1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 11:13:28 +01:00
llvm-mirror/lib/Target/VE/VEInstrInfo.td

1583 lines
60 KiB
TableGen
Raw Normal View History

//===-- VEInstrInfo.td - Target Description for VE Target -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the VE instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//
include "VEInstrFormats.td"
//===----------------------------------------------------------------------===//
// Feature predicates.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Instruction Pattern Stuff
//===----------------------------------------------------------------------===//
// uimm1 - Generic immediate value.
def uimm1 : Operand<i32>, PatLeaf<(imm), [{
return isUInt<1>(N->getZExtValue()); }]>;
// uimm6 - Generic immediate value.
def uimm6 : Operand<i32>, PatLeaf<(imm), [{
return isUInt<6>(N->getZExtValue()); }]>;
// simm7 - Generic immediate value.
def LO7 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(SignExtend32(N->getSExtValue(), 7),
SDLoc(N), MVT::i32);
}]>;
def simm7 : Operand<i32>, PatLeaf<(imm), [{
return isInt<7>(N->getSExtValue()); }], LO7> {
let DecoderMethod = "DecodeSIMM7";
}
// mimm - Special immediate value of sequential bit stream of 0 or 1.
// `(m)0`: Represents 0b00...0011...11 pattern where the number of leading
// zeros equal to m.
// `(m)1`: Represents 0b11...1100...00 pattern where the number of leading
// ones equal to m.
// The immediate value of mimm operands:
// bit 6 : If `(m)0`, 1. Otherwise, 0.
// bit 5-0: Represents 0-63.
// Use `!add(m, 64)` to generates an immediate value in pattern matching.
def MIMM : SDNodeXForm<imm, [{
uint64_t Val = N->getZExtValue();
if (isMask_64(Val))
Val = countLeadingZeros(Val) | 0x40;
else
Val = countLeadingOnes(Val);
return CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32);
}]>;
def mimm : Operand<i32>, PatLeaf<(imm), [{
return isMask_64(N->getZExtValue()) ||
((N->getZExtValue() & (1UL << 63)) &&
isShiftedMask_64(N->getZExtValue())); }], MIMM> {
let PrintMethod = "printMImmOperand";
}
def simm32 : PatLeaf<(imm), [{ return isInt<32>(N->getSExtValue()); }]>;
def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>;
def lomsbzero : PatLeaf<(imm), [{ return (N->getZExtValue() & 0x80000000)
== 0; }]>;
def lozero : PatLeaf<(imm), [{ return (N->getZExtValue() & 0xffffffff)
== 0; }]>;
def fplomsbzero : PatLeaf<(fpimm), [{ return (N->getValueAPF().bitcastToAPInt()
.getZExtValue() & 0x80000000) == 0; }]>;
def fplozero : PatLeaf<(fpimm), [{ return (N->getValueAPF().bitcastToAPInt()
.getZExtValue() & 0xffffffff) == 0; }]>;
def CCSIOp : PatLeaf<(cond), [{
switch (N->get()) {
default: return true;
case ISD::SETULT:
case ISD::SETULE:
case ISD::SETUGT:
case ISD::SETUGE: return false;
}
}]>;
def CCUIOp : PatLeaf<(cond), [{
switch (N->get()) {
default: return true;
case ISD::SETLT:
case ISD::SETLE:
case ISD::SETGT:
case ISD::SETGE: return false;
}
}]>;
def LOFP32 : SDNodeXForm<fpimm, [{
// Get a integer immediate from fpimm
const APInt& imm = N->getValueAPF().bitcastToAPInt();
return CurDAG->getTargetConstant(Lo_32(imm.getZExtValue() & 0xffffffff),
SDLoc(N), MVT::i64);
}]>;
def HIFP32 : SDNodeXForm<fpimm, [{
// Get a integer immediate from fpimm
const APInt& imm = N->getValueAPF().bitcastToAPInt();
return CurDAG->getTargetConstant(Hi_32(imm.getZExtValue()),
SDLoc(N), MVT::i64);
}]>;
def LO32 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(Lo_32(N->getZExtValue()),
SDLoc(N), MVT::i64);
}]>;
def HI32 : SDNodeXForm<imm, [{
// Transformation function: shift the immediate value down into the low bits.
return CurDAG->getTargetConstant(Hi_32(N->getZExtValue()),
SDLoc(N), MVT::i32);
}]>;
def icond2cc : SDNodeXForm<cond, [{
VECC::CondCode cc;
switch (N->get()) {
default: llvm_unreachable("Unknown integer condition code!");
case ISD::SETEQ: cc = VECC::CC_IEQ; break;
case ISD::SETNE: cc = VECC::CC_INE; break;
case ISD::SETLT: cc = VECC::CC_IL; break;
case ISD::SETGT: cc = VECC::CC_IG; break;
case ISD::SETLE: cc = VECC::CC_ILE; break;
case ISD::SETGE: cc = VECC::CC_IGE; break;
case ISD::SETULT: cc = VECC::CC_IL; break;
case ISD::SETULE: cc = VECC::CC_ILE; break;
case ISD::SETUGT: cc = VECC::CC_IG; break;
case ISD::SETUGE: cc = VECC::CC_IGE; break;
}
return CurDAG->getTargetConstant(cc, SDLoc(N), MVT::i32);
}]>;
def fcond2cc : SDNodeXForm<cond, [{
VECC::CondCode cc;
switch (N->get()) {
default: llvm_unreachable("Unknown float condition code!");
case ISD::SETFALSE: cc = VECC::CC_AF; break;
case ISD::SETEQ:
case ISD::SETOEQ: cc = VECC::CC_EQ; break;
case ISD::SETNE:
case ISD::SETONE: cc = VECC::CC_NE; break;
case ISD::SETLT:
case ISD::SETOLT: cc = VECC::CC_L; break;
case ISD::SETGT:
case ISD::SETOGT: cc = VECC::CC_G; break;
case ISD::SETLE:
case ISD::SETOLE: cc = VECC::CC_LE; break;
case ISD::SETGE:
case ISD::SETOGE: cc = VECC::CC_GE; break;
case ISD::SETO: cc = VECC::CC_NUM; break;
case ISD::SETUO: cc = VECC::CC_NAN; break;
case ISD::SETUEQ: cc = VECC::CC_EQNAN; break;
case ISD::SETUNE: cc = VECC::CC_NENAN; break;
case ISD::SETULT: cc = VECC::CC_LNAN; break;
case ISD::SETUGT: cc = VECC::CC_GNAN; break;
case ISD::SETULE: cc = VECC::CC_LENAN; break;
case ISD::SETUGE: cc = VECC::CC_GENAN; break;
case ISD::SETTRUE: cc = VECC::CC_AT; break;
}
return CurDAG->getTargetConstant(cc, SDLoc(N), MVT::i32);
}]>;
// Addressing modes.
def ADDRri : ComplexPattern<iPTR, 2, "selectADDRri", [frameindex], []>;
def MEMri : Operand<iPTR> {
let PrintMethod = "printMemASOperandASX";
let MIOperandInfo = (ops ptr_rc, i64imm);
}
// AS format of memory address
def MEMASri : Operand<iPTR> {
let PrintMethod = "printMemASOperand";
let MIOperandInfo = (ops ptr_rc, i64imm);
}
// Addressing modes.
// SX-Aurora has following fields.
// sz: register or 0
// sy: register or immediate (-64 to 63)
// disp: immediate (-2147483648 to 2147483647)
//
// There are two kinds of instruction.
// ASX format uses sz + sy + disp.
// AS format uses sz + disp.
//
// Moreover, there are four kinds of assembly instruction format.
// ASX format uses "disp", "disp(, sz)", "disp(sy)", "disp(sy, sz)",
// "(, sz)", "(sy)", or "(sy, sz)".
// AS format uses "disp", "disp(, sz)", or "(, sz)" in general.
// AS format in RRM format uses "disp", "disp(sz)", or "(sz)".
// AS format in RRM format for host memory access uses "sz", "(sz)",
// or "disp(sz)".
//
// We defined them below.
//
// ASX format:
// MEMrri, MEMrii, MEMzri, MEMzii
// AS format:
// well be added later.
def ADDRrri : ComplexPattern<iPTR, 3, "selectADDRrri", [frameindex], []>;
def ADDRrii : ComplexPattern<iPTR, 3, "selectADDRrii", [frameindex], []>;
def ADDRzri : ComplexPattern<iPTR, 3, "selectADDRzri", [], []>;
def ADDRzii : ComplexPattern<iPTR, 3, "selectADDRzii", [], []>;
//
// ASX assembly instrcution format:
def VEMEMrriAsmOperand : AsmOperandClass {
let Name = "MEMrri";
let ParserMethod = "parseMEMOperand";
}
def VEMEMriiAsmOperand : AsmOperandClass {
let Name = "MEMrii";
let ParserMethod = "parseMEMOperand";
}
def VEMEMzriAsmOperand : AsmOperandClass {
let Name = "MEMzri";
let ParserMethod = "parseMEMOperand";
}
def VEMEMziiAsmOperand : AsmOperandClass {
let Name = "MEMzii";
let ParserMethod = "parseMEMOperand";
}
def MEMrri : Operand<iPTR> {
let PrintMethod = "printMemASXOperand";
let MIOperandInfo = (ops ptr_rc, ptr_rc, i32imm);
let ParserMatchClass = VEMEMrriAsmOperand;
}
def MEMrii : Operand<iPTR> {
let PrintMethod = "printMemASXOperand";
let MIOperandInfo = (ops ptr_rc, i32imm, i32imm);
let ParserMatchClass = VEMEMriiAsmOperand;
}
def MEMzri : Operand<iPTR> {
let PrintMethod = "printMemASXOperand";
let MIOperandInfo = (ops i32imm /* = 0 */, ptr_rc, i32imm);
let ParserMatchClass = VEMEMzriAsmOperand;
}
def MEMzii : Operand<iPTR> {
let PrintMethod = "printMemASXOperand";
let MIOperandInfo = (ops i32imm /* = 0 */, i32imm, i32imm);
let ParserMatchClass = VEMEMziiAsmOperand;
}
// Branch targets have OtherVT type.
def brtarget32 : Operand<OtherVT> {
let EncoderMethod = "getBranchTarget32OpValue";
}
def calltarget : Operand<i64> {
let EncoderMethod = "getCallTargetOpValue";
let DecoderMethod = "DecodeCall";
}
// Operand for printing out a condition code.
let PrintMethod = "printCCOperand" in
def CCOp : Operand<i32>;
def VEhi : SDNode<"VEISD::Hi", SDTIntUnaryOp>;
def VElo : SDNode<"VEISD::Lo", SDTIntUnaryOp>;
// These are target-independent nodes, but have target-specific formats.
def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i64>,
SDTCisVT<1, i64> ]>;
def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i64>,
SDTCisVT<1, i64> ]>;
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
[SDNPHasChain, SDNPOutGlue]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def SDT_SPCall : SDTypeProfile<0, -1, [SDTCisVT<0, i64>]>;
def call : SDNode<"VEISD::CALL", SDT_SPCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def retflag : SDNode<"VEISD::RET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def getGOT : Operand<iPTR>;
// GETFUNPLT for PIC
def GetFunPLT : SDNode<"VEISD::GETFUNPLT", SDTIntUnaryOp>;
// GETTLSADDR for TLS
def GetTLSAddr : SDNode<"VEISD::GETTLSADDR", SDT_SPCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
//===----------------------------------------------------------------------===//
// VE Flag Conditions
//===----------------------------------------------------------------------===//
// Note that these values must be kept in sync with the CCOp::CondCode enum
// values.
class CC_VAL<int N> : PatLeaf<(i32 N)>;
def CC_IG : CC_VAL< 0>; // Greater
def CC_IL : CC_VAL< 1>; // Less
def CC_INE : CC_VAL< 2>; // Not Equal
def CC_IEQ : CC_VAL< 3>; // Equal
def CC_IGE : CC_VAL< 4>; // Greater or Equal
def CC_ILE : CC_VAL< 5>; // Less or Equal
def CC_AF : CC_VAL< 6>; // Always false
def CC_G : CC_VAL< 7>; // Greater
def CC_L : CC_VAL< 8>; // Less
def CC_NE : CC_VAL< 9>; // Not Equal
def CC_EQ : CC_VAL<10>; // Equal
def CC_GE : CC_VAL<11>; // Greater or Equal
def CC_LE : CC_VAL<12>; // Less or Equal
def CC_NUM : CC_VAL<13>; // Number
def CC_NAN : CC_VAL<14>; // NaN
def CC_GNAN : CC_VAL<15>; // Greater or NaN
def CC_LNAN : CC_VAL<16>; // Less or NaN
def CC_NENAN : CC_VAL<17>; // Not Equal or NaN
def CC_EQNAN : CC_VAL<18>; // Equal or NaN
def CC_GENAN : CC_VAL<19>; // Greater or Equal or NaN
def CC_LENAN : CC_VAL<20>; // Less or Equal or NaN
def CC_AT : CC_VAL<21>; // Always true
//===----------------------------------------------------------------------===//
// VE Multiclasses for common instruction formats
//===----------------------------------------------------------------------===//
multiclass RRmrr<string opcStr, bits<8>opc,
RegisterClass RCo, ValueType Tyo,
RegisterClass RCi, ValueType Tyi,
SDPatternOperator OpNode=null_frag> {
def rr : RR<opc, (outs RCo:$sx), (ins RCi:$sy, RCi:$sz),
!strconcat(opcStr, " $sx, $sy, $sz"),
[(set Tyo:$sx, (OpNode Tyi:$sy, Tyi:$sz))]>
{ let cy = 1; let cz = 1; let hasSideEffects = 0; }
}
multiclass RRmri<string opcStr, bits<8>opc,
RegisterClass RCo, ValueType Tyo,
RegisterClass RCi, ValueType Tyi, Operand immOp,
SDPatternOperator OpNode=null_frag> {
// VE calculates (OpNode $sy, $sz), but llvm requires to have immediate
// in RHS, so we use following definition.
def ri : RR<opc, (outs RCo:$sx), (ins RCi:$sz, immOp:$sy),
!strconcat(opcStr, " $sx, $sy, $sz"),
[(set Tyo:$sx, (OpNode Tyi:$sz, (Tyi simm7:$sy)))]>
{ let cy = 0; let cz = 1; let hasSideEffects = 0; }
}
multiclass RRmir<string opcStr, bits<8>opc,
RegisterClass RCo, ValueType Tyo,
RegisterClass RCi, ValueType Tyi, Operand immOp,
SDPatternOperator OpNode=null_frag> {
def ri : RR<opc, (outs RCo:$sx), (ins immOp:$sy, RCi:$sz),
!strconcat(opcStr, " $sx, $sy, $sz"),
[(set Tyo:$sx, (OpNode (Tyi simm7:$sy), Tyi:$sz))]>
{ let cy = 0; let cz = 1; let hasSideEffects = 0; }
}
multiclass RRNDmrm<string opcStr, bits<8>opc,
RegisterClass RCo, ValueType Tyo,
RegisterClass RCi, ValueType Tyi, Operand mOp,
SDPatternOperator OpNode=null_frag> {
let cy = 1, cz = 0, hasSideEffects = 0 in
def rm : RR<opc, (outs RCo:$sx), (ins RCi:$sy, mOp:$sz),
!strconcat(opcStr, " $sx, $sy, $sz"),
[(set Tyo:$sx, (OpNode Tyi:$sy, (Tyi mOp:$sz)))]>;
}
multiclass RRNDmim<string opcStr, bits<8>opc,
RegisterClass RCo, ValueType Tyo,
RegisterClass RCi, ValueType Tyi,
Operand immOp, Operand mOp,
SDPatternOperator OpNode=null_frag> {
let cy = 0, cz = 0, hasSideEffects = 0 in
def im : RR<opc, (outs RCo:$sx), (ins immOp:$sy, mOp:$sz),
!strconcat(opcStr, " $sx, $sy, $sz"),
[(set Tyo:$sx, (OpNode (Tyi immOp:$sy), (Tyi mOp:$sz)))]>;
}
// Used by add, mul, div, and similar commutative instructions
// The order of operands are "$sx, $sy, $sz"
multiclass RRm<string opcStr, bits<8>opc,
RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag,
Operand immOp = simm7, Operand mOp = mimm> :
RRmrr<opcStr, opc, RC, Ty, RC, Ty, OpNode>,
RRmri<opcStr, opc, RC, Ty, RC, Ty, immOp, OpNode>,
RRNDmrm<opcStr, opc, RC, Ty, RC, Ty, mOp, OpNode>,
RRNDmim<opcStr, opc, RC, Ty, RC, Ty, immOp, mOp, OpNode>;
// Used by sub, and similar not commutative instructions
// The order of operands are "$sx, $sy, $sz"
multiclass RRNCm<string opcStr, bits<8>opc,
RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag,
Operand immOp = simm7, Operand mOp = mimm> :
RRmrr<opcStr, opc, RC, Ty, RC, Ty, OpNode>,
RRmir<opcStr, opc, RC, Ty, RC, Ty, immOp, OpNode>,
RRNDmrm<opcStr, opc, RC, Ty, RC, Ty, mOp, OpNode>,
RRNDmim<opcStr, opc, RC, Ty, RC, Ty, immOp, mOp, OpNode>;
// Used by fadd, fsub, and similar floating point instructions
// The order of operands are "$sx, $sy, $sz"
multiclass RRFm<string opcStr, bits<8>opc,
RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag,
Operand immOp = simm7, Operand mOp = mimm> :
RRmrr<opcStr, opc, RC, Ty, RC, Ty, OpNode>,
RRmir<opcStr, opc, RC, Ty, RC, Ty, immOp, null_frag>,
RRNDmrm<opcStr, opc, RC, Ty, RC, Ty, mOp, null_frag>,
RRNDmim<opcStr, opc, RC, Ty, RC, Ty, immOp, mOp, null_frag>;
// Multiclass for RR type instructions
// Used by sra, sla, sll, and similar instructions
// The order of operands are "$sx, $sz, $sy"
multiclass RRIm<string opcStr, bits<8>opc,
RegisterClass RC, ValueType Ty,
Operand immOp, Operand immOp2,
SDPatternOperator OpNode=null_frag> {
def rr : RR<
opc, (outs RC:$sx), (ins RC:$sz, I32:$sy),
!strconcat(opcStr, " $sx, $sz, $sy"),
[(set Ty:$sx, (OpNode Ty:$sz, i32:$sy))]> {
let cy = 1;
let cz = 1;
let hasSideEffects = 0;
}
def ri : RR<
opc, (outs RC:$sx), (ins RC:$sz, immOp:$sy),
!strconcat(opcStr, " $sx, $sz, $sy"),
[(set Ty:$sx, (OpNode Ty:$sz, (i32 simm7:$sy)))]> {
let cy = 0;
let cz = 1;
let hasSideEffects = 0;
}
def rm0 : RR<
opc, (outs RC:$sx), (ins immOp2:$sz, I32:$sy),
!strconcat(opcStr, " $sx, (${sz})0, $sy")> {
let cy = 1;
let cz = 0;
let sz{6} = 1;
let hasSideEffects = 0;
}
def rm1 : RR<
opc, (outs RC:$sx), (ins immOp2:$sz, I32:$sy),
!strconcat(opcStr, " $sx, (${sz})1, $sy")> {
let cy = 1;
let cz = 0;
let hasSideEffects = 0;
}
def im0 : RR<
opc, (outs RC:$sx), (ins immOp2:$sz, immOp:$sy),
!strconcat(opcStr, " $sx, (${sz})0, $sy")> {
let cy = 0;
let cz = 0;
let sz{6} = 1;
let hasSideEffects = 0;
}
def im1 : RR<
opc, (outs RC:$sx), (ins immOp2:$sz, immOp:$sy),
!strconcat(opcStr, " $sx, (${sz})1, $sy")> {
let cy = 0;
let cz = 0;
let hasSideEffects = 0;
}
def zi : RR<
opc, (outs RC:$sx), (ins immOp:$sy),
!strconcat(opcStr, " $sx, $sy"),
[(set Ty:$sx, (OpNode 0, (i32 simm7:$sy)))]> {
let cy = 0;
let cz = 0;
let sz = 0;
let hasSideEffects = 0;
}
}
// Generic RR multiclass with an argument.
// e.g. LDZ, PCNT, and BRV
let cy = 0, sy = 0, hasSideEffects = 0 in
multiclass RRI1m<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag> {
def r : RR<opc, (outs RC:$sx), (ins RC:$sz), !strconcat(opcStr, " $sx, $sz"),
[(set Ty:$sx, (OpNode Ty:$sz))]>;
let cz = 0 in
def m : RR<opc, (outs RC:$sx), (ins mimm:$sz),
!strconcat(opcStr, " $sx, $sz"),
[(set Ty:$sx, (OpNode (Ty mimm:$sz)))]>;
}
// Special RR multiclass for BSWP instruction.
// e.g. BSWP
let hasSideEffects = 0 in
multiclass RRSWPm<string opcStr, bits<8>opc,
RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag> {
let cy = 0 in
def ri : RR<opc, (outs RC:$sx), (ins RC:$sz, uimm1:$sy),
!strconcat(opcStr, " $sx, $sz, $sy"),
[(set Ty:$sx, (OpNode Ty:$sz, (i32 uimm1:$sy)))]>;
let cy = 0, cz = 0 in
def mi : RR<opc, (outs RC:$sx), (ins mimm:$sz, uimm1:$sy),
!strconcat(opcStr, " $sx, $sz, $sy"),
[(set Ty:$sx, (OpNode (Ty mimm:$sz), (i32 uimm1:$sy)))]>;
}
// Multiclass for CMOV instructions.
// e.g. CMOVL, CMOVW, CMOVD, and etc.
let Constraints = "$sx = $sd", DisableEncoding = "$sd", hasSideEffects = 0,
cfw = ? in
multiclass RRCMOVm<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty> {
def rr : RR<opc, (outs I64:$sx), (ins CCOp:$cfw, RC:$sy, I64:$sz, I64:$sd),
!strconcat(opcStr, " $sx, $sz, $sy")>;
let cy = 0 in
def ir : RR<opc, (outs I64:$sx),
(ins CCOp:$cfw, simm7:$sy, I64:$sz, I64:$sd),
!strconcat(opcStr, " $sx, $sz, $sy")>;
let cz = 0 in
def rm : RR<opc, (outs I64:$sx),
(ins CCOp:$cfw, RC:$sy, mimm:$sz, I64:$sd),
!strconcat(opcStr, " $sx, $sz, $sy")>;
let cy = 0, cz = 0 in
def im : RR<opc, (outs I64:$sx),
(ins CCOp:$cfw, simm7:$sy, mimm:$sz, I64:$sd),
!strconcat(opcStr, " $sx, $sz, $sy")>;
}
// Branch multiclass
let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in
multiclass BCRm<string opcStr, string opcStrAt, bits<8> opc,
RegisterClass RC, ValueType Ty, Operand immOp, Operand immOp2> {
def rr : CF<
opc, (outs),
(ins CCOp:$cf, RC:$sy, RC:$sz, brtarget32:$imm32),
!strconcat(opcStr, " $sy, $sz, $imm32")> {
let cy = 1;
let cz = 1;
let hasSideEffects = 0;
}
def ir : CF<
opc, (outs),
(ins CCOp:$cf, immOp:$sy, RC:$sz, brtarget32:$imm32),
!strconcat(opcStr, " $sy, $sz, $imm32")> {
let cy = 0;
let cz = 1;
let hasSideEffects = 0;
}
def rm0 : CF<
opc, (outs), (ins CCOp:$cf, RC:$sy, immOp2:$sz, brtarget32:$imm32),
!strconcat(opcStr, " $sy, (${sz})0, $imm32"), []> {
let cy = 1;
let cz = 0;
let sz{6} = 1;
let hasSideEffects = 0;
}
def rm1 : CF<
opc, (outs), (ins CCOp:$cf, RC:$sy, immOp2:$sz, brtarget32:$imm32),
!strconcat(opcStr, " $sy, (${sz})1, $imm32"), []> {
let cy = 1;
let cz = 0;
let hasSideEffects = 0;
}
def im0 : CF<
opc, (outs), (ins CCOp:$cf, immOp:$sy, immOp2:$sz, brtarget32:$imm32),
!strconcat(opcStr, " $sy, (${sz})0, $imm32"), []> {
let cy = 0;
let cz = 0;
let sz{6} = 1;
let hasSideEffects = 0;
}
def im1 : CF<
opc, (outs), (ins CCOp:$cf, immOp:$sy, immOp2:$sz, brtarget32:$imm32),
!strconcat(opcStr, " $sy, (${sz})1, $imm32"), []> {
let cy = 0;
let cz = 0;
let hasSideEffects = 0;
}
def a : CF<
opc, (outs), (ins brtarget32:$imm32),
!strconcat(opcStrAt, " $imm32"), []> {
let cy = 0;
let sy = 0;
let cz = 0;
let sz = 0;
let cf = 15; /* AT */
let isBarrier = 1;
let hasSideEffects = 0;
}
}
// Multiclass for floating point conversion instructions.
// Used by CVS/CVD/FLT and others
multiclass CVTm<string opcStr, bits<8> opc,
RegisterClass RCo, ValueType Tyo,
RegisterClass RCi, ValueType Tyi, Operand immOp,
SDPatternOperator OpNode=null_frag> {
def r : RR<opc, (outs RCo:$sx), (ins RCi:$sy),
!strconcat(opcStr, " $sx, $sy"),
[(set Tyo:$sx, (OpNode Tyi:$sy))]> {
let cy = 1;
let hasSideEffects = 0;
}
def i : RR<opc, (outs RCo:$sx), (ins immOp:$sy),
!strconcat(opcStr, " $sx, $sy"),
[/* (set Tyo:$sx, (OpNode (Tyi simm7:$sy))) */]> {
let cy = 0;
let hasSideEffects = 0;
}
}
//===----------------------------------------------------------------------===//
// Instructions
//
// Define all scalar instructions defined in SX-Aurora TSUBASA Architecture
// Guide here. As those mnemonics, we use mnemonics defined in Vector Engine
// Assembly Language Reference Manual.
//===----------------------------------------------------------------------===//
//-----------------------------------------------------------------------------
// Section 8.2 - Load/Store instructions
//-----------------------------------------------------------------------------
// Multiclass for generic RM instructions
multiclass RMm<string opcStr, bits<8>opc, RegisterClass RC> {
def rri : RM<opc, (outs RC:$dest), (ins MEMrri:$addr),
!strconcat(opcStr, " $dest, $addr"), []>;
let cy = 0 in
def rii : RM<opc, (outs RC:$dest), (ins MEMrii:$addr),
!strconcat(opcStr, " $dest, $addr"), []>;
let cz = 0 in
def zri : RM<opc, (outs RC:$dest), (ins MEMzri:$addr),
!strconcat(opcStr, " $dest, $addr"), []>;
let cy = 0, cz = 0 in
def zii : RM<opc, (outs RC:$dest), (ins MEMzii:$addr),
!strconcat(opcStr, " $dest, $addr"), []>;
}
// Section 8.2.1 - LEA
let cx = 0, DecoderMethod = "DecodeLoadI64" in
defm LEA : RMm<"lea", 0x06, I64>;
let cx = 1, DecoderMethod = "DecodeLoadI64" in
defm LEASL : RMm<"lea.sl", 0x06, I64>;
let cx = 0, DecoderMethod = "DecodeLoadI32", isCodeGenOnly = 1 in
defm LEA32 : RMm<"lea", 0x06, I32>;
def : Pat<(iPTR ADDRrri:$addr), (LEArri MEMrri:$addr)>;
def : Pat<(iPTR ADDRrii:$addr), (LEArii MEMrii:$addr)>;
def : Pat<(add I64:$base, simm32:$disp), (LEArii $base, 0, (LO32 $disp))>;
def : Pat<(add I64:$base, lozero:$disp), (LEASLrii $base, 0, (HI32 $disp))>;
def : Pat<(add I32:$base, simm32:$disp),
(LEA32rii (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $base, sub_i32), 0,
(LO32 $disp))>;
def lea_add : PatFrags<(ops node:$base, node:$idx, node:$disp),
[(add (add node:$base, node:$idx), node:$disp),
(add (add node:$base, node:$disp), node:$idx)]>;
def : Pat<(lea_add I64:$base, simm7:$idx, simm32:$disp),
(LEArii $base, (LO7 $idx), (LO32 $disp))>;
def : Pat<(lea_add I64:$base, I64:$idx, simm32:$disp),
(LEArri $base, $idx, (LO32 $disp))>;
def : Pat<(lea_add I64:$base, simm7:$idx, lozero:$disp),
(LEASLrii $base, (LO7 $idx), (HI32 $disp))>;
def : Pat<(lea_add I64:$base, I64:$idx, lozero:$disp),
(LEASLrri $base, $idx, (HI32 $disp))>;
// Multiclass for load instructions.
let mayLoad = 1, hasSideEffects = 0 in
multiclass LOADm<string opcStr, bits<8> opc, RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag> {
def rri : RM<opc, (outs RC:$dest), (ins MEMrri:$addr),
!strconcat(opcStr, " $dest, $addr"),
[(set Ty:$dest, (OpNode ADDRrri:$addr))]>;
let cy = 0 in
def rii : RM<opc, (outs RC:$dest), (ins MEMrii:$addr),
!strconcat(opcStr, " $dest, $addr"),
[(set Ty:$dest, (OpNode ADDRrii:$addr))]>;
let cz = 0 in
def zri : RM<opc, (outs RC:$dest), (ins MEMzri:$addr),
!strconcat(opcStr, " $dest, $addr"),
[(set Ty:$dest, (OpNode ADDRzri:$addr))]>;
let cy = 0, cz = 0 in
def zii : RM<opc, (outs RC:$dest), (ins MEMzii:$addr),
!strconcat(opcStr, " $dest, $addr"),
[(set Ty:$dest, (OpNode ADDRzii:$addr))]>;
}
// Section 8.2.2 - LDS
let DecoderMethod = "DecodeLoadI64" in
defm LD : LOADm<"ld", 0x01, I64, i64, load>;
def : Pat<(f64 (load ADDRrri:$addr)), (LDrri MEMrri:$addr)>;
def : Pat<(f64 (load ADDRrii:$addr)), (LDrii MEMrii:$addr)>;
def : Pat<(f64 (load ADDRzri:$addr)), (LDzri MEMzri:$addr)>;
def : Pat<(f64 (load ADDRzii:$addr)), (LDzii MEMzii:$addr)>;
// Section 8.2.3 - LDU
let DecoderMethod = "DecodeLoadF32" in
defm LDU : LOADm<"ldu", 0x02, F32, f32, load>;
// Section 8.2.4 - LDL
let DecoderMethod = "DecodeLoadI32" in
defm LDLSX : LOADm<"ldl.sx", 0x03, I32, i32, load>;
let cx = 1, DecoderMethod = "DecodeLoadI32" in
defm LDLZX : LOADm<"ldl.zx", 0x03, I32, i32, load>;
// Section 8.2.5 - LD2B
let DecoderMethod = "DecodeLoadI16" in
defm LD2BSX : LOADm<"ld2b.sx", 0x04, I32, i32, sextloadi16>;
let cx = 1, DecoderMethod = "DecodeLoadI16" in
defm LD2BZX : LOADm<"ld2b.zx", 0x04, I32, i32, zextloadi16>;
// Section 8.2.6 - LD1B
let DecoderMethod = "DecodeLoadI8" in
defm LD1BSX : LOADm<"ld1b.sx", 0x05, I32, i32, sextloadi8>;
let cx = 1, DecoderMethod = "DecodeLoadI8" in
defm LD1BZX : LOADm<"ld1b.zx", 0x05, I32, i32, zextloadi8>;
// Multiclass for store instructions.
let mayStore = 1 in
multiclass STOREm<string opcStr, bits<8> opc, RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag> {
def rri : RM<opc, (outs), (ins MEMrri:$addr, RC:$sx),
!strconcat(opcStr, " $sx, $addr"),
[(OpNode Ty:$sx, ADDRrri:$addr)]>;
let cy = 0 in
def rii : RM<opc, (outs), (ins MEMrii:$addr, RC:$sx),
!strconcat(opcStr, " $sx, $addr"),
[(OpNode Ty:$sx, ADDRrii:$addr)]>;
let cz = 0 in
def zri : RM<opc, (outs), (ins MEMzri:$addr, RC:$sx),
!strconcat(opcStr, " $sx, $addr"),
[(OpNode Ty:$sx, ADDRzri:$addr)]>;
let cy = 0, cz = 0 in
def zii : RM<opc, (outs), (ins MEMzii:$addr, RC:$sx),
!strconcat(opcStr, " $sx, $addr"),
[(OpNode Ty:$sx, ADDRzii:$addr)]>;
}
// Section 8.2.7 - STS
let DecoderMethod = "DecodeStoreI64" in
defm ST : STOREm<"st", 0x11, I64, i64, store>;
def : Pat<(store f64:$src, ADDRrri:$addr), (STrri MEMrri:$addr, $src)>;
def : Pat<(store f64:$src, ADDRrii:$addr), (STrii MEMrii:$addr, $src)>;
def : Pat<(store f64:$src, ADDRzri:$addr), (STzri MEMzri:$addr, $src)>;
def : Pat<(store f64:$src, ADDRzii:$addr), (STzii MEMzii:$addr, $src)>;
// Section 8.2.8 - STU
let DecoderMethod = "DecodeStoreF32" in
defm STU : STOREm<"stu", 0x12, F32, f32, store>;
// Section 8.2.9 - STL
let DecoderMethod = "DecodeStoreI32" in
defm STL : STOREm<"stl", 0x13, I32, i32, store>;
// Section 8.2.10 - ST2B
let DecoderMethod = "DecodeStoreI16" in
defm ST2B : STOREm<"st2b", 0x14, I32, i32, truncstorei16>;
// Section 8.2.11 - ST1B
let DecoderMethod = "DecodeStoreI8" in
defm ST1B : STOREm<"st1b", 0x15, I32, i32, truncstorei8>;
// Section 8.2.12 - DLDS
// Section 8.2.13 - DLDU
// Section 8.2.14 - DLDL
// Section 8.2.15 - PFCH
// Section 8.2.16 - TS1AM (Test and Set 1 AM)
// Section 8.2.17 - TS2AM (Test and Set 2 AM)
// Section 8.2.18 - TS3AM (Test and Set 3 AM)
// Section 8.2.19 - ATMAM (Atomic AM)
// Section 8.2.20 - CAS (Compare and Swap)
//-----------------------------------------------------------------------------
// Section 8.3 - Transfer Control Instructions
//-----------------------------------------------------------------------------
// Section 8.3.1 - FENCE (Fence)
// Section 8.3.2 - SVOB (Set Vector Out-of-order memory access Boundary)
//-----------------------------------------------------------------------------
// Section 8.4 - Fixed-point Operation Instructions
//-----------------------------------------------------------------------------
// Section 8.4.1 - ADD (Add)
defm ADDUL : RRm<"addu.l", 0x48, I64, i64>;
let cx = 1 in defm ADDUW : RRm<"addu.w", 0x48, I32, i32>;
// Section 8.4.2 - ADS (Add Single)
defm ADDSWSX : RRm<"adds.w.sx", 0x4A, I32, i32, add>;
let cx = 1 in defm ADDSWZX : RRm<"adds.w.zx", 0x4A, I32, i32>;
// Section 8.4.3 - ADX (Add)
defm ADDSL : RRm<"adds.l", 0x59, I64, i64, add>;
// Section 8.4.4 - SUB (Subtract)
defm SUBUL : RRNCm<"subu.l", 0x58, I64, i64>;
let cx = 1 in defm SUBUW : RRNCm<"subu.w", 0x58, I32, i32>;
// Section 8.4.5 - SBS (Subtract Single)
defm SUBSWSX : RRNCm<"subs.w.sx", 0x5A, I32, i32, sub>;
let cx = 1 in defm SUBSWZX : RRNCm<"subs.w.zx", 0x5A, I32, i32>;
// Section 8.4.6 - SBX (Subtract)
defm SUBSL : RRNCm<"subs.l", 0x5B, I64, i64, sub>;
// Section 8.4.7 - MPY (Multiply)
defm MULUL : RRm<"mulu.l", 0x49, I64, i64>;
let cx = 1 in defm MULUW : RRm<"mulu.w", 0x49, I32, i32>;
// Section 8.4.8 - MPS (Multiply Single)
defm MULSWSX : RRm<"muls.w.sx", 0x4B, I32, i32, mul>;
let cx = 1 in defm MULSWZX : RRm<"muls.w.zx", 0x4B, I32, i32>;
// Section 8.4.9 - MPX (Multiply)
defm MULSL : RRm<"muls.l", 0x6E, I64, i64, mul>;
// Section 8.4.10 - MPD (Multiply)
// Section 8.4.11 - DIV (Divide)
defm DIVUL : RRNCm<"divu.l", 0x6F, I64, i64, udiv>;
let cx = 1 in defm DIVUW : RRNCm<"divu.w", 0x6F, I32, i32, udiv>;
// Section 8.4.12 - DVS (Divide Single)
defm DIVSWSX : RRNCm<"divs.w.sx", 0x7B, I32, i32, sdiv>;
let cx = 1 in defm DIVSWZX : RRNCm<"divs.w.zx", 0x7B, I32, i32>;
// Section 8.4.13 - DVX (Divide)
defm DIVSL : RRNCm<"divs.l", 0x7F, I64, i64, sdiv>;
// Section 8.4.14 - CMP (Compare)
defm CMPUL : RRNCm<"cmpu.l", 0x55, I64, i64>;
let cx = 1 in defm CMPUW : RRNCm<"cmpu.w", 0x55, I32, i32>;
// Section 8.4.15 - CPS (Compare Single)
defm CMPSWSX : RRNCm<"cmps.w.sx", 0x7A, I32, i32>;
let cx = 1 in defm CMPSWZX : RRNCm<"cmps.w.zx", 0x7A, I32, i32>;
// Section 8.4.16 - CPX (Compare)
defm CMPSL : RRNCm<"cmps.l", 0x6A, I64, i64>;
// Section 8.4.17 - CMS (Compare and Select Maximum/Minimum Single)
// cx: sx/zx, cw: max/min
defm MAXSWSX : RRm<"maxs.w.sx", 0x78, I32, i32>;
let cx = 1 in defm MAXSWZX : RRm<"maxs.w.zx", 0x78, I32, i32>;
let cw = 1 in defm MINSWSX : RRm<"mins.w.sx", 0x78, I32, i32>;
let cx = 1, cw = 1 in defm MINSWZX : RRm<"mins.w.zx", 0x78, I32, i32>;
// Section 8.4.18 - CMX (Compare and Select Maximum/Minimum)
defm MAXSL : RRm<"maxs.l", 0x68, I64, i64>;
let cw = 1 in defm MINSL : RRm<"mins.l", 0x68, I64, i64>;
//-----------------------------------------------------------------------------
// Section 8.5 - Logical Operation Instructions
//-----------------------------------------------------------------------------
// Section 8.5.1 - AND (AND)
defm AND : RRm<"and", 0x44, I64, i64, and>;
let isCodeGenOnly = 1 in defm AND32 : RRm<"and", 0x44, I32, i32, and>;
// Section 8.5.2 - OR (OR)
defm OR : RRm<"or", 0x45, I64, i64, or>;
let isCodeGenOnly = 1 in defm OR32 : RRm<"or", 0x45, I32, i32, or>;
// Section 8.5.3 - XOR (Exclusive OR)
defm XOR : RRm<"xor", 0x46, I64, i64, xor>;
let isCodeGenOnly = 1 in defm XOR32 : RRm<"xor", 0x46, I32, i32, xor>;
// Section 8.5.4 - EQV (Equivalence)
// Section 8.5.5 - NND (Negate AND)
// Section 8.5.6 - MRG (Merge)
// Section 8.5.7 - LDZ (Leading Zero Count)
defm LDZ : RRI1m<"ldz", 0x67, I64, i64, ctlz>;
// Section 8.5.8 - PCNT (Population Count)
defm PCNT : RRI1m<"pcnt", 0x38, I64, i64, ctpop>;
// Section 8.5.9 - BRV (Bit Reverse)
defm BRV : RRI1m<"brv", 0x39, I64, i64, bitreverse>;
// Section 8.5.10 - BSWP (Byte Swap)
defm BSWP : RRSWPm<"bswp", 0x2B, I64, i64>;
// Section 8.5.11 - CMOV (Conditional Move)
let cw = 0, cw2 = 0 in defm CMOVL : RRCMOVm<"cmov.l.${cfw}", 0x3B, I64, i64>;
let cw = 1, cw2 = 0 in defm CMOVW : RRCMOVm<"cmov.w.${cfw}", 0x3B, I32, i32>;
let cw = 0, cw2 = 1 in defm CMOVD : RRCMOVm<"cmov.d.${cfw}", 0x3B, I64, f64>;
let cw = 1, cw2 = 1 in defm CMOVS : RRCMOVm<"cmov.s.${cfw}", 0x3B, F32, f32>;
// 5.3.2.4 Shift Instructions
let cx = 0 in
defm SRAX : RRIm<"sra.l", 0x77, I64, i64, simm7, uimm6, sra>;
let cx = 0 in
defm SRA : RRIm<"sra.w.sx", 0x76, I32, i32, simm7, uimm6, sra>;
let cx = 1 in
defm SRAU : RRIm<"sra.w.zx", 0x76, I32, i32, simm7, uimm6>;
let cx = 0 in
defm SLL : RRIm<"sll", 0x65, I64, i64, simm7, uimm6, shl>;
let cx = 0 in
defm SLA : RRIm<"sla.w.sx", 0x66, I32, i32, simm7, uimm6, shl>;
let cx = 1 in
defm SLAU : RRIm<"sla.w.zx", 0x66, I32, i32, simm7, uimm6>;
let cx = 0 in
defm SRL : RRIm<"srl", 0x75, I64, i64, simm7, uimm6, srl>;
def : Pat<(i32 (srl i32:$src, (i32 simm7:$val))),
(EXTRACT_SUBREG (SRLri (ANDrm (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
$src, sub_i32), !add(32, 64)), imm:$val), sub_i32)>;
def : Pat<(i32 (srl i32:$src, i32:$val)),
(EXTRACT_SUBREG (SRLrr (ANDrm (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
$src, sub_i32), !add(32, 64)), $val), sub_i32)>;
// 5.3.2.5. Floating-point Arithmetic Operation Instructions
let cx = 0 in
defm FAD : RRFm<"fadd.d", 0x4C, I64, f64, fadd>;
let cx = 1 in
defm FADS : RRFm<"fadd.s", 0x4C, F32, f32, fadd>;
let cx = 0 in
defm FSB : RRFm<"fsub.d", 0x5C, I64, f64, fsub>;
let cx = 1 in
defm FSBS : RRFm<"fsub.s", 0x5C, F32, f32, fsub>;
let cx = 0 in
defm FMP : RRFm<"fmul.d", 0x4D, I64, f64, fmul>;
let cx = 1 in
defm FMPS : RRFm<"fmul.s", 0x4D, F32, f32, fmul>;
let cx = 0 in
defm FDV : RRFm<"fdiv.d", 0x5D, I64, f64, fdiv>;
let cx = 1 in
defm FDVS : RRFm<"fdiv.s", 0x5D, F32, f32, fdiv>;
// FCP instruction
let cx = 0 in
defm FCP : RRm<"fcmp.d", 0x7E, I64, f64>;
let cx = 1 in
defm FCPS : RRm<"fcmp.s", 0x7E, F32, f32>;
// FCM
let cw = 0 in {
let cx = 0 in
defm FCMA : RRm<"fmax.d", 0x3E, I64, f64>;
let cx = 1 in
defm FCMAS : RRm<"fmax.s", 0x3E, F32, f32>;
}
let cw = 1 in {
let cx = 0 in
defm FCMI : RRm<"fmin.d", 0x3E, I64, f64>;
let cx = 1 in
defm FCMIS : RRm<"fmin.s", 0x3E, F32, f32>;
}
let cx = 0, cw = 0 /* sign extend */, cz = 1, sz = 0 /* round toward zero */ in
defm FIX : CVTm<"cvt.w.d.sx.rz", 0x4E, I32, i32, I64, f64, simm7, fp_to_sint>;
let cx = 1, cw = 0 /* sign extend */, cz = 1, sz = 0 /* round toward zero */ in
defm FIXS : CVTm<"cvt.w.s.sx.rz", 0x4E, I32, i32, F32, f32, simm7, fp_to_sint>;
let cx = 0, cz = 1, sz = 0 /* round toward zero */ in
defm FIXX : CVTm<"cvt.l.d.rz", 0x4F, I64, i64, I64, f64, simm7, fp_to_sint>;
let cz = 0, sz = 0 in {
let cx = 0 in
defm FLT : CVTm<"cvt.d.w", 0x5E, I64, f64, I32, i32, simm7, sint_to_fp>;
let cx = 1 in
defm FLTS : CVTm<"cvt.s.w", 0x5E, F32, f32, I32, i32, simm7, sint_to_fp>;
let cx = 0 in
defm FLTX : CVTm<"cvt.d.l", 0x5F, I64, f64, I64, i64, simm7, sint_to_fp>;
let cx = 0 in
defm CVS : CVTm<"cvt.s.d", 0x1F, F32, f32, I64, f64, simm7, fpround>;
let cx = 0 in
defm CVD : CVTm<"cvt.d.s", 0x0F, I64, f64, F32, f32, simm7, fpextend>;
}
// Control-flow
// Jump instruction
let cx = 0, cx2 = 0, bpf = 0 /* NONE */, cy = 1, cz = 1,
isBranch = 1, isTerminator = 1, hasDelaySlot = 1, hasSideEffects = 0 in
def BC : CF<
0x19, (outs), (ins CCOp:$cf, I64:$sy, brtarget32:$imm32),
"b.${cf}.l $sy, $imm32">;
// Jump always instruction is treated as a special case of jump in order
// to make finding unconditional jump easy.
let cx = 0, cx2 = 0, bpf = 0 /* NONE */, cf = 15 /* AT */, cy = 0, sy = 0,
cz = 1,
isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1,
hasDelaySlot = 1, isCodeGenOnly = 1, hasSideEffects = 0 in {
def BAri : CF<
0x19, (outs), (ins MEMri:$addr),
"b.l $addr",
[(brind ADDRri:$addr)]>;
}
// Jump never instruction is also a special case of jump.
let cx = 0, cx2 = 0, bpf = 0 /* NONE */, cf = 0 /* AF */, cy = 1, sy = 0,
cz = 1,
isBranch = 1, isTerminator = 1, hasDelaySlot = 1, hasSideEffects = 0 in
def BN : CF<
0x19, (outs), (ins brtarget32:$imm32),
"b.af.l $imm32">;
// Return instruction is also a special case of jump.
let cx = 0, cx2 = 0, bpf = 0 /* NONE */, cf = 15 /* AT */, cy = 0, sy = 0,
cz = 1, sz = 0x10 /* SX10 */, imm32 = 0, Uses = [SX10],
isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
isCodeGenOnly = 1, hasSideEffects = 0 in
def RET : CF<
0x19, (outs), (ins),
"b.l (,%lr)",
[(retflag)]>;
// Branch and Save IC
let cx = 0, cy = 0, cy = 0, cz = 1, hasSideEffects = 0 /* , Uses = [IC] */ in
def BSIC : RM<0x08, (outs), (ins I64:$sx, I64:$sz), "bsic $sx, (, ${sz})">;
// Branch instruction
let cx = 0, cx2 = 0, bpf = 0 /* NONE */ in
defm BCRL : BCRm<"br${cf}.l", "br.l", 0x18, I64, i64, simm7, uimm6>;
let cx = 1, cx2 = 0, bpf = 0 /* NONE */ in
defm BCRW : BCRm<"br${cf}.w", "br.w", 0x18, I32, i32, simm7, uimm6>;
let cx = 0, cx2 = 1, bpf = 0 /* NONE */ in
defm BCRD : BCRm<"br${cf}.d", "br.d", 0x18, I64, f64, simm7, uimm6>;
let cx = 1, cx2 = 1, bpf = 0 /* NONE */ in
defm BCRS : BCRm<"br${cf}.s", "br.s", 0x18, F32, f32, simm7, uimm6>;
let cx = 0, cy = 0, cz = 1, hasSideEffects = 0 in {
let sy = 3 in
def SHMri : RM<
0x31, (outs), (ins MEMASri:$addr, I64:$sx),
"shm.l $sx, $addr">;
}
let cx = 0, sx = 0, cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 0 in
def MONC : RR<
0x3F, (outs), (ins),
"monc">;
// Save Instruction Counter
let cx = 0, cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 0 /* , Uses = [IC] */ in
def SIC : RR<0x28, (outs I32:$sx), (ins), "sic $sx">;
//===----------------------------------------------------------------------===//
// Instructions for CodeGenOnly
//===----------------------------------------------------------------------===//
let isCodeGenOnly = 1 in {
// Call instruction
let Defs = [SX10], Uses = [SX11], hasDelaySlot = 1, isCall = 1, hasSideEffects = 0 in {
let cx = 0, sx = 10, cy = 0, sy = 0, cz = 0, sz = 0 in
def CALL : RM<
0x08, (outs), (ins calltarget:$imm32, variable_ops),
"bsic %lr, $imm32">;
// use sz to represent a register
let cx = 0, sx = 10, cy = 0, sy = 0, cz = 1, imm32 = 0 in
def CALLr : RM<
0x08, (outs), (ins I64:$sz, variable_ops),
"bsic %lr, (,$sz)">;
}
}
//===----------------------------------------------------------------------===//
// Pattern Matchings
//===----------------------------------------------------------------------===//
// Small immediates.
def : Pat<(i32 simm7:$val), (OR32im (LO7 $val), 0)>;
def : Pat<(i64 simm7:$val), (ORim (LO7 $val), 0)>;
// Medium immediates.
def : Pat<(i32 simm32:$val), (LEA32zii 0, 0, (LO32 $val))>;
def : Pat<(i64 simm32:$val), (LEAzii 0, 0, (LO32 $val))>;
def : Pat<(i64 uimm32:$val), (ANDrm (LEAzii 0, 0, (LO32 $val)), !add(32, 64))>;
// Arbitrary immediates.
def : Pat<(i64 lozero:$val),
(LEASLzii 0, 0, (HI32 imm:$val))>;
def : Pat<(i64 lomsbzero:$val),
(LEASLrii (LEAzii 0, 0, (LO32 imm:$val)), 0, (HI32 imm:$val))>;
def : Pat<(i64 imm:$val),
(LEASLrii (ANDrm (LEAzii 0, 0, (LO32 imm:$val)), !add(32, 64)), 0,
(HI32 imm:$val))>;
// floating point
def : Pat<(f32 fpimm:$val),
(COPY_TO_REGCLASS (LEASLzii 0, 0, (LOFP32 $val)), F32)>;
def : Pat<(f64 fplozero:$val),
(LEASLzii 0, 0, (HIFP32 $val))>;
def : Pat<(f64 fplomsbzero:$val),
(LEASLrii (LEAzii 0, 0, (LOFP32 $val)), 0, (HIFP32 $val))>;
def : Pat<(f64 fpimm:$val),
(LEASLrii (ANDrm (LEAzii 0, 0, (LOFP32 $val)), !add(32, 64)), 0,
(HIFP32 $val))>;
// The same integer registers are used for i32 and i64 values.
// When registers hold i32 values, the high bits are unused.
// TODO Use standard expansion for shift-based lowering of sext_inreg
// Cast to i1
def : Pat<(sext_inreg I32:$src, i1),
(SRAri (SLAri $src, 31), 31)>;
def : Pat<(sext_inreg I64:$src, i1),
(SRAXri (SLLri $src, 63), 63)>;
// Cast to i8
def : Pat<(sext_inreg I32:$src, i8),
(SRAri (SLAri $src, 24), 24)>;
def : Pat<(sext_inreg I64:$src, i8),
(SRAXri (SLLri $src, 56), 56)>;
def : Pat<(sext_inreg (i32 (trunc i64:$src)), i8),
(EXTRACT_SUBREG (SRAXri (SLLri $src, 56), 56), sub_i32)>;
def : Pat<(and (trunc i64:$src), 0xff),
(AND32rm (EXTRACT_SUBREG $src, sub_i32), !add(56, 64))>;
// Cast to i16
def : Pat<(sext_inreg I32:$src, i16),
(SRAri (SLAri $src, 16), 16)>;
def : Pat<(sext_inreg I64:$src, i16),
(SRAXri (SLLri $src, 48), 48)>;
def : Pat<(sext_inreg (i32 (trunc i64:$src)), i16),
(EXTRACT_SUBREG (SRAXri (SLLri $src, 48), 48), sub_i32)>;
def : Pat<(and (trunc i64:$src), 0xffff),
(AND32rm (EXTRACT_SUBREG $src, sub_i32), !add(48, 64))>;
// Cast to i32
def : Pat<(i32 (trunc i64:$src)),
(ADDSWSXrm (EXTRACT_SUBREG $src, sub_i32), 0)>;
// Cast to i64
def : Pat<(sext_inreg I64:$src, i32),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)),
(ADDSWSXrm (EXTRACT_SUBREG $src, sub_i32), 0), sub_i32)>;
def : Pat<(i64 (sext i32:$sy)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), (ADDSWSXrm $sy, 0), sub_i32)>;
def : Pat<(i64 (zext i32:$sy)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), (ADDSWZXrm $sy, 0), sub_i32)>;
def : Pat<(i64 (fp_to_sint f32:$sy)), (FIXXr (CVDr $sy))>;
// Cast to f32
def : Pat<(f32 (sint_to_fp i64:$sy)), (CVSr (FLTXr i64:$sy))>;
def : Pat<(i64 (anyext i32:$sy)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $sy, sub_i32)>;
// extload, sextload and zextload stuff
multiclass EXT64m<SDPatternOperator from,
SDPatternOperator torri,
SDPatternOperator torii,
SDPatternOperator tozri,
SDPatternOperator tozii> {
def : Pat<(i64 (from ADDRrri:$addr)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), (torri MEMrri:$addr),
sub_i32)>;
def : Pat<(i64 (from ADDRrii:$addr)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), (torii MEMrii:$addr),
sub_i32)>;
def : Pat<(i64 (from ADDRzri:$addr)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), (tozri MEMzri:$addr),
sub_i32)>;
def : Pat<(i64 (from ADDRzii:$addr)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), (tozii MEMzii:$addr),
sub_i32)>;
}
defm : EXT64m<sextloadi8, LD1BSXrri, LD1BSXrii, LD1BSXzri, LD1BSXzii>;
defm : EXT64m<zextloadi8, LD1BZXrri, LD1BZXrii, LD1BZXzri, LD1BZXzii>;
defm : EXT64m<extloadi8, LD1BZXrri, LD1BZXrii, LD1BZXzri, LD1BZXzii>;
defm : EXT64m<sextloadi16, LD2BSXrri, LD2BSXrii, LD2BSXzri, LD2BSXzii>;
defm : EXT64m<zextloadi16, LD2BZXrri, LD2BZXrii, LD2BZXzri, LD2BZXzii>;
defm : EXT64m<extloadi16, LD2BZXrri, LD2BZXrii, LD2BZXzri, LD2BZXzii>;
defm : EXT64m<sextloadi32, LDLSXrri, LDLSXrii, LDLSXzri, LDLSXzii>;
defm : EXT64m<zextloadi32, LDLZXrri, LDLZXrii, LDLZXzri, LDLZXzii>;
defm : EXT64m<extloadi32, LDLSXrri, LDLSXrii, LDLSXzri, LDLSXzii>;
// anyextload
multiclass EXT32m<SDPatternOperator from,
SDPatternOperator torri,
SDPatternOperator torii,
SDPatternOperator tozri,
SDPatternOperator tozii> {
def : Pat<(from ADDRrri:$addr), (torri MEMrri:$addr)>;
def : Pat<(from ADDRrii:$addr), (torii MEMrii:$addr)>;
def : Pat<(from ADDRzri:$addr), (tozri MEMzri:$addr)>;
def : Pat<(from ADDRzii:$addr), (tozii MEMzii:$addr)>;
}
defm : EXT32m<extloadi8, LD1BZXrri, LD1BZXrii, LD1BZXzri, LD1BZXzii>;
defm : EXT32m<extloadi16, LD2BZXrri, LD2BZXrii, LD2BZXzri, LD2BZXzii>;
// truncstore
multiclass TRUNC64m<SDPatternOperator from,
SDPatternOperator torri,
SDPatternOperator torii,
SDPatternOperator tozri,
SDPatternOperator tozii> {
def : Pat<(from i64:$src, ADDRrri:$addr),
(torri MEMrri:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
def : Pat<(from i64:$src, ADDRrii:$addr),
(torii MEMrii:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
def : Pat<(from i64:$src, ADDRzri:$addr),
(tozri MEMzri:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
def : Pat<(from i64:$src, ADDRzii:$addr),
(tozii MEMzii:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
}
defm : TRUNC64m<truncstorei8, ST1Brri, ST1Brii, ST1Bzri, ST1Bzii>;
defm : TRUNC64m<truncstorei16, ST2Brri, ST2Brii, ST2Bzri, ST2Bzii>;
defm : TRUNC64m<truncstorei32, STLrri, STLrii, STLzri, ST1Bzii>;
// Address calculation and its optimization
def : Pat<(VEhi tglobaladdr:$in), (LEASLzii 0, 0, tglobaladdr:$in)>;
def : Pat<(VElo tglobaladdr:$in),
(ANDrm (LEAzii 0, 0, tglobaladdr:$in), !add(32, 64))>;
def : Pat<(add (VEhi tglobaladdr:$in1), (VElo tglobaladdr:$in2)),
(LEASLrii (ANDrm (LEAzii 0, 0, tglobaladdr:$in2), !add(32, 64)), 0,
(tglobaladdr:$in1))>;
// GlobalTLS address calculation and its optimization
def : Pat<(VEhi tglobaltlsaddr:$in), (LEASLzii 0, 0, tglobaltlsaddr:$in)>;
def : Pat<(VElo tglobaltlsaddr:$in),
(ANDrm (LEAzii 0, 0, tglobaltlsaddr:$in), !add(32, 64))>;
def : Pat<(add (VEhi tglobaltlsaddr:$in1), (VElo tglobaltlsaddr:$in2)),
(LEASLrii (ANDrm (LEAzii 0, 0, tglobaltlsaddr:$in2), !add(32, 64)), 0,
(tglobaltlsaddr:$in1))>;
// Address calculation and its optimization
def : Pat<(VEhi texternalsym:$in), (LEASLzii 0, 0, texternalsym:$in)>;
def : Pat<(VElo texternalsym:$in),
(ANDrm (LEAzii 0, 0, texternalsym:$in), !add(32, 64))>;
def : Pat<(add (VEhi texternalsym:$in1), (VElo texternalsym:$in2)),
(LEASLrii (ANDrm (LEAzii 0, 0, texternalsym:$in2), !add(32, 64)), 0,
(texternalsym:$in1))>;
// Calls
def : Pat<(call tglobaladdr:$dst),
(CALL tglobaladdr:$dst)>;
def : Pat<(call i64:$dst),
(CALLr i64:$dst)>;
// Branches
def : Pat<(br bb:$addr), (BCRLa bb:$addr)>;
// brcc
def : Pat<(brcc CCSIOp:$cond, i32:$l, i32:$r, bb:$addr),
(BCRWrr (icond2cc $cond), $l, $r, bb:$addr)>;
def : Pat<(brcc CCUIOp:$cond, i32:$l, i32:$r, bb:$addr),
(BCRWir (icond2cc $cond), 0, (CMPUWrr $r, $l), bb:$addr)>;
def : Pat<(brcc CCSIOp:$cond, i64:$l, i64:$r, bb:$addr),
(BCRLrr (icond2cc $cond), $l, $r, bb:$addr)>;
def : Pat<(brcc CCUIOp:$cond, i64:$l, i64:$r, bb:$addr),
(BCRLir (icond2cc $cond), 0, (CMPULrr $r, $l), bb:$addr)>;
def : Pat<(brcc cond:$cond, f32:$l, f32:$r, bb:$addr),
(BCRSrr (fcond2cc $cond), $l, $r, bb:$addr)>;
def : Pat<(brcc cond:$cond, f64:$l, f64:$r, bb:$addr),
(BCRDrr (fcond2cc $cond), $l, $r, bb:$addr)>;
//===----------------------------------------------------------------------===//
// Pseudo Instructions
//===----------------------------------------------------------------------===//
// GETGOT for PIC
let Defs = [SX15 /* %got */, SX16 /* %plt */], hasSideEffects = 0 in {
def GETGOT : Pseudo<(outs getGOT:$getpcseq), (ins), "$getpcseq">;
}
// GETFUNPLT for PIC
let hasSideEffects = 0 in
def GETFUNPLT : Pseudo<(outs I64:$dst), (ins i64imm:$addr),
"$dst, $addr",
[(set iPTR:$dst, (GetFunPLT tglobaladdr:$addr))] >;
def : Pat<(GetFunPLT tglobaladdr:$dst),
(GETFUNPLT tglobaladdr:$dst)>;
def : Pat<(GetFunPLT texternalsym:$dst),
(GETFUNPLT texternalsym:$dst)>;
// GETTLSADDR for TLS
let Defs = [SX0, SX10, SX12], hasSideEffects = 0 in
def GETTLSADDR : Pseudo<(outs), (ins i64imm:$addr),
"# GETTLSADDR $addr",
[(GetTLSAddr tglobaltlsaddr:$addr)] >;
def : Pat<(GetTLSAddr tglobaltlsaddr:$dst),
(GETTLSADDR tglobaltlsaddr:$dst)>;
let Defs = [SX11], Uses = [SX11], hasSideEffects = 0 in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt, i64imm:$amt2),
"# ADJCALLSTACKDOWN $amt, $amt2",
[(callseq_start timm:$amt, timm:$amt2)]>;
def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
"# ADJCALLSTACKUP $amt1",
[(callseq_end timm:$amt1, timm:$amt2)]>;
}
let Defs = [SX8], Uses = [SX8, SX11], hasSideEffects = 0 in
def EXTEND_STACK : Pseudo<(outs), (ins),
"# EXTEND STACK",
[]>;
let hasSideEffects = 0 in
def EXTEND_STACK_GUARD : Pseudo<(outs), (ins),
"# EXTEND STACK GUARD",
[]>;
// SETCC pattern matches
//
// CMP %tmp, lhs, rhs ; compare lhs and rhs
// or %res, 0, (0)1 ; initialize by 0
// CMOV %res, (63)0, %tmp ; set 1 if %tmp is true
def : Pat<(i32 (setcc i64:$LHS, i64:$RHS, CCSIOp:$cond)),
(EXTRACT_SUBREG
(CMOVLrm (icond2cc $cond),
(CMPSLrr i64:$LHS, i64:$RHS),
!add(63, 64),
(ORim 0, 0)), sub_i32)>;
def : Pat<(i32 (setcc i64:$LHS, i64:$RHS, CCUIOp:$cond)),
(EXTRACT_SUBREG
(CMOVLrm (icond2cc $cond),
(CMPULrr i64:$LHS, i64:$RHS),
!add(63, 64),
(ORim 0, 0)), sub_i32)>;
def : Pat<(i32 (setcc i32:$LHS, i32:$RHS, CCSIOp:$cond)),
(EXTRACT_SUBREG
(CMOVWrm (icond2cc $cond),
(CMPSWSXrr i32:$LHS, i32:$RHS),
!add(63, 64),
(ORim 0, 0)), sub_i32)>;
def : Pat<(i32 (setcc i32:$LHS, i32:$RHS, CCUIOp:$cond)),
(EXTRACT_SUBREG
(CMOVWrm (icond2cc $cond),
(CMPUWrr i32:$LHS, i32:$RHS),
!add(63, 64),
(ORim 0, 0)), sub_i32)>;
def : Pat<(i32 (setcc f64:$LHS, f64:$RHS, cond:$cond)),
(EXTRACT_SUBREG
(CMOVDrm (fcond2cc $cond),
(FCPrr f64:$LHS, f64:$RHS),
!add(63, 64),
(ORim 0, 0)), sub_i32)>;
def : Pat<(i32 (setcc f32:$LHS, f32:$RHS, cond:$cond)),
(EXTRACT_SUBREG
(CMOVSrm (fcond2cc $cond),
(FCPSrr f32:$LHS, f32:$RHS),
!add(63, 64),
(ORim 0, 0)), sub_i32)>;
// Special SELECTCC pattern matches
// Use min/max for better performance.
//
// MAX/MIN %res, %lhs, %rhs
def : Pat<(f64 (selectcc f64:$LHS, f64:$RHS, f64:$LHS, f64:$RHS, SETOGT)),
(FCMArr $LHS, $RHS)>;
def : Pat<(f32 (selectcc f32:$LHS, f32:$RHS, f32:$LHS, f32:$RHS, SETOGT)),
(FCMASrr $LHS, $RHS)>;
def : Pat<(i64 (selectcc i64:$LHS, i64:$RHS, i64:$LHS, i64:$RHS, SETGT)),
(MAXSLrr $LHS, $RHS)>;
def : Pat<(i32 (selectcc i32:$LHS, i32:$RHS, i32:$LHS, i32:$RHS, SETGT)),
(MAXSWSXrr $LHS, $RHS)>;
def : Pat<(f64 (selectcc f64:$LHS, f64:$RHS, f64:$LHS, f64:$RHS, SETOGE)),
(FCMArr $LHS, $RHS)>;
def : Pat<(f32 (selectcc f32:$LHS, f32:$RHS, f32:$LHS, f32:$RHS, SETOGE)),
(FCMASrr $LHS, $RHS)>;
def : Pat<(i64 (selectcc i64:$LHS, i64:$RHS, i64:$LHS, i64:$RHS, SETGE)),
(MAXSLrr $LHS, $RHS)>;
def : Pat<(i32 (selectcc i32:$LHS, i32:$RHS, i32:$LHS, i32:$RHS, SETGE)),
(MAXSWSXrr $LHS, $RHS)>;
def : Pat<(f64 (selectcc f64:$LHS, f64:$RHS, f64:$LHS, f64:$RHS, SETOLT)),
(FCMIrr $LHS, $RHS)>;
def : Pat<(f32 (selectcc f32:$LHS, f32:$RHS, f32:$LHS, f32:$RHS, SETOLT)),
(FCMISrr $LHS, $RHS)>;
def : Pat<(i64 (selectcc i64:$LHS, i64:$RHS, i64:$LHS, i64:$RHS, SETLT)),
(MINSLrr $LHS, $RHS)>;
def : Pat<(i32 (selectcc i32:$LHS, i32:$RHS, i32:$LHS, i32:$RHS, SETLT)),
(MINSWSXrr $LHS, $RHS)>;
def : Pat<(f64 (selectcc f64:$LHS, f64:$RHS, f64:$LHS, f64:$RHS, SETOLE)),
(FCMIrr $LHS, $RHS)>;
def : Pat<(f32 (selectcc f32:$LHS, f32:$RHS, f32:$LHS, f32:$RHS, SETOLE)),
(FCMISrr $LHS, $RHS)>;
def : Pat<(i64 (selectcc i64:$LHS, i64:$RHS, i64:$LHS, i64:$RHS, SETLE)),
(MINSLrr $LHS, $RHS)>;
def : Pat<(i32 (selectcc i32:$LHS, i32:$RHS, i32:$LHS, i32:$RHS, SETLE)),
(MINSWSXrr $LHS, $RHS)>;
// Generic SELECTCC pattern matches
//
// CMP %tmp, %l, %r ; compare %l and %r
// or %res, %f, (0)1 ; initialize by %f
// CMOV %res, %t, %tmp ; set %t if %tmp is true
// selectcc for i64 result
def : Pat<(i64 (selectcc i32:$l, i32:$r, i64:$t, i64:$f, CCSIOp:$cond)),
(CMOVWrr (icond2cc $cond), (CMPSWSXrr $l, $r), $t, $f)>;
def : Pat<(i64 (selectcc i32:$l, i32:$r, i64:$t, i64:$f, CCUIOp:$cond)),
(CMOVWrr (icond2cc $cond), (CMPUWrr $l, $r), $t, $f)>;
def : Pat<(i64 (selectcc i64:$l, i64:$r, i64:$t, i64:$f, CCSIOp:$cond)),
(CMOVLrr (icond2cc $cond), (CMPSLrr $l, $r), $t, $f)>;
def : Pat<(i64 (selectcc i64:$l, i64:$r, i64:$t, i64:$f, CCUIOp:$cond)),
(CMOVLrr (icond2cc $cond), (CMPULrr $l, $r), $t, $f)>;
def : Pat<(i64 (selectcc f32:$l, f32:$r, i64:$t, i64:$f, cond:$cond)),
(CMOVSrr (fcond2cc $cond), (FCPSrr $l, $r), $t, $f)>;
def : Pat<(i64 (selectcc f64:$l, f64:$r, i64:$t, i64:$f, cond:$cond)),
(CMOVDrr (fcond2cc $cond), (FCPrr $l, $r), $t, $f)>;
// selectcc for i32 result
def : Pat<(i32 (selectcc i32:$l, i32:$r, i32:$t, i32:$f, CCSIOp:$cond)),
(EXTRACT_SUBREG
(CMOVWrr (icond2cc $cond),
(CMPSWSXrr $l, $r),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
sub_i32)>;
def : Pat<(i32 (selectcc i32:$l, i32:$r, i32:$t, i32:$f, CCUIOp:$cond)),
(EXTRACT_SUBREG
(CMOVWrr (icond2cc $cond),
(CMPUWrr $l, $r),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
sub_i32)>;
def : Pat<(i32 (selectcc i64:$l, i64:$r, i32:$t, i32:$f, CCSIOp:$cond)),
(EXTRACT_SUBREG
(CMOVLrr (icond2cc $cond),
(CMPSLrr $l, $r),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
sub_i32)>;
def : Pat<(i32 (selectcc i64:$l, i64:$r, i32:$t, i32:$f, CCUIOp:$cond)),
(EXTRACT_SUBREG
(CMOVLrr (icond2cc $cond),
(CMPULrr $l, $r),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
sub_i32)>;
def : Pat<(i32 (selectcc f32:$l, f32:$r, i32:$t, i32:$f, cond:$cond)),
(EXTRACT_SUBREG
(CMOVSrr (fcond2cc $cond),
(FCPSrr $l, $r),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
sub_i32)>;
def : Pat<(i32 (selectcc f64:$l, f64:$r, i32:$t, i32:$f, cond:$cond)),
(EXTRACT_SUBREG
(CMOVDrr (fcond2cc $cond),
(FCPrr $l, $r),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
sub_i32)>;
// selectcc for f64 result
def : Pat<(f64 (selectcc i32:$l, i32:$r, f64:$t, f64:$f, CCSIOp:$cond)),
(CMOVWrr (icond2cc $cond), (CMPSWSXrr $l, $r), $t, $f)>;
def : Pat<(f64 (selectcc i32:$l, i32:$r, f64:$t, f64:$f, CCUIOp:$cond)),
(CMOVWrr (icond2cc $cond), (CMPUWrr $l, $r), $t, $f)>;
def : Pat<(f64 (selectcc i64:$l, i64:$r, f64:$t, f64:$f, CCSIOp:$cond)),
(CMOVLrr (icond2cc $cond), (CMPSLrr $l, $r), $t, $f)>;
def : Pat<(f64 (selectcc i64:$l, i64:$r, f64:$t, f64:$f, CCUIOp:$cond)),
(CMOVLrr (icond2cc $cond), (CMPULrr $l, $r), $t, $f)>;
def : Pat<(f64 (selectcc f32:$l, f32:$r, f64:$t, f64:$f, cond:$cond)),
(CMOVSrr (fcond2cc $cond), (FCPSrr $l, $r), $t, $f)>;
def : Pat<(f64 (selectcc f64:$l, f64:$r, f64:$t, f64:$f, cond:$cond)),
(CMOVDrr (fcond2cc $cond), (FCPrr $l, $r), $t, $f)>;
// selectcc for f32 result
def : Pat<(f32 (selectcc i32:$l, i32:$r, f32:$t, f32:$f, CCSIOp:$cond)),
(EXTRACT_SUBREG
(CMOVWrr (icond2cc $cond),
(CMPSWSXrr $l, $r),
(INSERT_SUBREG (f64 (IMPLICIT_DEF)), $t, sub_f32),
(INSERT_SUBREG (f64 (IMPLICIT_DEF)), $f, sub_f32)),
sub_f32)>;
def : Pat<(f32 (selectcc i32:$l, i32:$r, f32:$t, f32:$f, CCUIOp:$cond)),
(EXTRACT_SUBREG
(CMOVWrr (icond2cc $cond),
(CMPUWrr $l, $r),
(INSERT_SUBREG (f64 (IMPLICIT_DEF)), $t, sub_f32),
(INSERT_SUBREG (f64 (IMPLICIT_DEF)), $f, sub_f32)),
sub_f32)>;
def : Pat<(f32 (selectcc i64:$l, i64:$r, f32:$t, f32:$f, CCSIOp:$cond)),
(EXTRACT_SUBREG
(CMOVLrr (icond2cc $cond),
(CMPSLrr $l, $r),
(INSERT_SUBREG (f64 (IMPLICIT_DEF)), $t, sub_f32),
(INSERT_SUBREG (f64 (IMPLICIT_DEF)), $f, sub_f32)),
sub_f32)>;
def : Pat<(f32 (selectcc i64:$l, i64:$r, f32:$t, f32:$f, CCUIOp:$cond)),
(EXTRACT_SUBREG
(CMOVLrr (icond2cc $cond),
(CMPULrr $l, $r),
(INSERT_SUBREG (f64 (IMPLICIT_DEF)), $t, sub_f32),
(INSERT_SUBREG (f64 (IMPLICIT_DEF)), $f, sub_f32)),
sub_f32)>;
def : Pat<(f32 (selectcc f32:$l, f32:$r, f32:$t, f32:$f, cond:$cond)),
(EXTRACT_SUBREG
(CMOVSrr (fcond2cc $cond),
(FCPSrr $l, $r),
(INSERT_SUBREG (f64 (IMPLICIT_DEF)), $t, sub_f32),
(INSERT_SUBREG (f64 (IMPLICIT_DEF)), $f, sub_f32)),
sub_f32)>;
def : Pat<(f32 (selectcc f64:$l, f64:$r, f32:$t, f32:$f, cond:$cond)),
(EXTRACT_SUBREG
(CMOVDrr (fcond2cc $cond),
(FCPrr $l, $r),
(INSERT_SUBREG (f64 (IMPLICIT_DEF)), $t, sub_f32),
(INSERT_SUBREG (f64 (IMPLICIT_DEF)), $f, sub_f32)),
sub_f32)>;
// Generic SELECT pattern matches
// Use cmov.w for all cases since %pred holds i32.
//
// CMOV.w.ne %res, %tval, %tmp ; set tval if %tmp is true
def : Pat<(i64 (select i32:$pred, i64:$t, i64:$f)),
(CMOVWrr CC_INE, $pred, $t, $f)>;
def : Pat<(i32 (select i32:$pred, i32:$t, i32:$f)),
(EXTRACT_SUBREG
(CMOVWrr CC_INE, $pred,
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
sub_i32)>;
def : Pat<(f64 (select i32:$pred, f64:$t, f64:$f)),
(CMOVWrr CC_INE, $pred, $t, $f)>;
def : Pat<(f32 (select i32:$pred, f32:$t, f32:$f)),
(EXTRACT_SUBREG
(CMOVWrr CC_INE, $pred,
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_f32),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_f32)),
sub_f32)>;
// bitconvert
def : Pat<(f64 (bitconvert i64:$src)), (COPY_TO_REGCLASS $src, I64)>;
def : Pat<(i64 (bitconvert f64:$src)), (COPY_TO_REGCLASS $src, I64)>;
def : Pat<(i32 (bitconvert f32:$op)),
(EXTRACT_SUBREG (SRAXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
$op, sub_f32), 32), sub_i32)>;
def : Pat<(f32 (bitconvert i32:$op)),
(EXTRACT_SUBREG (SLLri (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
$op, sub_i32), 32), sub_f32)>;
// Bits operations pattern matchings.
def : Pat<(i32 (ctpop i32:$src)),
(EXTRACT_SUBREG (PCNTr (ANDrm (INSERT_SUBREG
(i64 (IMPLICIT_DEF)), $src, sub_i32), !add(32, 64))), sub_i32)>;
def : Pat<(i32 (ctlz i32:$src)),
(EXTRACT_SUBREG (LDZr (SLLri (INSERT_SUBREG
(i64 (IMPLICIT_DEF)), $src, sub_i32), 32)), sub_i32)>;
def : Pat<(i64 (bswap i64:$src)),
(BSWPri $src, 0)>;
def : Pat<(i32 (bswap i32:$src)),
(EXTRACT_SUBREG (BSWPri (INSERT_SUBREG
(i64 (IMPLICIT_DEF)), $src, sub_i32), 1), sub_i32)>;
// Several special pattern matches to optimize code
def : Pat<(i32 (and i32:$lhs, 0xff)),
(AND32rm $lhs, !add(56, 64))>;
def : Pat<(i32 (and i32:$lhs, 0xffff)),
(AND32rm $lhs, !add(48, 64))>;
def : Pat<(i32 (and i32:$lhs, 0xffffffff)),
(AND32rm $lhs, !add(32, 64))>;