1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 11:33:24 +02:00
llvm-mirror/lib/Target/X86/X86ExpandPseudo.cpp

299 lines
10 KiB
C++
Raw Normal View History

//===------- X86ExpandPseudo.cpp - Expand pseudo instructions -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that expands pseudo instructions into target
// instructions to allow proper scheduling, if-conversion, other late
// optimizations, or simply the encoding of the instructions.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86FrameLowering.h"
#include "X86InstrBuilder.h"
#include "X86InstrInfo.h"
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/Passes.h" // For IDs of passes that are preserved.
#include "llvm/IR/GlobalValue.h"
using namespace llvm;
#define DEBUG_TYPE "x86-pseudo"
namespace {
class X86ExpandPseudo : public MachineFunctionPass {
public:
static char ID;
X86ExpandPseudo() : MachineFunctionPass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addPreservedID(MachineLoopInfoID);
AU.addPreservedID(MachineDominatorsID);
MachineFunctionPass::getAnalysisUsage(AU);
}
const X86Subtarget *STI;
const X86InstrInfo *TII;
const X86RegisterInfo *TRI;
const X86MachineFunctionInfo *X86FI;
const X86FrameLowering *X86FL;
bool runOnMachineFunction(MachineFunction &Fn) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
StringRef getPassName() const override {
return "X86 pseudo instruction expansion pass";
}
private:
bool ExpandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI);
bool ExpandMBB(MachineBasicBlock &MBB);
};
char X86ExpandPseudo::ID = 0;
} // End anonymous namespace.
/// If \p MBBI is a pseudo instruction, this method expands
/// it to the corresponding (sequence of) actual instruction(s).
/// \returns true if \p MBBI has been expanded.
bool X86ExpandPseudo::ExpandMI(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
DebugLoc DL = MBBI->getDebugLoc();
switch (Opcode) {
default:
return false;
case X86::TCRETURNdi:
case X86::TCRETURNdicc:
case X86::TCRETURNri:
case X86::TCRETURNmi:
case X86::TCRETURNdi64:
case X86::TCRETURNdi64cc:
case X86::TCRETURNri64:
case X86::TCRETURNmi64: {
bool isMem = Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64;
MachineOperand &JumpTarget = MBBI->getOperand(0);
MachineOperand &StackAdjust = MBBI->getOperand(isMem ? 5 : 1);
assert(StackAdjust.isImm() && "Expecting immediate value.");
// Adjust stack pointer.
int StackAdj = StackAdjust.getImm();
int MaxTCDelta = X86FI->getTCReturnAddrDelta();
int Offset = 0;
assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
// Incoporate the retaddr area.
Offset = StackAdj - MaxTCDelta;
assert(Offset >= 0 && "Offset should never be negative");
if (Opcode == X86::TCRETURNdicc || Opcode == X86::TCRETURNdi64cc) {
assert(Offset == 0 && "Conditional tail call cannot adjust the stack.");
}
if (Offset) {
// Check for possible merge with preceding ADD instruction.
Offset += X86FL->mergeSPUpdates(MBB, MBBI, true);
X86FL->emitSPUpdate(MBB, MBBI, Offset, /*InEpilogue=*/true);
}
// Jump to label or value in register.
bool IsWin64 = STI->isTargetWin64();
if (Opcode == X86::TCRETURNdi || Opcode == X86::TCRETURNdicc ||
Opcode == X86::TCRETURNdi64 || Opcode == X86::TCRETURNdi64cc) {
unsigned Op;
switch (Opcode) {
case X86::TCRETURNdi:
Op = X86::TAILJMPd;
break;
case X86::TCRETURNdicc:
Op = X86::TAILJMPd_CC;
break;
case X86::TCRETURNdi64cc:
assert(!MBB.getParent()->hasWinCFI() &&
"Conditional tail calls confuse "
"the Win64 unwinder.");
Op = X86::TAILJMPd64_CC;
break;
default:
// Note: Win64 uses REX prefixes indirect jumps out of functions, but
// not direct ones.
Op = X86::TAILJMPd64;
break;
}
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
if (JumpTarget.isGlobal()) {
MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
JumpTarget.getTargetFlags());
} else {
assert(JumpTarget.isSymbol());
MIB.addExternalSymbol(JumpTarget.getSymbolName(),
JumpTarget.getTargetFlags());
}
if (Op == X86::TAILJMPd_CC || Op == X86::TAILJMPd64_CC) {
MIB.addImm(MBBI->getOperand(2).getImm());
}
} else if (Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64) {
unsigned Op = (Opcode == X86::TCRETURNmi)
? X86::TAILJMPm
: (IsWin64 ? X86::TAILJMPm64_REX : X86::TAILJMPm64);
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
for (unsigned i = 0; i != 5; ++i)
MIB.add(MBBI->getOperand(i));
} else if (Opcode == X86::TCRETURNri64) {
BuildMI(MBB, MBBI, DL,
TII->get(IsWin64 ? X86::TAILJMPr64_REX : X86::TAILJMPr64))
.addReg(JumpTarget.getReg(), RegState::Kill);
} else {
BuildMI(MBB, MBBI, DL, TII->get(X86::TAILJMPr))
.addReg(JumpTarget.getReg(), RegState::Kill);
}
MachineInstr &NewMI = *std::prev(MBBI);
NewMI.copyImplicitOps(*MBBI->getParent()->getParent(), *MBBI);
// Delete the pseudo instruction TCRETURN.
MBB.erase(MBBI);
return true;
}
case X86::EH_RETURN:
case X86::EH_RETURN64: {
MachineOperand &DestAddr = MBBI->getOperand(0);
assert(DestAddr.isReg() && "Offset should be in register!");
const bool Uses64BitFramePtr =
STI->isTarget64BitLP64() || STI->isTargetNaCl64();
unsigned StackPtr = TRI->getStackRegister();
BuildMI(MBB, MBBI, DL,
TII->get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), StackPtr)
.addReg(DestAddr.getReg());
// The EH_RETURN pseudo is really removed during the MC Lowering.
return true;
}
case X86::IRET: {
// Adjust stack to erase error code
int64_t StackAdj = MBBI->getOperand(0).getImm();
X86FL->emitSPUpdate(MBB, MBBI, StackAdj, true);
// Replace pseudo with machine iret
BuildMI(MBB, MBBI, DL,
TII->get(STI->is64Bit() ? X86::IRET64 : X86::IRET32));
MBB.erase(MBBI);
return true;
}
case X86::RET: {
// Adjust stack to erase error code
int64_t StackAdj = MBBI->getOperand(0).getImm();
MachineInstrBuilder MIB;
if (StackAdj == 0) {
MIB = BuildMI(MBB, MBBI, DL,
TII->get(STI->is64Bit() ? X86::RETQ : X86::RETL));
} else if (isUInt<16>(StackAdj)) {
MIB = BuildMI(MBB, MBBI, DL,
TII->get(STI->is64Bit() ? X86::RETIQ : X86::RETIL))
.addImm(StackAdj);
} else {
2016-03-05 00:02:15 +01:00
assert(!STI->is64Bit() &&
"shouldn't need to do this for x86_64 targets!");
// A ret can only handle immediates as big as 2**16-1. If we need to pop
// off bytes before the return address, we must do it manually.
2016-03-05 00:02:15 +01:00
BuildMI(MBB, MBBI, DL, TII->get(X86::POP32r)).addReg(X86::ECX, RegState::Define);
X86FL->emitSPUpdate(MBB, MBBI, StackAdj, /*InEpilogue=*/true);
2016-03-05 00:02:15 +01:00
BuildMI(MBB, MBBI, DL, TII->get(X86::PUSH32r)).addReg(X86::ECX);
MIB = BuildMI(MBB, MBBI, DL, TII->get(X86::RETL));
}
for (unsigned I = 1, E = MBBI->getNumOperands(); I != E; ++I)
MIB.add(MBBI->getOperand(I));
MBB.erase(MBBI);
return true;
}
case X86::EH_RESTORE: {
// Restore ESP and EBP, and optionally ESI if required.
bool IsSEH = isAsynchronousEHPersonality(classifyEHPersonality(
MBB.getParent()->getFunction().getPersonalityFn()));
X86FL->restoreWin32EHStackPointers(MBB, MBBI, DL, /*RestoreSP=*/IsSEH);
MBBI->eraseFromParent();
return true;
}
[X86] Make sure we do not clobber RBX with cmpxchg when used as a base pointer. cmpxchg[8|16]b uses RBX as one of its argument. In other words, using this instruction clobbers RBX as it is defined to hold one the input. When the backend uses dynamically allocated stack, RBX is used as a reserved register for the base pointer. Reserved registers have special semantic that only the target understands and enforces, because of that, the register allocator don’t use them, but also, don’t try to make sure they are used properly (remember it does not know how they are supposed to be used). Therefore, when RBX is used as a reserved register but defined by something that is not compatible with that use, the register allocator will not fix the surrounding code to make sure it gets saved and restored properly around the broken code. This is the responsibility of the target to do the right thing with its reserved register. To fix that, when the base pointer needs to be preserved, we use a different pseudo instruction for cmpxchg that save rbx. That pseudo takes two more arguments than the regular instruction: - One is the value to be copied into RBX to set the proper value for the comparison. - The other is the virtual register holding the save of the value of RBX as the base pointer. This saving is done as part of isel (i.e., we emit a copy from rbx). cmpxchg_save_rbx <regular cmpxchg args>, input_for_rbx_reg, save_of_rbx_as_bp This gets expanded into: rbx = copy input_for_rbx_reg cmpxchg <regular cmpxchg args> rbx = save_of_rbx_as_bp Note: The actual modeling of the pseudo is a bit more complicated to make sure the interferes that appears after the pseudo gets expanded are properly modeled before that expansion. This fixes PR26883. llvm-svn: 263325
2016-03-12 03:25:27 +01:00
case X86::LCMPXCHG8B_SAVE_EBX:
case X86::LCMPXCHG16B_SAVE_RBX: {
// Perform the following transformation.
// SaveRbx = pseudocmpxchg Addr, <4 opds for the address>, InArg, SaveRbx
// =>
// [E|R]BX = InArg
// actualcmpxchg Addr
// [E|R]BX = SaveRbx
const MachineOperand &InArg = MBBI->getOperand(6);
unsigned SaveRbx = MBBI->getOperand(7).getReg();
unsigned ActualInArg =
Opcode == X86::LCMPXCHG8B_SAVE_EBX ? X86::EBX : X86::RBX;
// Copy the input argument of the pseudo into the argument of the
// actual instruction.
TII->copyPhysReg(MBB, MBBI, DL, ActualInArg, InArg.getReg(),
InArg.isKill());
// Create the actual instruction.
unsigned ActualOpc =
Opcode == X86::LCMPXCHG8B_SAVE_EBX ? X86::LCMPXCHG8B : X86::LCMPXCHG16B;
MachineInstr *NewInstr = BuildMI(MBB, MBBI, DL, TII->get(ActualOpc));
// Copy the operands related to the address.
for (unsigned Idx = 1; Idx < 6; ++Idx)
NewInstr->addOperand(MBBI->getOperand(Idx));
// Finally, restore the value of RBX.
TII->copyPhysReg(MBB, MBBI, DL, ActualInArg, SaveRbx,
/*SrcIsKill*/ true);
// Delete the pseudo.
MBBI->eraseFromParent();
return true;
}
}
llvm_unreachable("Previous switch has a fallthrough?");
}
/// Expand all pseudo instructions contained in \p MBB.
/// \returns true if any expansion occurred for \p MBB.
bool X86ExpandPseudo::ExpandMBB(MachineBasicBlock &MBB) {
bool Modified = false;
// MBBI may be invalidated by the expansion.
MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
while (MBBI != E) {
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
Modified |= ExpandMI(MBB, MBBI);
MBBI = NMBBI;
}
return Modified;
}
bool X86ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
STI = &static_cast<const X86Subtarget &>(MF.getSubtarget());
TII = STI->getInstrInfo();
TRI = STI->getRegisterInfo();
X86FI = MF.getInfo<X86MachineFunctionInfo>();
X86FL = STI->getFrameLowering();
bool Modified = false;
for (MachineBasicBlock &MBB : MF)
Modified |= ExpandMBB(MBB);
return Modified;
}
/// Returns an instance of the pseudo instruction expansion pass.
FunctionPass *llvm::createX86ExpandPseudoPass() {
return new X86ExpandPseudo();
}