1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/include/llvm/Support/KnownBits.h

201 lines
5.9 KiB
C
Raw Normal View History

//===- llvm/Support/KnownBits.h - Stores known zeros/ones -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a class for representing known zeros and ones used by
// computeKnownBits.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_KNOWNBITS_H
#define LLVM_SUPPORT_KNOWNBITS_H
#include "llvm/ADT/APInt.h"
namespace llvm {
// Struct for tracking the known zeros and ones of a value.
struct KnownBits {
APInt Zero;
APInt One;
private:
// Internal constructor for creating a ConstantRange from two APInts.
KnownBits(APInt Zero, APInt One)
: Zero(std::move(Zero)), One(std::move(One)) {}
public:
// Default construct Zero and One.
KnownBits() {}
/// Create a known bits object of BitWidth bits initialized to unknown.
KnownBits(unsigned BitWidth) : Zero(BitWidth, 0), One(BitWidth, 0) {}
/// Get the bit width of this value.
unsigned getBitWidth() const {
assert(Zero.getBitWidth() == One.getBitWidth() &&
"Zero and One should have the same width!");
return Zero.getBitWidth();
}
/// Returns true if there is conflicting information.
bool hasConflict() const { return Zero.intersects(One); }
/// Returns true if we know the value of all bits.
bool isConstant() const {
assert(!hasConflict() && "KnownBits conflict!");
return Zero.countPopulation() + One.countPopulation() == getBitWidth();
}
/// Returns the value when all bits have a known value. This just returns One
/// with a protective assertion.
const APInt &getConstant() const {
assert(isConstant() && "Can only get value when all bits are known");
return One;
}
/// Returns true if we don't know any bits.
bool isUnknown() const { return Zero.isNullValue() && One.isNullValue(); }
/// Resets the known state of all bits.
void resetAll() {
Zero.clearAllBits();
One.clearAllBits();
}
/// Returns true if value is all zero.
bool isZero() const {
assert(!hasConflict() && "KnownBits conflict!");
return Zero.isAllOnesValue();
}
/// Returns true if value is all one bits.
bool isAllOnes() const {
assert(!hasConflict() && "KnownBits conflict!");
return One.isAllOnesValue();
}
/// Make all bits known to be zero and discard any previous information.
void setAllZero() {
Zero.setAllBits();
One.clearAllBits();
}
/// Make all bits known to be one and discard any previous information.
void setAllOnes() {
Zero.clearAllBits();
One.setAllBits();
}
/// Returns true if this value is known to be negative.
bool isNegative() const { return One.isSignBitSet(); }
/// Returns true if this value is known to be non-negative.
bool isNonNegative() const { return Zero.isSignBitSet(); }
/// Make this value negative.
void makeNegative() {
assert(!isNonNegative() && "Can't make a non-negative value negative");
One.setSignBit();
}
/// Make this value negative.
void makeNonNegative() {
assert(!isNegative() && "Can't make a negative value non-negative");
Zero.setSignBit();
}
/// Truncate the underlying known Zero and One bits. This is equivalent
/// to truncating the value we're tracking.
KnownBits trunc(unsigned BitWidth) {
return KnownBits(Zero.trunc(BitWidth), One.trunc(BitWidth));
}
/// Zero extends the underlying known Zero and One bits. This is equivalent
/// to zero extending the value we're tracking.
KnownBits zext(unsigned BitWidth) {
return KnownBits(Zero.zext(BitWidth), One.zext(BitWidth));
}
/// Sign extends the underlying known Zero and One bits. This is equivalent
/// to sign extending the value we're tracking.
KnownBits sext(unsigned BitWidth) {
return KnownBits(Zero.sext(BitWidth), One.sext(BitWidth));
}
/// Zero extends or truncates the underlying known Zero and One bits. This is
/// equivalent to zero extending or truncating the value we're tracking.
KnownBits zextOrTrunc(unsigned BitWidth) {
return KnownBits(Zero.zextOrTrunc(BitWidth), One.zextOrTrunc(BitWidth));
}
/// Returns the minimum number of trailing zero bits.
unsigned countMinTrailingZeros() const {
return Zero.countTrailingOnes();
}
/// Returns the minimum number of trailing one bits.
unsigned countMinTrailingOnes() const {
return One.countTrailingOnes();
}
/// Returns the minimum number of leading zero bits.
unsigned countMinLeadingZeros() const {
return Zero.countLeadingOnes();
}
/// Returns the minimum number of leading one bits.
unsigned countMinLeadingOnes() const {
return One.countLeadingOnes();
}
/// Returns the number of times the sign bit is replicated into the other
/// bits.
unsigned countMinSignBits() const {
if (isNonNegative())
return countMinLeadingZeros();
if (isNegative())
return countMinLeadingOnes();
return 0;
}
/// Returns the maximum number of trailing zero bits possible.
unsigned countMaxTrailingZeros() const {
return One.countTrailingZeros();
}
/// Returns the maximum number of trailing one bits possible.
unsigned countMaxTrailingOnes() const {
return Zero.countTrailingZeros();
}
/// Returns the maximum number of leading zero bits possible.
unsigned countMaxLeadingZeros() const {
return One.countLeadingZeros();
}
/// Returns the maximum number of leading one bits possible.
unsigned countMaxLeadingOnes() const {
return Zero.countLeadingZeros();
}
/// Returns the number of bits known to be one.
unsigned countMinPopulation() const {
return One.countPopulation();
}
/// Returns the maximum number of bits that could be one.
unsigned countMaxPopulation() const {
return getBitWidth() - Zero.countPopulation();
}
};
} // end namespace llvm
#endif