CounterPtr->setVisibility(NamePtr->getVisibility());
CounterPtr->setSection(
getInstrProfSectionName(IPSK_cnts, TT.getObjectFormat()));
CounterPtr->setAlignment(8);
CounterPtr->setComdat(ProfileVarsComdat);
auto *Int8PtrTy = Type::getInt8PtrTy(Ctx);
// Allocate statically the array of pointers to value profile nodes for
// the current function.
Constant *ValuesPtrExpr = ConstantPointerNull::get(Int8PtrTy);
if (ValueProfileStaticAlloc && !needsRuntimeRegistrationOfSectionRange(*M)) {
uint64_t NS = 0;
for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
NS += PD.NumValueSites[Kind];
if (NS) {
ArrayType *ValuesTy = ArrayType::get(Type::getInt64Ty(Ctx), NS);
auto *ValuesVar =
new GlobalVariable(*M, ValuesTy, false, NamePtr->getLinkage(),
Constant::getNullValue(ValuesTy),
getVarName(Inc, getInstrProfValuesVarPrefix()));
ValuesVar->setVisibility(NamePtr->getVisibility());
ValuesVar->setSection(
getInstrProfSectionName(IPSK_vals, TT.getObjectFormat()));
ValuesVar->setAlignment(8);
ValuesVar->setComdat(ProfileVarsComdat);
ValuesPtrExpr =
ConstantExpr::getBitCast(ValuesVar, Type::getInt8PtrTy(Ctx));
}
}
// Create data variable.
auto *Int16Ty = Type::getInt16Ty(Ctx);
auto *Int16ArrayTy = ArrayType::get(Int16Ty, IPVK_Last + 1);
Type *DataTypes[] = {
#define INSTR_PROF_DATA(Type, LLVMType, Name, Init) LLVMType,
#include "llvm/ProfileData/InstrProfData.inc"
};
auto *DataTy = StructType::get(Ctx, makeArrayRef(DataTypes));
Constant *FunctionAddr = shouldRecordFunctionAddr(Fn)
? ConstantExpr::getBitCast(Fn, Int8PtrTy)
: ConstantPointerNull::get(Int8PtrTy);
Constant *Int16ArrayVals[IPVK_Last + 1];
for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
Int16ArrayVals[Kind] = ConstantInt::get(Int16Ty, PD.NumValueSites[Kind]);
Constant *DataVals[] = {
#define INSTR_PROF_DATA(Type, LLVMType, Name, Init) Init,
#include "llvm/ProfileData/InstrProfData.inc"
};
auto *Data = new GlobalVariable(*M, DataTy, false, NamePtr->getLinkage(),
ConstantStruct::get(DataTy, DataVals),
getVarName(Inc, getInstrProfDataVarPrefix()));
Data->setVisibility(NamePtr->getVisibility());
Data->setSection(getInstrProfSectionName(IPSK_data, TT.getObjectFormat()));
Data->setAlignment(INSTR_PROF_DATA_ALIGNMENT);
Data->setComdat(ProfileVarsComdat);
PD.RegionCounters = CounterPtr;
PD.DataVar = Data;
ProfileDataMap[NamePtr] = PD;
// Mark the data variable as used so that it isn't stripped out.
UsedVars.push_back(Data);
// Now that the linkage set by the FE has been passed to the data and counter
// variables, reset Name variable's linkage and visibility to private so that
// it can be removed later by the compiler.
NamePtr->setLinkage(GlobalValue::PrivateLinkage);
// Collect the referenced names to be used by emitNameData.
ReferencedNames.push_back(NamePtr);
return CounterPtr;
}
void InstrProfiling::emitVNodes() {
if (!ValueProfileStaticAlloc)
return;
// For now only support this on platforms that do
// not require runtime registration to discover
// named section start/end.
if (needsRuntimeRegistrationOfSectionRange(*M))
return;
size_t TotalNS = 0;
for (auto &PD : ProfileDataMap) {
for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
TotalNS += PD.second.NumValueSites[Kind];
}
if (!TotalNS)
return;
uint64_t NumCounters = TotalNS * NumCountersPerValueSite;
// Heuristic for small programs with very few total value sites.
// The default value of vp-counters-per-site is chosen based on
// the observation that large apps usually have a low percentage
// of value sites that actually have any profile data, and thus
// the average number of counters per site is low. For small
// apps with very few sites, this may not be true. Bump up the
// number of counters in this case.
#define INSTR_PROF_MIN_VAL_COUNTS 10
if (NumCounters < INSTR_PROF_MIN_VAL_COUNTS)
NumCounters = std::max(INSTR_PROF_MIN_VAL_COUNTS, (int)NumCounters * 2);
auto &Ctx = M->getContext();
Type *VNodeTypes[] = {
#define INSTR_PROF_VALUE_NODE(Type, LLVMType, Name, Init) LLVMType,
#include "llvm/ProfileData/InstrProfData.inc"
};
auto *VNodeTy = StructType::get(Ctx, makeArrayRef(VNodeTypes));
ArrayType *VNodesTy = ArrayType::get(VNodeTy, NumCounters);
auto *VNodesVar = new GlobalVariable(
*M, VNodesTy, false, GlobalValue::PrivateLinkage,
Constant::getNullValue(VNodesTy), getInstrProfVNodesVarName());
VNodesVar->setSection(
getInstrProfSectionName(IPSK_vnodes, TT.getObjectFormat()));
UsedVars.push_back(VNodesVar);
}
void InstrProfiling::emitNameData() {
std::string UncompressedData;
if (ReferencedNames.empty())
return;
std::string CompressedNameStr;
if (Error E = collectPGOFuncNameStrings(ReferencedNames, CompressedNameStr,
DoNameCompression)) {
report_fatal_error(toString(std::move(E)), false);
}
auto &Ctx = M->getContext();
auto *NamesVal = ConstantDataArray::getString(
Ctx, StringRef(CompressedNameStr), false);
NamesVar = new GlobalVariable(*M, NamesVal->getType(), true,
GlobalValue::PrivateLinkage, NamesVal,
getInstrProfNamesVarName());
NamesSize = CompressedNameStr.size();
NamesVar->setSection(
getInstrProfSectionName(IPSK_name, TT.getObjectFormat()));
UsedVars.push_back(NamesVar);
for (auto *NamePtr : ReferencedNames)
NamePtr->eraseFromParent();
}
void InstrProfiling::emitRegistration() {
if (!needsRuntimeRegistrationOfSectionRange(*M))
return;
// Construct the function.
auto *VoidTy = Type::getVoidTy(M->getContext());
auto *VoidPtrTy = Type::getInt8PtrTy(M->getContext());
auto *Int64Ty = Type::getInt64Ty(M->getContext());
auto *RegisterFTy = FunctionType::get(VoidTy, false);
auto *RegisterF = Function::Create(RegisterFTy, GlobalValue::InternalLinkage,
getInstrProfRegFuncsName(), M);
IR: Introduce local_unnamed_addr attribute. If a local_unnamed_addr attribute is attached to a global, the address is known to be insignificant within the module. It is distinct from the existing unnamed_addr attribute in that it only describes a local property of the module rather than a global property of the symbol. This attribute is intended to be used by the code generator and LTO to allow the linker to decide whether the global needs to be in the symbol table. It is possible to exclude a global from the symbol table if three things are true: - This attribute is present on every instance of the global (which means that the normal rule that the global must have a unique address can be broken without being observable by the program by performing comparisons against the global's address) - The global has linkonce_odr linkage (which means that each linkage unit must have its own copy of the global if it requires one, and the copy in each linkage unit must be the same) - It is a constant or a function (which means that the program cannot observe that the unique-address rule has been broken by writing to the global) Although this attribute could in principle be computed from the module contents, LTO clients (i.e. linkers) will normally need to be able to compute this property as part of symbol resolution, and it would be inefficient to materialize every module just to compute it. See: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.html http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html for earlier discussion. Part of the fix for PR27553. Differential Revision: http://reviews.llvm.org/D20348 llvm-svn: 272709
2016-06-14 23:01:22 +02:00
RegisterF->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
if (Options.NoRedZone)
RegisterF->addFnAttr(Attribute::NoRedZone);
auto *RuntimeRegisterTy = FunctionType::get(VoidTy, VoidPtrTy, false);
auto *RuntimeRegisterF =
Function::Create(RuntimeRegisterTy, GlobalVariable::ExternalLinkage,
getInstrProfRegFuncName(), M);
IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", RegisterF));
for (Value *Data : UsedVars)
if (Data != NamesVar)
IRB.CreateCall(RuntimeRegisterF, IRB.CreateBitCast(Data, VoidPtrTy));
if (NamesVar) {
Type *ParamTypes[] = {VoidPtrTy, Int64Ty};
auto *NamesRegisterTy =
FunctionType::get(VoidTy, makeArrayRef(ParamTypes), false);
auto *NamesRegisterF =
Function::Create(NamesRegisterTy, GlobalVariable::ExternalLinkage,
getInstrProfNamesRegFuncName(), M);
IRB.CreateCall(NamesRegisterF, {IRB.CreateBitCast(NamesVar, VoidPtrTy),
IRB.getInt64(NamesSize)});
}
IRB.CreateRetVoid();
}
void InstrProfiling::emitRuntimeHook() {
// We expect the linker to be invoked with -u<hook_var> flag for linux,
// for which case there is no need to emit the user function.
if (Triple(M->getTargetTriple()).isOSLinux())
return;
// If the module's provided its own runtime, we don't need to do anything.
if (M->getGlobalVariable(getInstrProfRuntimeHookVarName()))
return;
// Declare an external variable that will pull in the runtime initialization.
auto *Int32Ty = Type::getInt32Ty(M->getContext());
auto *Var =
new GlobalVariable(*M, Int32Ty, false, GlobalValue::ExternalLinkage,
nullptr, getInstrProfRuntimeHookVarName());
// Make a function that uses it.
auto *User = Function::Create(FunctionType::get(Int32Ty, false),
GlobalValue::LinkOnceODRLinkage,
getInstrProfRuntimeHookVarUseFuncName(), M);
User->addFnAttr(Attribute::NoInline);
if (Options.NoRedZone)
User->addFnAttr(Attribute::NoRedZone);
User->setVisibility(GlobalValue::HiddenVisibility);
if (Triple(M->getTargetTriple()).supportsCOMDAT())
User->setComdat(M->getOrInsertComdat(User->getName()));
IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", User));
auto *Load = IRB.CreateLoad(Var);
IRB.CreateRet(Load);
// Mark the user variable as used so that it isn't stripped out.
UsedVars.push_back(User);
}
void InstrProfiling::emitUses() {
if (!UsedVars.empty())
appendToUsed(*M, UsedVars);
}
void InstrProfiling::emitInitialization() {
StringRef InstrProfileOutput = Options.InstrProfileOutput;
if (!InstrProfileOutput.empty()) {
// Create variable for profile name.
Constant *ProfileNameConst =
ConstantDataArray::getString(M->getContext(), InstrProfileOutput, true);
GlobalVariable *ProfileNameVar = new GlobalVariable(
*M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage,
ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR));
if (TT.supportsCOMDAT()) {
ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage);
ProfileNameVar->setComdat(M->getOrInsertComdat(
StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR))));
}
}
Constant *RegisterF = M->getFunction(getInstrProfRegFuncsName());
if (!RegisterF)
return;
// Create the initialization function.
auto *VoidTy = Type::getVoidTy(M->getContext());
auto *F = Function::Create(FunctionType::get(VoidTy, false),
GlobalValue::InternalLinkage,
getInstrProfInitFuncName(), M);
IR: Introduce local_unnamed_addr attribute. If a local_unnamed_addr attribute is attached to a global, the address is known to be insignificant within the module. It is distinct from the existing unnamed_addr attribute in that it only describes a local property of the module rather than a global property of the symbol. This attribute is intended to be used by the code generator and LTO to allow the linker to decide whether the global needs to be in the symbol table. It is possible to exclude a global from the symbol table if three things are true: - This attribute is present on every instance of the global (which means that the normal rule that the global must have a unique address can be broken without being observable by the program by performing comparisons against the global's address) - The global has linkonce_odr linkage (which means that each linkage unit must have its own copy of the global if it requires one, and the copy in each linkage unit must be the same) - It is a constant or a function (which means that the program cannot observe that the unique-address rule has been broken by writing to the global) Although this attribute could in principle be computed from the module contents, LTO clients (i.e. linkers) will normally need to be able to compute this property as part of symbol resolution, and it would be inefficient to materialize every module just to compute it. See: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.html http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html for earlier discussion. Part of the fix for PR27553. Differential Revision: http://reviews.llvm.org/D20348 llvm-svn: 272709
2016-06-14 23:01:22 +02:00
F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
F->addFnAttr(Attribute::NoInline);
if (Options.NoRedZone)
F->addFnAttr(Attribute::NoRedZone);
// Add the basic block and the necessary calls.
IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", F));
if (RegisterF)
IRB.CreateCall(RegisterF, {});
IRB.CreateRetVoid();
appendToGlobalCtors(*M, F, 0);
}