1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2025-02-01 05:01:59 +01:00

394 lines
13 KiB
C++
Raw Normal View History

//===- Object.cpp -----------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Object.h"
#include "llvm-objcopy.h"
using namespace llvm;
using namespace object;
using namespace ELF;
template <class ELFT> void Segment::writeHeader(FileOutputBuffer &Out) const {
typedef typename ELFT::Ehdr Elf_Ehdr;
typedef typename ELFT::Phdr Elf_Phdr;
uint8_t *Buf = Out.getBufferStart();
Buf += sizeof(Elf_Ehdr) + Index * sizeof(Elf_Phdr);
Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(Buf);
Phdr.p_type = Type;
Phdr.p_flags = Flags;
Phdr.p_offset = Offset;
Phdr.p_vaddr = VAddr;
Phdr.p_paddr = PAddr;
Phdr.p_filesz = FileSize;
Phdr.p_memsz = MemSize;
Phdr.p_align = Align;
}
void Segment::finalize() {
auto FirstSec = firstSection();
if (FirstSec) {
// It is possible for a gap to be at the begining of a segment. Because of
// this we need to compute the new offset based on how large this gap was
// in the source file. Section layout should have already ensured that this
// space is not used for something else.
uint64_t OriginalOffset = Offset;
Offset = FirstSec->Offset - (FirstSec->OriginalOffset - OriginalOffset);
}
}
void Segment::writeSegment(FileOutputBuffer &Out) const {
uint8_t *Buf = Out.getBufferStart() + Offset;
// We want to maintain segments' interstitial data and contents exactly.
// This lets us just copy segments directly.
std::copy(std::begin(Contents), std::end(Contents), Buf);
}
void SectionBase::finalize() {}
template <class ELFT>
void SectionBase::writeHeader(FileOutputBuffer &Out) const {
uint8_t *Buf = Out.getBufferStart();
Buf += HeaderOffset;
typename ELFT::Shdr &Shdr = *reinterpret_cast<typename ELFT::Shdr *>(Buf);
Shdr.sh_name = NameIndex;
Shdr.sh_type = Type;
Shdr.sh_flags = Flags;
Shdr.sh_addr = Addr;
Shdr.sh_offset = Offset;
Shdr.sh_size = Size;
Shdr.sh_link = Link;
Shdr.sh_info = Info;
Shdr.sh_addralign = Align;
Shdr.sh_entsize = EntrySize;
}
void Section::writeSection(FileOutputBuffer &Out) const {
if (Type == SHT_NOBITS)
return;
uint8_t *Buf = Out.getBufferStart() + Offset;
std::copy(std::begin(Contents), std::end(Contents), Buf);
}
void StringTableSection::addString(StringRef Name) {
StrTabBuilder.add(Name);
Size = StrTabBuilder.getSize();
}
uint32_t StringTableSection::findIndex(StringRef Name) const {
return StrTabBuilder.getOffset(Name);
}
void StringTableSection::finalize() { StrTabBuilder.finalize(); }
void StringTableSection::writeSection(FileOutputBuffer &Out) const {
StrTabBuilder.write(Out.getBufferStart() + Offset);
}
// Returns true IFF a section is wholly inside the range of a segment
static bool sectionWithinSegment(const SectionBase &Section,
const Segment &Segment) {
// If a section is empty it should be treated like it has a size of 1. This is
// to clarify the case when an empty section lies on a boundary between two
// segments and ensures that the section "belongs" to the second segment and
// not the first.
uint64_t SecSize = Section.Size ? Section.Size : 1;
return Segment.Offset <= Section.OriginalOffset &&
Segment.Offset + Segment.FileSize >= Section.OriginalOffset + SecSize;
}
template <class ELFT>
void Object<ELFT>::readProgramHeaders(const ELFFile<ELFT> &ElfFile) {
uint32_t Index = 0;
for (const auto &Phdr : unwrapOrError(ElfFile.program_headers())) {
ArrayRef<uint8_t> Data{ElfFile.base() + Phdr.p_offset,
(size_t)Phdr.p_filesz};
Segments.emplace_back(llvm::make_unique<Segment>(Data));
Segment &Seg = *Segments.back();
Seg.Type = Phdr.p_type;
Seg.Flags = Phdr.p_flags;
Seg.OriginalOffset = Phdr.p_offset;
Seg.Offset = Phdr.p_offset;
Seg.VAddr = Phdr.p_vaddr;
Seg.PAddr = Phdr.p_paddr;
Seg.FileSize = Phdr.p_filesz;
Seg.MemSize = Phdr.p_memsz;
Seg.Align = Phdr.p_align;
Seg.Index = Index++;
for (auto &Section : Sections) {
if (sectionWithinSegment(*Section, Seg)) {
Seg.addSection(&*Section);
if (!Section->ParentSegment ||
Section->ParentSegment->Offset > Seg.Offset) {
Section->ParentSegment = &Seg;
}
}
}
}
}
template <class ELFT>
std::unique_ptr<SectionBase>
Object<ELFT>::makeSection(const llvm::object::ELFFile<ELFT> &ElfFile,
const Elf_Shdr &Shdr) {
ArrayRef<uint8_t> Data;
switch (Shdr.sh_type) {
case SHT_STRTAB:
return llvm::make_unique<StringTableSection>();
case SHT_NOBITS:
return llvm::make_unique<Section>(Data);
default:
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
return llvm::make_unique<Section>(Data);
}
}
template <class ELFT>
void Object<ELFT>::readSectionHeaders(const ELFFile<ELFT> &ElfFile) {
uint32_t Index = 0;
for (const auto &Shdr : unwrapOrError(ElfFile.sections())) {
if (Index == 0) {
++Index;
continue;
}
SecPtr Sec = makeSection(ElfFile, Shdr);
Sec->Name = unwrapOrError(ElfFile.getSectionName(&Shdr));
Sec->Type = Shdr.sh_type;
Sec->Flags = Shdr.sh_flags;
Sec->Addr = Shdr.sh_addr;
Sec->Offset = Shdr.sh_offset;
Sec->OriginalOffset = Shdr.sh_offset;
Sec->Size = Shdr.sh_size;
Sec->Link = Shdr.sh_link;
Sec->Info = Shdr.sh_info;
Sec->Align = Shdr.sh_addralign;
Sec->EntrySize = Shdr.sh_entsize;
Sec->Index = Index++;
Sections.push_back(std::move(Sec));
}
}
template <class ELFT> Object<ELFT>::Object(const ELFObjectFile<ELFT> &Obj) {
const auto &ElfFile = *Obj.getELFFile();
const auto &Ehdr = *ElfFile.getHeader();
std::copy(Ehdr.e_ident, Ehdr.e_ident + 16, Ident);
Type = Ehdr.e_type;
Machine = Ehdr.e_machine;
Version = Ehdr.e_version;
Entry = Ehdr.e_entry;
Flags = Ehdr.e_flags;
readSectionHeaders(ElfFile);
readProgramHeaders(ElfFile);
SectionNames =
dyn_cast<StringTableSection>(Sections[Ehdr.e_shstrndx - 1].get());
}
template <class ELFT>
void Object<ELFT>::writeHeader(FileOutputBuffer &Out) const {
uint8_t *Buf = Out.getBufferStart();
Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf);
std::copy(Ident, Ident + 16, Ehdr.e_ident);
Ehdr.e_type = Type;
Ehdr.e_machine = Machine;
Ehdr.e_version = Version;
Ehdr.e_entry = Entry;
Ehdr.e_phoff = sizeof(Elf_Ehdr);
Ehdr.e_shoff = SHOffset;
Ehdr.e_flags = Flags;
Ehdr.e_ehsize = sizeof(Elf_Ehdr);
Ehdr.e_phentsize = sizeof(Elf_Phdr);
Ehdr.e_phnum = Segments.size();
Ehdr.e_shentsize = sizeof(Elf_Shdr);
Ehdr.e_shnum = Sections.size() + 1;
Ehdr.e_shstrndx = SectionNames->Index;
}
template <class ELFT>
void Object<ELFT>::writeProgramHeaders(FileOutputBuffer &Out) const {
for (auto &Phdr : Segments)
Phdr->template writeHeader<ELFT>(Out);
}
template <class ELFT>
void Object<ELFT>::writeSectionHeaders(FileOutputBuffer &Out) const {
uint8_t *Buf = Out.getBufferStart() + SHOffset;
// This reference serves to write the dummy section header at the begining
// of the file.
Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(Buf);
Shdr.sh_name = 0;
Shdr.sh_type = SHT_NULL;
Shdr.sh_flags = 0;
Shdr.sh_addr = 0;
Shdr.sh_offset = 0;
Shdr.sh_size = 0;
Shdr.sh_link = 0;
Shdr.sh_info = 0;
Shdr.sh_addralign = 0;
Shdr.sh_entsize = 0;
for (auto &Section : Sections)
Section->template writeHeader<ELFT>(Out);
}
template <class ELFT>
void Object<ELFT>::writeSectionData(FileOutputBuffer &Out) const {
for (auto &Section : Sections)
Section->writeSection(Out);
}
template <class ELFT> void ELFObject<ELFT>::sortSections() {
// Put all sections in offset order. Maintain the ordering as closely as
// possible while meeting that demand however.
auto CompareSections = [](const SecPtr &A, const SecPtr &B) {
return A->OriginalOffset < B->OriginalOffset;
};
std::stable_sort(std::begin(this->Sections), std::end(this->Sections),
CompareSections);
}
template <class ELFT> void ELFObject<ELFT>::assignOffsets() {
// The size of ELF + program headers will not change so it is ok to assume
// that the first offset of the first segment is a good place to start
// outputting sections. This covers both the standard case and the PT_PHDR
// case.
uint64_t Offset;
if (!this->Segments.empty()) {
Offset = this->Segments[0]->Offset;
} else {
Offset = sizeof(Elf_Ehdr);
}
// The only way a segment should move is if a section was between two
// segments and that section was removed. If that section isn't in a segment
// then it's acceptable, but not ideal, to simply move it to after the
// segments. So we can simply layout segments one after the other accounting
// for alignment.
for (auto &Segment : this->Segments) {
Offset = alignTo(Offset, Segment->Align);
Segment->Offset = Offset;
Offset += Segment->FileSize;
}
// Now the offset of every segment has been set we can assign the offsets
// of each section. For sections that are covered by a segment we should use
// the segment's original offset and the section's original offset to compute
// the offset from the start of the segment. Using the offset from the start
// of the segment we can assign a new offset to the section. For sections not
// covered by segments we can just bump Offset to the next valid location.
uint32_t Index = 1;
for (auto &Section : this->Sections) {
Section->Index = Index++;
if (Section->ParentSegment != nullptr) {
auto Segment = Section->ParentSegment;
Section->Offset =
Segment->Offset + (Section->OriginalOffset - Segment->OriginalOffset);
} else {
Offset = alignTo(Offset, Section->Offset);
Section->Offset = Offset;
if (Section->Type != SHT_NOBITS)
Offset += Section->Size;
}
}
Offset = alignTo(Offset, sizeof(typename ELFT::Addr));
this->SHOffset = Offset;
}
template <class ELFT> size_t ELFObject<ELFT>::totalSize() const {
// We already have the section header offset so we can calculate the total
// size by just adding up the size of each section header.
return this->SHOffset + this->Sections.size() * sizeof(Elf_Shdr) +
sizeof(Elf_Shdr);
}
template <class ELFT> void ELFObject<ELFT>::write(FileOutputBuffer &Out) const {
this->writeHeader(Out);
this->writeProgramHeaders(Out);
this->writeSectionData(Out);
this->writeSectionHeaders(Out);
}
template <class ELFT> void ELFObject<ELFT>::finalize() {
for (const auto &Section : this->Sections) {
this->SectionNames->addString(Section->Name);
}
sortSections();
assignOffsets();
// Finalize SectionNames first so that we can assign name indexes.
this->SectionNames->finalize();
// Finally now that all offsets and indexes have been set we can finalize any
// remaining issues.
uint64_t Offset = this->SHOffset + sizeof(Elf_Shdr);
for (auto &Section : this->Sections) {
Section->HeaderOffset = Offset;
Offset += sizeof(Elf_Shdr);
Section->NameIndex = this->SectionNames->findIndex(Section->Name);
Section->finalize();
}
for (auto &Segment : this->Segments)
Segment->finalize();
}
template <class ELFT> size_t BinaryObject<ELFT>::totalSize() const {
return TotalSize;
}
template <class ELFT>
void BinaryObject<ELFT>::write(FileOutputBuffer &Out) const {
for (auto &Segment : this->Segments) {
// GNU objcopy does not output segments that do not cover a section. Such
// segments can sometimes be produced by LLD due to how LLD handles PT_PHDR.
if (Segment->Type == llvm::ELF::PT_LOAD &&
Segment->firstSection() != nullptr) {
Segment->writeSegment(Out);
}
}
}
template <class ELFT> void BinaryObject<ELFT>::finalize() {
for (auto &Segment : this->Segments)
Segment->finalize();
// Put all segments in offset order.
auto CompareSegments = [](const SegPtr &A, const SegPtr &B) {
return A->Offset < B->Offset;
};
std::sort(std::begin(this->Segments), std::end(this->Segments),
CompareSegments);
uint64_t Offset = 0;
for (auto &Segment : this->Segments) {
if (Segment->Type == llvm::ELF::PT_LOAD &&
Segment->firstSection() != nullptr) {
Offset = alignTo(Offset, Segment->Align);
Segment->Offset = Offset;
Offset += Segment->FileSize;
}
}
TotalSize = Offset;
}
template class Object<ELF64LE>;
template class Object<ELF64BE>;
template class Object<ELF32LE>;
template class Object<ELF32BE>;
template class ELFObject<ELF64LE>;
template class ELFObject<ELF64BE>;
template class ELFObject<ELF32LE>;
template class ELFObject<ELF32BE>;
template class BinaryObject<ELF64LE>;
template class BinaryObject<ELF64BE>;
template class BinaryObject<ELF32LE>;
template class BinaryObject<ELF32BE>;