1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-24 21:42:54 +02:00
llvm-mirror/test/DebugInfo/X86/pieces-1.ll

80 lines
4.8 KiB
LLVM
Raw Normal View History

; RUN: llc -O0 %s -filetype=obj -o %t.o
; RUN: llvm-dwarfdump -debug-dump=loc %t.o | FileCheck %s
;
; rdar://problem/15928306
;
; Test that we can emit debug info for aggregate values that are split
; up across multiple registers by SROA.
;
; // Compile with -O1.
; typedef struct { long int a; int b;} S;
;
; int foo(S s) {
; return s.b;
; }
;
;
; CHECK: .debug_loc contents:
;
; 0x0000000000000000 - 0x0000000000000006: rdi, piece 0x00000008, rsi, piece 0x00000004
; CHECK: Beginning address offset: 0x0000000000000000
; CHECK: Ending address offset: [[LTMP3:.*]]
; CHECK: Location description: 55 93 08 54 93 04
; 0x0000000000000006 - 0x0000000000000008: rbp-8, piece 0x00000008, rax, piece 0x00000004 )
; CHECK: Beginning address offset: [[LTMP3]]
; CHECK: Ending address offset: [[END:.*]]
; CHECK: Location description: 76 78 93 08 54 93 04
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-apple-macosx10.9.0"
; Function Attrs: nounwind ssp uwtable
define i32 @foo(i64 %s.coerce0, i32 %s.coerce1) #0 {
entry:
Move the complex address expression out of DIVariable and into an extra argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! llvm-svn: 218778
2014-10-01 19:55:39 +02:00
call void @llvm.dbg.value(metadata !{i64 %s.coerce0}, i64 0, metadata !20, metadata !24), !dbg !21
call void @llvm.dbg.value(metadata !{i32 %s.coerce1}, i64 0, metadata !22, metadata !27), !dbg !21
ret i32 %s.coerce1, !dbg !23
}
; Function Attrs: nounwind readnone
Move the complex address expression out of DIVariable and into an extra argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! llvm-svn: 218778
2014-10-01 19:55:39 +02:00
declare void @llvm.dbg.declare(metadata, metadata, metadata) #1
; Function Attrs: nounwind readnone
Move the complex address expression out of DIVariable and into an extra argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! llvm-svn: 218778
2014-10-01 19:55:39 +02:00
declare void @llvm.dbg.value(metadata, i64, metadata, metadata) #1
attributes #0 = { nounwind ssp uwtable "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" }
attributes #1 = { nounwind readnone }
!llvm.dbg.cu = !{!0}
!llvm.module.flags = !{!17, !18}
!llvm.ident = !{!19}
!0 = metadata !{i32 786449, metadata !1, i32 12, metadata !"clang version 3.5 ", i1 true, metadata !"", i32 0, metadata !2, metadata !2, metadata !3, metadata !2, metadata !2, metadata !"", i32 1} ; [ DW_TAG_compile_unit ]
!1 = metadata !{metadata !"pieces.c", metadata !""}
!2 = metadata !{}
!3 = metadata !{metadata !4}
!4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo", metadata !"foo", metadata !"", i32 3, metadata !6, i1 false, i1 true, i32 0, i32 0, null, i32 256, i1 true, i32 (i64, i32)* @foo, null, null, metadata !15, i32 3} ; [ DW_TAG_subprogram ] [line 3] [def] [foo]
!5 = metadata !{i32 786473, metadata !1} ; [ DW_TAG_file_type ] [/pieces.c]
!6 = metadata !{i32 786453, i32 0, null, metadata !"", i32 0, i64 0, i64 0, i64 0, i32 0, null, metadata !7, i32 0, null, null, null} ; [ DW_TAG_subroutine_type ] [line 0, size 0, align 0, offset 0] [from ]
!7 = metadata !{metadata !8, metadata !9}
!8 = metadata !{i32 786468, null, null, metadata !"int", i32 0, i64 32, i64 32, i64 0, i32 0, i32 5} ; [ DW_TAG_base_type ] [int] [line 0, size 32, align 32, offset 0, enc DW_ATE_signed]
!9 = metadata !{i32 786454, metadata !1, null, metadata !"S", i32 1, i64 0, i64 0, i64 0, i32 0, metadata !10} ; [ DW_TAG_typedef ] [S] [line 1, size 0, align 0, offset 0] [from ]
!10 = metadata !{i32 786451, metadata !1, null, metadata !"", i32 1, i64 128, i64 64, i32 0, i32 0, null, metadata !11, i32 0, null, null, null} ; [ DW_TAG_structure_type ] [line 1, size 128, align 64, offset 0] [def] [from ]
!11 = metadata !{metadata !12, metadata !14}
!12 = metadata !{i32 786445, metadata !1, metadata !10, metadata !"a", i32 1, i64 64, i64 64, i64 0, i32 0, metadata !13} ; [ DW_TAG_member ] [a] [line 1, size 64, align 64, offset 0] [from long int]
!13 = metadata !{i32 786468, null, null, metadata !"long int", i32 0, i64 64, i64 64, i64 0, i32 0, i32 5} ; [ DW_TAG_base_type ] [long int] [line 0, size 64, align 64, offset 0, enc DW_ATE_signed]
!14 = metadata !{i32 786445, metadata !1, metadata !10, metadata !"b", i32 1, i64 32, i64 32, i64 64, i32 0, metadata !8} ; [ DW_TAG_member ] [b] [line 1, size 32, align 32, offset 64] [from int]
!15 = metadata !{metadata !16}
!16 = metadata !{i32 786689, metadata !4, metadata !"s", metadata !5, i32 16777219, metadata !9, i32 0, i32 0} ; [ DW_TAG_arg_variable ] [s] [line 3]
!17 = metadata !{i32 2, metadata !"Dwarf Version", i32 4}
!18 = metadata !{i32 1, metadata !"Debug Info Version", i32 1}
!19 = metadata !{metadata !"clang version 3.5 "}
Move the complex address expression out of DIVariable and into an extra argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! llvm-svn: 218778
2014-10-01 19:55:39 +02:00
!20 = metadata !{i32 786689, metadata !4, metadata !"s", metadata !5, i32 16777219, metadata !9, i32 0, i32 0} ;; [ DW_TAG_arg_variable ] [s] [line 3]
!21 = metadata !{i32 3, i32 0, metadata !4, null}
Move the complex address expression out of DIVariable and into an extra argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! llvm-svn: 218778
2014-10-01 19:55:39 +02:00
!22 = metadata !{i32 786689, metadata !4, metadata !"s", metadata !5, i32 16777219, metadata !9, i32 0, i32 0} ;; [ DW_TAG_arg_variable ] [s] [line 3]
!23 = metadata !{i32 4, i32 0, metadata !4, null}
Move the complex address expression out of DIVariable and into an extra argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! llvm-svn: 218778
2014-10-01 19:55:39 +02:00
!24 = metadata !{i32 786690, i64 147, i64 0, i64 8} ; [DW_OP_piece 0 8] [piece, size 8, offset 0]
!25 = metadata !{}
Move the complex address expression out of DIVariable and into an extra argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! llvm-svn: 218778
2014-10-01 19:55:39 +02:00
!27 = metadata !{i32 786690, i64 147, i64 8, i64 4} ; [DW_OP_piece 8 4] [piece, size 4, offset 8]