1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-23 21:13:02 +02:00
llvm-mirror/test/CodeGen/PowerPC/ppc64le-calls.ll

22 lines
619 B
LLVM
Raw Normal View History

[PowerPC] ELFv2 function call changes This patch builds upon the two preceding MC changes to implement the basic ELFv2 function call convention. In the ELFv1 ABI, a "function descriptor" was associated with every function, pointing to both the entry address and the related TOC base (and a static chain pointer for nested functions). Function pointers would actually refer to that descriptor, and the indirect call sequence needed to load up both entry address and TOC base. In the ELFv2 ABI, there are no more function descriptors, and function pointers simply refer to the (global) entry point of the function code. Indirect function calls simply branch to that address, after loading it up into r12 (as required by the ABI rules for a global entry point). Direct function calls continue to just do a "bl" to the target symbol; this will be resolved by the linker to the local entry point of the target function if it is local, and to a PLT stub if it is global. That PLT stub would then load the (global) entry point address of the final target into r12 and branch to it. Note that when performing a local function call, r2 must be set up to point to the current TOC base: if the target ends up local, the ABI requires that its local entry point is called with r2 set up; if the target ends up global, the PLT stub requires that r2 is set up. This patch implements all LLVM changes to implement that scheme: - No longer create a function descriptor when emitting a function definition (in EmitFunctionEntryLabel) - Emit two entry points *if* the function needs the TOC base (r2) anywhere (this is done EmitFunctionBodyStart; note that this cannot be done in EmitFunctionBodyStart because the global entry point prologue code must be *part* of the function as covered by debug info). - In order to make use tracking of r2 (as needed above) work correctly, mark direct function calls as implicitly using r2. - Implement the ELFv2 indirect function call sequence (no function descriptors; load target address into r12). - When creating an ELFv2 object file, emit the .abiversion 2 directive to tell the linker to create the appropriate version of PLT stubs. Reviewed by Hal Finkel. llvm-svn: 213489
2014-07-21 01:31:44 +02:00
; RUN: llc -march=ppc64le -mcpu=pwr8 < %s | FileCheck %s
; RUN: llc -march=ppc64le < %s | FileCheck %s
; The second run of the test case is to ensure the behaviour is the same
; without specifying -mcpu=pwr8 as that is now the baseline for ppc64le.
[PowerPC] ELFv2 function call changes This patch builds upon the two preceding MC changes to implement the basic ELFv2 function call convention. In the ELFv1 ABI, a "function descriptor" was associated with every function, pointing to both the entry address and the related TOC base (and a static chain pointer for nested functions). Function pointers would actually refer to that descriptor, and the indirect call sequence needed to load up both entry address and TOC base. In the ELFv2 ABI, there are no more function descriptors, and function pointers simply refer to the (global) entry point of the function code. Indirect function calls simply branch to that address, after loading it up into r12 (as required by the ABI rules for a global entry point). Direct function calls continue to just do a "bl" to the target symbol; this will be resolved by the linker to the local entry point of the target function if it is local, and to a PLT stub if it is global. That PLT stub would then load the (global) entry point address of the final target into r12 and branch to it. Note that when performing a local function call, r2 must be set up to point to the current TOC base: if the target ends up local, the ABI requires that its local entry point is called with r2 set up; if the target ends up global, the PLT stub requires that r2 is set up. This patch implements all LLVM changes to implement that scheme: - No longer create a function descriptor when emitting a function definition (in EmitFunctionEntryLabel) - Emit two entry points *if* the function needs the TOC base (r2) anywhere (this is done EmitFunctionBodyStart; note that this cannot be done in EmitFunctionBodyStart because the global entry point prologue code must be *part* of the function as covered by debug info). - In order to make use tracking of r2 (as needed above) work correctly, mark direct function calls as implicitly using r2. - Implement the ELFv2 indirect function call sequence (no function descriptors; load target address into r12). - When creating an ELFv2 object file, emit the .abiversion 2 directive to tell the linker to create the appropriate version of PLT stubs. Reviewed by Hal Finkel. llvm-svn: 213489
2014-07-21 01:31:44 +02:00
target datalayout = "e-m:e-i64:64-n32:64"
target triple = "powerpc64le-unknown-linux-gnu"
; Indirect calls requires a full stub creation
define void @test_indirect(void ()* nocapture %fp) {
; CHECK-LABEL: @test_indirect
tail call void %fp()
[PowerPC] ELFv2 stack space reduction The ELFv2 ABI reduces the amount of stack required to implement an ABI-compliant function call in two ways: * the "linkage area" is reduced from 48 bytes to 32 bytes by eliminating two unused doublewords * the 64-byte "parameter save area" is now optional and need not be present in certain cases (it remains mandatory in functions with variable arguments, and functions that have any parameter that is passed on the stack) The following patch implements this required changes: - reducing the linkage area, and associated relocation of the TOC save slot, in getLinkageSize / getTOCSaveOffset (this requires updating all callers of these routines to pass in the isELFv2ABI flag). - (partially) handling the case where the parameter save are is optional This latter part requires some extra explanation: Currently, we still always allocate the parameter save area when *calling* a function. That is certainly always compliant with the ABI, but may cause code to allocate stack unnecessarily. This can be addressed by a follow-on optimization patch. On the *callee* side, in LowerFormalArguments, we *must* track correctly whether the ABI guarantees that the caller has allocated the parameter save area for our use, and the patch does so. However, there is one complication: the code that handles incoming "byval" arguments will currently *always* write to the parameter save area, because it has to force incoming register arguments to the stack since it must return an *address* to implement the byval semantics. To fix this, the patch changes the LowerFormalArguments code to write arguments to a freshly allocated stack slot on the function's own stack frame instead of the argument save area in those cases where that area is not present. Reviewed by Hal Finkel. llvm-svn: 213490
2014-07-21 01:43:15 +02:00
; CHECK-DAG: std 2, 24(1)
[PowerPC] ELFv2 function call changes This patch builds upon the two preceding MC changes to implement the basic ELFv2 function call convention. In the ELFv1 ABI, a "function descriptor" was associated with every function, pointing to both the entry address and the related TOC base (and a static chain pointer for nested functions). Function pointers would actually refer to that descriptor, and the indirect call sequence needed to load up both entry address and TOC base. In the ELFv2 ABI, there are no more function descriptors, and function pointers simply refer to the (global) entry point of the function code. Indirect function calls simply branch to that address, after loading it up into r12 (as required by the ABI rules for a global entry point). Direct function calls continue to just do a "bl" to the target symbol; this will be resolved by the linker to the local entry point of the target function if it is local, and to a PLT stub if it is global. That PLT stub would then load the (global) entry point address of the final target into r12 and branch to it. Note that when performing a local function call, r2 must be set up to point to the current TOC base: if the target ends up local, the ABI requires that its local entry point is called with r2 set up; if the target ends up global, the PLT stub requires that r2 is set up. This patch implements all LLVM changes to implement that scheme: - No longer create a function descriptor when emitting a function definition (in EmitFunctionEntryLabel) - Emit two entry points *if* the function needs the TOC base (r2) anywhere (this is done EmitFunctionBodyStart; note that this cannot be done in EmitFunctionBodyStart because the global entry point prologue code must be *part* of the function as covered by debug info). - In order to make use tracking of r2 (as needed above) work correctly, mark direct function calls as implicitly using r2. - Implement the ELFv2 indirect function call sequence (no function descriptors; load target address into r12). - When creating an ELFv2 object file, emit the .abiversion 2 directive to tell the linker to create the appropriate version of PLT stubs. Reviewed by Hal Finkel. llvm-svn: 213489
2014-07-21 01:31:44 +02:00
; CHECK-DAG: mr 12, 3
; CHECK-DAG: mtctr 3
; CHECK: bctrl
[PowerPC] ELFv2 stack space reduction The ELFv2 ABI reduces the amount of stack required to implement an ABI-compliant function call in two ways: * the "linkage area" is reduced from 48 bytes to 32 bytes by eliminating two unused doublewords * the 64-byte "parameter save area" is now optional and need not be present in certain cases (it remains mandatory in functions with variable arguments, and functions that have any parameter that is passed on the stack) The following patch implements this required changes: - reducing the linkage area, and associated relocation of the TOC save slot, in getLinkageSize / getTOCSaveOffset (this requires updating all callers of these routines to pass in the isELFv2ABI flag). - (partially) handling the case where the parameter save are is optional This latter part requires some extra explanation: Currently, we still always allocate the parameter save area when *calling* a function. That is certainly always compliant with the ABI, but may cause code to allocate stack unnecessarily. This can be addressed by a follow-on optimization patch. On the *callee* side, in LowerFormalArguments, we *must* track correctly whether the ABI guarantees that the caller has allocated the parameter save area for our use, and the patch does so. However, there is one complication: the code that handles incoming "byval" arguments will currently *always* write to the parameter save area, because it has to force incoming register arguments to the stack since it must return an *address* to implement the byval semantics. To fix this, the patch changes the LowerFormalArguments code to write arguments to a freshly allocated stack slot on the function's own stack frame instead of the argument save area in those cases where that area is not present. Reviewed by Hal Finkel. llvm-svn: 213490
2014-07-21 01:43:15 +02:00
; CHECK-NEXT: ld 2, 24(1)
[PowerPC] ELFv2 function call changes This patch builds upon the two preceding MC changes to implement the basic ELFv2 function call convention. In the ELFv1 ABI, a "function descriptor" was associated with every function, pointing to both the entry address and the related TOC base (and a static chain pointer for nested functions). Function pointers would actually refer to that descriptor, and the indirect call sequence needed to load up both entry address and TOC base. In the ELFv2 ABI, there are no more function descriptors, and function pointers simply refer to the (global) entry point of the function code. Indirect function calls simply branch to that address, after loading it up into r12 (as required by the ABI rules for a global entry point). Direct function calls continue to just do a "bl" to the target symbol; this will be resolved by the linker to the local entry point of the target function if it is local, and to a PLT stub if it is global. That PLT stub would then load the (global) entry point address of the final target into r12 and branch to it. Note that when performing a local function call, r2 must be set up to point to the current TOC base: if the target ends up local, the ABI requires that its local entry point is called with r2 set up; if the target ends up global, the PLT stub requires that r2 is set up. This patch implements all LLVM changes to implement that scheme: - No longer create a function descriptor when emitting a function definition (in EmitFunctionEntryLabel) - Emit two entry points *if* the function needs the TOC base (r2) anywhere (this is done EmitFunctionBodyStart; note that this cannot be done in EmitFunctionBodyStart because the global entry point prologue code must be *part* of the function as covered by debug info). - In order to make use tracking of r2 (as needed above) work correctly, mark direct function calls as implicitly using r2. - Implement the ELFv2 indirect function call sequence (no function descriptors; load target address into r12). - When creating an ELFv2 object file, emit the .abiversion 2 directive to tell the linker to create the appropriate version of PLT stubs. Reviewed by Hal Finkel. llvm-svn: 213489
2014-07-21 01:31:44 +02:00
ret void
}