1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-24 13:33:37 +02:00
llvm-mirror/test/Transforms/InstCombine/div.ll

344 lines
8.3 KiB
LLVM
Raw Normal View History

; This test makes sure that div instructions are properly eliminated.
2011-04-30 20:15:53 +02:00
; RUN: opt < %s -instcombine -S | FileCheck %s
define i32 @test1(i32 %A) {
%B = sdiv i32 %A, 1 ; <i32> [#uses=1]
ret i32 %B
; CHECK-LABEL: @test1(
2011-04-30 20:15:53 +02:00
; CHECK-NEXT: ret i32 %A
2003-02-18 20:16:45 +01:00
}
define i32 @test2(i32 %A) {
; => Shift
%B = udiv i32 %A, 8 ; <i32> [#uses=1]
ret i32 %B
; CHECK-LABEL: @test2(
2011-04-30 20:15:53 +02:00
; CHECK-NEXT: lshr i32 %A, 3
}
define i32 @test3(i32 %A) {
; => 0, don't need to keep traps
%B = sdiv i32 0, %A ; <i32> [#uses=1]
ret i32 %B
; CHECK-LABEL: @test3(
2011-04-30 20:15:53 +02:00
; CHECK-NEXT: ret i32 0
}
define i32 @test4(i32 %A) {
; 0-A
%B = sdiv i32 %A, -1 ; <i32> [#uses=1]
ret i32 %B
; CHECK-LABEL: @test4(
2011-04-30 20:15:53 +02:00
; CHECK-NEXT: sub i32 0, %A
}
2004-09-28 20:21:01 +02:00
define i32 @test5(i32 %A) {
%B = udiv i32 %A, -16 ; <i32> [#uses=1]
%C = udiv i32 %B, -4 ; <i32> [#uses=1]
ret i32 %C
; CHECK-LABEL: @test5(
2011-04-30 20:15:53 +02:00
; CHECK-NEXT: ret i32 0
2004-09-28 20:21:01 +02:00
}
define i1 @test6(i32 %A) {
%B = udiv i32 %A, 123 ; <i32> [#uses=1]
; A < 123
%C = icmp eq i32 %B, 0 ; <i1> [#uses=1]
ret i1 %C
; CHECK-LABEL: @test6(
2011-04-30 20:15:53 +02:00
; CHECK-NEXT: icmp ult i32 %A, 123
}
define i1 @test7(i32 %A) {
%B = udiv i32 %A, 10 ; <i32> [#uses=1]
; A >= 20 && A < 30
%C = icmp eq i32 %B, 2 ; <i1> [#uses=1]
ret i1 %C
; CHECK-LABEL: @test7(
2011-04-30 20:15:53 +02:00
; CHECK-NEXT: add i32 %A, -20
; CHECK-NEXT: icmp ult i32
}
define i1 @test8(i8 %A) {
%B = udiv i8 %A, 123 ; <i8> [#uses=1]
; A >= 246
%C = icmp eq i8 %B, 2 ; <i1> [#uses=1]
ret i1 %C
; CHECK-LABEL: @test8(
2011-04-30 20:15:53 +02:00
; CHECK-NEXT: icmp ugt i8 %A, -11
}
define i1 @test9(i8 %A) {
%B = udiv i8 %A, 123 ; <i8> [#uses=1]
; A < 246
%C = icmp ne i8 %B, 2 ; <i1> [#uses=1]
ret i1 %C
; CHECK-LABEL: @test9(
2011-04-30 20:15:53 +02:00
; CHECK-NEXT: icmp ult i8 %A, -10
}
define i32 @test10(i32 %X, i1 %C) {
%V = select i1 %C, i32 64, i32 8 ; <i32> [#uses=1]
%R = udiv i32 %X, %V ; <i32> [#uses=1]
ret i32 %R
; CHECK-LABEL: @test10(
2011-04-30 20:15:53 +02:00
; CHECK-NEXT: select i1 %C, i32 6, i32 3
; CHECK-NEXT: lshr i32 %X
}
define i32 @test11(i32 %X, i1 %C) {
%A = select i1 %C, i32 1024, i32 32 ; <i32> [#uses=1]
%B = udiv i32 %X, %A ; <i32> [#uses=1]
ret i32 %B
; CHECK-LABEL: @test11(
2011-04-30 20:15:53 +02:00
; CHECK-NEXT: select i1 %C, i32 10, i32 5
; CHECK-NEXT: lshr i32 %X
2006-02-05 08:52:47 +01:00
}
2008-05-16 04:59:42 +02:00
; PR2328
define i32 @test12(i32 %x) nounwind {
%tmp3 = udiv i32 %x, %x ; 1
ret i32 %tmp3
; CHECK-LABEL: @test12(
2011-04-30 20:15:53 +02:00
; CHECK-NEXT: ret i32 1
2008-05-16 04:59:42 +02:00
}
define i32 @test13(i32 %x) nounwind {
%tmp3 = sdiv i32 %x, %x ; 1
ret i32 %tmp3
; CHECK-LABEL: @test13(
2011-04-30 20:15:53 +02:00
; CHECK-NEXT: ret i32 1
2008-05-16 04:59:42 +02:00
}
define i32 @test14(i8 %x) nounwind {
%zext = zext i8 %x to i32
%div = udiv i32 %zext, 257 ; 0
ret i32 %div
; CHECK-LABEL: @test14(
; CHECK-NEXT: ret i32 0
}
; PR9814
define i32 @test15(i32 %a, i32 %b) nounwind {
%shl = shl i32 1, %b
%div = lshr i32 %shl, 2
%div2 = udiv i32 %a, %div
ret i32 %div2
; CHECK-LABEL: @test15(
; CHECK-NEXT: add i32 %b, -2
; CHECK-NEXT: lshr i32 %a,
; CHECK-NEXT: ret i32
}
define <2 x i64> @test16(<2 x i64> %x) nounwind {
%shr = lshr <2 x i64> %x, <i64 5, i64 5>
%div = udiv <2 x i64> %shr, <i64 6, i64 6>
ret <2 x i64> %div
; CHECK-LABEL: @test16(
; CHECK-NEXT: udiv <2 x i64> %x, <i64 192, i64 192>
; CHECK-NEXT: ret <2 x i64>
}
define <2 x i64> @test17(<2 x i64> %x) nounwind {
%neg = sub nsw <2 x i64> zeroinitializer, %x
%div = sdiv <2 x i64> %neg, <i64 3, i64 4>
ret <2 x i64> %div
; CHECK-LABEL: @test17(
; CHECK-NEXT: sdiv <2 x i64> %x, <i64 -3, i64 -4>
; CHECK-NEXT: ret <2 x i64>
}
define <2 x i64> @test18(<2 x i64> %x) nounwind {
%div = sdiv <2 x i64> %x, <i64 -1, i64 -1>
ret <2 x i64> %div
; CHECK-LABEL: @test18(
; CHECK-NEXT: sub <2 x i64> zeroinitializer, %x
; CHECK-NEXT: ret <2 x i64>
}
define i32 @test19(i32 %x) {
%A = udiv i32 1, %x
ret i32 %A
; CHECK-LABEL: @test19(
; CHECK-NEXT: icmp eq i32 %x, 1
; CHECK-NEXT: zext i1 %{{.*}} to i32
; CHECK-NEXT: ret i32
}
define i32 @test20(i32 %x) {
%A = sdiv i32 1, %x
ret i32 %A
; CHECK-LABEL: @test20(
; CHECK-NEXT: add i32 %x, 1
; CHECK-NEXT: icmp ult i32 %{{.*}}, 3
; CHECK-NEXT: select i1 %{{.*}}, i32 %x, i32 {{.*}}
; CHECK-NEXT: ret i32
}
define i32 @test21(i32 %a) {
%shl = shl nsw i32 %a, 2
%div = sdiv i32 %shl, 12
ret i32 %div
; CHECK-LABEL: @test21(
; CHECK-NEXT: %div = sdiv i32 %a, 3
; CHECK-NEXT: ret i32 %div
}
define i32 @test22(i32 %a) {
%mul = mul nsw i32 %a, 3
%div = sdiv i32 %mul, 12
ret i32 %div
; CHECK-LABEL: @test22(
; CHECK-NEXT: %div = sdiv i32 %a, 4
; CHECK-NEXT: ret i32 %div
}
define i32 @test23(i32 %a) {
%shl = shl nuw i32 %a, 2
%div = udiv i32 %shl, 12
ret i32 %div
; CHECK-LABEL: @test23(
; CHECK-NEXT: %div = udiv i32 %a, 3
; CHECK-NEXT: ret i32 %div
}
define i32 @test24(i32 %a) {
%mul = mul nuw i32 %a, 3
%div = udiv i32 %mul, 12
ret i32 %div
; CHECK-LABEL: @test24(
; CHECK-NEXT: %div = lshr i32 %a, 2
; CHECK-NEXT: ret i32 %div
}
define i32 @test25(i32 %a) {
%shl = shl nsw i32 %a, 2
%div = sdiv i32 %shl, 2
ret i32 %div
; CHECK-LABEL: @test25(
; CHECK-NEXT: %div = shl nsw i32 %a, 1
; CHECK-NEXT: ret i32 %div
}
define i32 @test26(i32 %a) {
%mul = mul nsw i32 %a, 12
%div = sdiv i32 %mul, 3
ret i32 %div
; CHECK-LABEL: @test26(
; CHECK-NEXT: %div = shl nsw i32 %a, 2
; CHECK-NEXT: ret i32 %div
}
define i32 @test27(i32 %a) {
%shl = shl nuw i32 %a, 2
%div = udiv i32 %shl, 2
ret i32 %div
; CHECK-LABEL: @test27(
; CHECK-NEXT: %div = shl nuw i32 %a, 1
; CHECK-NEXT: ret i32 %div
}
define i32 @test28(i32 %a) {
%mul = mul nuw i32 %a, 36
%div = udiv i32 %mul, 3
ret i32 %div
; CHECK-LABEL: @test28(
; CHECK-NEXT: %div = mul nuw i32 %a, 12
; CHECK-NEXT: ret i32 %div
}
define i32 @test29(i32 %a) {
%mul = shl nsw i32 %a, 31
%div = sdiv i32 %mul, -2147483648
ret i32 %div
; CHECK-LABEL: @test29(
; CHECK-NEXT: %[[and:.*]] = and i32 %a, 1
; CHECK-NEXT: ret i32 %[[and]]
}
define i32 @test30(i32 %a) {
%mul = shl nuw i32 %a, 31
%div = udiv i32 %mul, -2147483648
ret i32 %div
; CHECK-LABEL: @test30(
; CHECK-NEXT: ret i32 %a
}
define <2 x i32> @test31(<2 x i32> %x) {
%shr = lshr <2 x i32> %x, <i32 31, i32 31>
%div = udiv <2 x i32> %shr, <i32 2147483647, i32 2147483647>
ret <2 x i32> %div
; CHECK-LABEL: @test31(
Handle non-constant shifts in computeKnownBits, and use computeKnownBits for constant folding in InstCombine/Simplify First, the motivation: LLVM currently does not realize that: ((2072 >> (L == 0)) >> 7) & 1 == 0 where L is some arbitrary value. Whether you right-shift 2072 by 7 or by 8, the lowest-order bit is always zero. There are obviously several ways to go about fixing this, but the generic solution pursued in this patch is to teach computeKnownBits something about shifts by a non-constant amount. Previously, we would give up completely on these. Instead, in cases where we know something about the low-order bits of the shift-amount operand, we can combine (and together) the associated restrictions for all shift amounts consistent with that knowledge. As a further generalization, I refactored all of the logic for all three kinds of shifts to have this capability. This works well in the above case, for example, because the dynamic shift amount can only be 0 or 1, and thus we can say a lot about the known bits of the result. This brings us to the second part of this change: Even when we know all of the bits of a value via computeKnownBits, nothing used to constant-fold the result. This introduces the necessary code into InstCombine and InstSimplify. I've added it into both because: 1. InstCombine won't automatically pick up the associated logic in InstSimplify (InstCombine uses InstSimplify, but not via the API that passes in the original instruction). 2. Putting the logic in InstCombine allows the resulting simplifications to become part of the iterative worklist 3. Putting the logic in InstSimplify allows the resulting simplifications to be used by everywhere else that calls SimplifyInstruction (inlining, unrolling, and many others). And this requires a small change to our definition of an ephemeral value so that we don't break the rest case from r246696 (where the icmp feeding the @llvm.assume, is also feeding a br). Under the old definition, the icmp would not be considered ephemeral (because it is used by the br), but this causes the assume to remove itself (in addition to simplifying the branch structure), and it seems more-useful to prevent that from happening. llvm-svn: 251146
2015-10-23 22:37:08 +02:00
; CHECK-NEXT: ret <2 x i32> zeroinitializer
}
define i32 @test32(i32 %a, i32 %b) {
%shl = shl i32 2, %b
%div = lshr i32 %shl, 2
%div2 = udiv i32 %a, %div
ret i32 %div2
; CHECK-LABEL: @test32(
; CHECK-NEXT: %[[shl:.*]] = shl i32 2, %b
; CHECK-NEXT: %[[shr:.*]] = lshr i32 %[[shl]], 2
; CHECK-NEXT: %[[div:.*]] = udiv i32 %a, %[[shr]]
; CHECK-NEXT: ret i32
}
define <2 x i64> @test33(<2 x i64> %x) nounwind {
%shr = lshr exact <2 x i64> %x, <i64 5, i64 5>
%div = udiv exact <2 x i64> %shr, <i64 6, i64 6>
ret <2 x i64> %div
; CHECK-LABEL: @test33(
; CHECK-NEXT: udiv exact <2 x i64> %x, <i64 192, i64 192>
; CHECK-NEXT: ret <2 x i64>
}
define <2 x i64> @test34(<2 x i64> %x) nounwind {
%neg = sub nsw <2 x i64> zeroinitializer, %x
%div = sdiv exact <2 x i64> %neg, <i64 3, i64 4>
ret <2 x i64> %div
; CHECK-LABEL: @test34(
; CHECK-NEXT: sdiv exact <2 x i64> %x, <i64 -3, i64 -4>
; CHECK-NEXT: ret <2 x i64>
}
define i32 @test35(i32 %A) {
%and = and i32 %A, 2147483647
%mul = sdiv exact i32 %and, 2147483647
ret i32 %mul
; CHECK-LABEL: @test35(
; CHECK-NEXT: %[[and:.*]] = and i32 %A, 2147483647
; CHECK-NEXT: %[[udiv:.*]] = udiv exact i32 %[[and]], 2147483647
; CHECK-NEXT: ret i32 %[[udiv]]
}
define i32 @test36(i32 %A) {
%and = and i32 %A, 2147483647
%shl = shl nsw i32 1, %A
%mul = sdiv exact i32 %and, %shl
ret i32 %mul
; CHECK-LABEL: @test36(
; CHECK-NEXT: %[[and:.*]] = and i32 %A, 2147483647
; CHECK-NEXT: %[[shr:.*]] = lshr exact i32 %[[and]], %A
; CHECK-NEXT: ret i32 %[[shr]]
}
define i32 @test37(i32* %b) {
entry:
store i32 0, i32* %b, align 4
%0 = load i32, i32* %b, align 4
br i1 undef, label %lor.rhs, label %lor.end
lor.rhs: ; preds = %entry
%mul = mul nsw i32 undef, %0
br label %lor.end
lor.end: ; preds = %lor.rhs, %entry
%t.0 = phi i32 [ %0, %entry ], [ %mul, %lor.rhs ]
%div = sdiv i32 %t.0, 2
ret i32 %div
; CHECK-LABEL: @test37(
; CHECK: ret i32 0
}