1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/include/llvm/CodeGen/CodeGenPassBuilder.h

1151 lines
45 KiB
C
Raw Normal View History

//===- Construction of codegen pass pipelines ------------------*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// Interfaces for registering analysis passes, producing common pass manager
/// configurations, and parsing of pass pipelines.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_CODEGENPASSBUILDER_H
#define LLVM_CODEGEN_CODEGENPASSBUILDER_H
#include "llvm/ADT/FunctionExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/CFLAndersAliasAnalysis.h"
#include "llvm/Analysis/CFLSteensAliasAnalysis.h"
#include "llvm/Analysis/ScopedNoAliasAA.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
#include "llvm/CodeGen/ExpandReductions.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachinePassManager.h"
#include "llvm/CodeGen/PreISelIntrinsicLowering.h"
#include "llvm/CodeGen/ReplaceWithVeclib.h"
#include "llvm/CodeGen/UnreachableBlockElim.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Verifier.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/CGPassBuilderOption.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/ConstantHoisting.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
#include "llvm/Transforms/Scalar/LowerConstantIntrinsics.h"
#include "llvm/Transforms/Scalar/MergeICmps.h"
#include "llvm/Transforms/Scalar/PartiallyInlineLibCalls.h"
#include "llvm/Transforms/Scalar/ScalarizeMaskedMemIntrin.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/EntryExitInstrumenter.h"
#include "llvm/Transforms/Utils/LowerInvoke.h"
#include <cassert>
#include <type_traits>
#include <utility>
namespace llvm {
// FIXME: Dummy target independent passes definitions that have not yet been
// ported to new pass manager. Once they do, remove these.
#define DUMMY_FUNCTION_PASS(NAME, PASS_NAME, CONSTRUCTOR) \
struct PASS_NAME : public PassInfoMixin<PASS_NAME> { \
template <typename... Ts> PASS_NAME(Ts &&...) {} \
PreservedAnalyses run(Function &, FunctionAnalysisManager &) { \
return PreservedAnalyses::all(); \
} \
};
#define DUMMY_MODULE_PASS(NAME, PASS_NAME, CONSTRUCTOR) \
struct PASS_NAME : public PassInfoMixin<PASS_NAME> { \
template <typename... Ts> PASS_NAME(Ts &&...) {} \
PreservedAnalyses run(Module &, ModuleAnalysisManager &) { \
return PreservedAnalyses::all(); \
} \
};
#define DUMMY_MACHINE_MODULE_PASS(NAME, PASS_NAME, CONSTRUCTOR) \
struct PASS_NAME : public PassInfoMixin<PASS_NAME> { \
template <typename... Ts> PASS_NAME(Ts &&...) {} \
Error run(Module &, MachineFunctionAnalysisManager &) { \
return Error::success(); \
} \
PreservedAnalyses run(MachineFunction &, \
MachineFunctionAnalysisManager &) { \
llvm_unreachable("this api is to make new PM api happy"); \
} \
static AnalysisKey Key; \
};
#define DUMMY_MACHINE_FUNCTION_PASS(NAME, PASS_NAME, CONSTRUCTOR) \
struct PASS_NAME : public PassInfoMixin<PASS_NAME> { \
template <typename... Ts> PASS_NAME(Ts &&...) {} \
PreservedAnalyses run(MachineFunction &, \
MachineFunctionAnalysisManager &) { \
return PreservedAnalyses::all(); \
} \
static AnalysisKey Key; \
};
#include "MachinePassRegistry.def"
/// This class provides access to building LLVM's passes.
///
/// Its members provide the baseline state available to passes during their
/// construction. The \c MachinePassRegistry.def file specifies how to construct
/// all of the built-in passes, and those may reference these members during
/// construction.
template <typename DerivedT> class CodeGenPassBuilder {
public:
explicit CodeGenPassBuilder(LLVMTargetMachine &TM, CGPassBuilderOption Opts,
PassInstrumentationCallbacks *PIC)
: TM(TM), Opt(Opts), PIC(PIC) {
// Target could set CGPassBuilderOption::MISchedPostRA to true to achieve
// substitutePass(&PostRASchedulerID, &PostMachineSchedulerID)
// Target should override TM.Options.EnableIPRA in their target-specific
// LLVMTM ctor. See TargetMachine::setGlobalISel for example.
if (Opt.EnableIPRA)
TM.Options.EnableIPRA = *Opt.EnableIPRA;
if (Opt.EnableGlobalISelAbort)
TM.Options.GlobalISelAbort = *Opt.EnableGlobalISelAbort;
if (!Opt.OptimizeRegAlloc)
Opt.OptimizeRegAlloc = getOptLevel() != CodeGenOpt::None;
}
Error buildPipeline(ModulePassManager &MPM, MachineFunctionPassManager &MFPM,
raw_pwrite_stream &Out, raw_pwrite_stream *DwoOut,
CodeGenFileType FileType) const;
void registerModuleAnalyses(ModuleAnalysisManager &) const;
void registerFunctionAnalyses(FunctionAnalysisManager &) const;
void registerMachineFunctionAnalyses(MachineFunctionAnalysisManager &) const;
std::pair<StringRef, bool> getPassNameFromLegacyName(StringRef) const;
void registerAnalyses(MachineFunctionAnalysisManager &MFAM) const {
registerModuleAnalyses(*MFAM.MAM);
registerFunctionAnalyses(*MFAM.FAM);
registerMachineFunctionAnalyses(MFAM);
}
PassInstrumentationCallbacks *getPassInstrumentationCallbacks() const {
return PIC;
}
protected:
template <typename PassT> using has_key_t = decltype(PassT::Key);
template <typename PassT>
using is_module_pass_t = decltype(std::declval<PassT &>().run(
std::declval<Module &>(), std::declval<ModuleAnalysisManager &>()));
template <typename PassT>
using is_function_pass_t = decltype(std::declval<PassT &>().run(
std::declval<Function &>(), std::declval<FunctionAnalysisManager &>()));
// Function object to maintain state while adding codegen IR passes.
class AddIRPass {
public:
AddIRPass(ModulePassManager &MPM, bool DebugPM, bool Check = true)
2021-05-08 08:18:44 +02:00
: MPM(MPM), FPM() {
if (Check)
AddingFunctionPasses = false;
}
~AddIRPass() {
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
}
// Add Function Pass
template <typename PassT>
std::enable_if_t<is_detected<is_function_pass_t, PassT>::value>
operator()(PassT &&Pass) {
if (AddingFunctionPasses && !*AddingFunctionPasses)
AddingFunctionPasses = true;
FPM.addPass(std::forward<PassT>(Pass));
}
// Add Module Pass
template <typename PassT>
std::enable_if_t<is_detected<is_module_pass_t, PassT>::value &&
!is_detected<is_function_pass_t, PassT>::value>
operator()(PassT &&Pass) {
assert((!AddingFunctionPasses || !*AddingFunctionPasses) &&
"could not add module pass after adding function pass");
MPM.addPass(std::forward<PassT>(Pass));
}
private:
ModulePassManager &MPM;
FunctionPassManager FPM;
// The codegen IR pipeline are mostly function passes with the exceptions of
// a few loop and module passes. `AddingFunctionPasses` make sures that
// we could only add module passes at the beginning of the pipeline. Once
// we begin adding function passes, we could no longer add module passes.
// This special-casing introduces less adaptor passes. If we have the need
// of adding module passes after function passes, we could change the
// implementation to accommodate that.
Optional<bool> AddingFunctionPasses;
};
// Function object to maintain state while adding codegen machine passes.
class AddMachinePass {
public:
AddMachinePass(MachineFunctionPassManager &PM) : PM(PM) {}
template <typename PassT> void operator()(PassT &&Pass) {
static_assert(
is_detected<has_key_t, PassT>::value,
"Machine function pass must define a static member variable `Key`.");
for (auto &C : BeforeCallbacks)
if (!C(&PassT::Key))
return;
PM.addPass(std::forward<PassT>(Pass));
for (auto &C : AfterCallbacks)
C(&PassT::Key);
}
template <typename PassT> void insertPass(AnalysisKey *ID, PassT Pass) {
AfterCallbacks.emplace_back(
[this, ID, Pass = std::move(Pass)](AnalysisKey *PassID) {
if (PassID == ID)
this->PM.addPass(std::move(Pass));
});
}
void disablePass(AnalysisKey *ID) {
BeforeCallbacks.emplace_back(
[ID](AnalysisKey *PassID) { return PassID != ID; });
}
MachineFunctionPassManager releasePM() { return std::move(PM); }
private:
MachineFunctionPassManager &PM;
SmallVector<llvm::unique_function<bool(AnalysisKey *)>, 4> BeforeCallbacks;
SmallVector<llvm::unique_function<void(AnalysisKey *)>, 4> AfterCallbacks;
};
LLVMTargetMachine &TM;
CGPassBuilderOption Opt;
PassInstrumentationCallbacks *PIC;
/// Target override these hooks to parse target-specific analyses.
void registerTargetAnalysis(ModuleAnalysisManager &) const {}
void registerTargetAnalysis(FunctionAnalysisManager &) const {}
void registerTargetAnalysis(MachineFunctionAnalysisManager &) const {}
std::pair<StringRef, bool> getTargetPassNameFromLegacyName(StringRef) const {
return {"", false};
}
template <typename TMC> TMC &getTM() const { return static_cast<TMC &>(TM); }
CodeGenOpt::Level getOptLevel() const { return TM.getOptLevel(); }
/// Check whether or not GlobalISel should abort on error.
/// When this is disabled, GlobalISel will fall back on SDISel instead of
/// erroring out.
bool isGlobalISelAbortEnabled() const {
return TM.Options.GlobalISelAbort == GlobalISelAbortMode::Enable;
}
/// Check whether or not a diagnostic should be emitted when GlobalISel
/// uses the fallback path. In other words, it will emit a diagnostic
/// when GlobalISel failed and isGlobalISelAbortEnabled is false.
bool reportDiagnosticWhenGlobalISelFallback() const {
return TM.Options.GlobalISelAbort == GlobalISelAbortMode::DisableWithDiag;
}
/// addInstSelector - This method should install an instruction selector pass,
/// which converts from LLVM code to machine instructions.
Error addInstSelector(AddMachinePass &) const {
return make_error<StringError>("addInstSelector is not overridden",
inconvertibleErrorCode());
}
/// Add passes that optimize instruction level parallelism for out-of-order
/// targets. These passes are run while the machine code is still in SSA
/// form, so they can use MachineTraceMetrics to control their heuristics.
///
/// All passes added here should preserve the MachineDominatorTree,
/// MachineLoopInfo, and MachineTraceMetrics analyses.
void addILPOpts(AddMachinePass &) const {}
/// This method may be implemented by targets that want to run passes
/// immediately before register allocation.
void addPreRegAlloc(AddMachinePass &) const {}
/// addPreRewrite - Add passes to the optimized register allocation pipeline
/// after register allocation is complete, but before virtual registers are
/// rewritten to physical registers.
///
/// These passes must preserve VirtRegMap and LiveIntervals, and when running
/// after RABasic or RAGreedy, they should take advantage of LiveRegMatrix.
/// When these passes run, VirtRegMap contains legal physreg assignments for
/// all virtual registers.
///
/// Note if the target overloads addRegAssignAndRewriteOptimized, this may not
/// be honored. This is also not generally used for the the fast variant,
/// where the allocation and rewriting are done in one pass.
void addPreRewrite(AddMachinePass &) const {}
/// Add passes to be run immediately after virtual registers are rewritten
/// to physical registers.
void addPostRewrite(AddMachinePass &) const {}
/// This method may be implemented by targets that want to run passes after
/// register allocation pass pipeline but before prolog-epilog insertion.
void addPostRegAlloc(AddMachinePass &) const {}
/// This method may be implemented by targets that want to run passes after
/// prolog-epilog insertion and before the second instruction scheduling pass.
void addPreSched2(AddMachinePass &) const {}
/// This pass may be implemented by targets that want to run passes
/// immediately before machine code is emitted.
void addPreEmitPass(AddMachinePass &) const {}
/// Targets may add passes immediately before machine code is emitted in this
/// callback. This is called even later than `addPreEmitPass`.
// FIXME: Rename `addPreEmitPass` to something more sensible given its actual
// position and remove the `2` suffix here as this callback is what
// `addPreEmitPass` *should* be but in reality isn't.
void addPreEmitPass2(AddMachinePass &) const {}
/// {{@ For GlobalISel
///
/// addPreISel - This method should add any "last minute" LLVM->LLVM
/// passes (which are run just before instruction selector).
void addPreISel(AddIRPass &) const {
llvm_unreachable("addPreISel is not overridden");
}
/// This method should install an IR translator pass, which converts from
/// LLVM code to machine instructions with possibly generic opcodes.
Error addIRTranslator(AddMachinePass &) const {
return make_error<StringError>("addIRTranslator is not overridden",
inconvertibleErrorCode());
}
/// This method may be implemented by targets that want to run passes
/// immediately before legalization.
void addPreLegalizeMachineIR(AddMachinePass &) const {}
/// This method should install a legalize pass, which converts the instruction
/// sequence into one that can be selected by the target.
Error addLegalizeMachineIR(AddMachinePass &) const {
return make_error<StringError>("addLegalizeMachineIR is not overridden",
inconvertibleErrorCode());
}
/// This method may be implemented by targets that want to run passes
/// immediately before the register bank selection.
void addPreRegBankSelect(AddMachinePass &) const {}
/// This method should install a register bank selector pass, which
/// assigns register banks to virtual registers without a register
/// class or register banks.
Error addRegBankSelect(AddMachinePass &) const {
return make_error<StringError>("addRegBankSelect is not overridden",
inconvertibleErrorCode());
}
/// This method may be implemented by targets that want to run passes
/// immediately before the (global) instruction selection.
void addPreGlobalInstructionSelect(AddMachinePass &) const {}
/// This method should install a (global) instruction selector pass, which
/// converts possibly generic instructions to fully target-specific
/// instructions, thereby constraining all generic virtual registers to
/// register classes.
Error addGlobalInstructionSelect(AddMachinePass &) const {
return make_error<StringError>(
"addGlobalInstructionSelect is not overridden",
inconvertibleErrorCode());
}
/// @}}
/// High level function that adds all passes necessary to go from llvm IR
/// representation to the MI representation.
/// Adds IR based lowering and target specific optimization passes and finally
/// the core instruction selection passes.
void addISelPasses(AddIRPass &) const;
/// Add the actual instruction selection passes. This does not include
/// preparation passes on IR.
Error addCoreISelPasses(AddMachinePass &) const;
/// Add the complete, standard set of LLVM CodeGen passes.
/// Fully developed targets will not generally override this.
Error addMachinePasses(AddMachinePass &) const;
/// Add passes to lower exception handling for the code generator.
void addPassesToHandleExceptions(AddIRPass &) const;
/// Add common target configurable passes that perform LLVM IR to IR
/// transforms following machine independent optimization.
void addIRPasses(AddIRPass &) const;
/// Add pass to prepare the LLVM IR for code generation. This should be done
/// before exception handling preparation passes.
void addCodeGenPrepare(AddIRPass &) const;
/// Add common passes that perform LLVM IR to IR transforms in preparation for
/// instruction selection.
void addISelPrepare(AddIRPass &) const;
/// Methods with trivial inline returns are convenient points in the common
/// codegen pass pipeline where targets may insert passes. Methods with
/// out-of-line standard implementations are major CodeGen stages called by
/// addMachinePasses. Some targets may override major stages when inserting
/// passes is insufficient, but maintaining overriden stages is more work.
///
/// addMachineSSAOptimization - Add standard passes that optimize machine
/// instructions in SSA form.
void addMachineSSAOptimization(AddMachinePass &) const;
/// addFastRegAlloc - Add the minimum set of target-independent passes that
/// are required for fast register allocation.
Error addFastRegAlloc(AddMachinePass &) const;
/// addOptimizedRegAlloc - Add passes related to register allocation.
/// LLVMTargetMachine provides standard regalloc passes for most targets.
void addOptimizedRegAlloc(AddMachinePass &) const;
/// Add passes that optimize machine instructions after register allocation.
void addMachineLateOptimization(AddMachinePass &) const;
/// addGCPasses - Add late codegen passes that analyze code for garbage
/// collection. This should return true if GC info should be printed after
/// these passes.
void addGCPasses(AddMachinePass &) const {}
/// Add standard basic block placement passes.
void addBlockPlacement(AddMachinePass &) const;
using CreateMCStreamer =
std::function<Expected<std::unique_ptr<MCStreamer>>(MCContext &)>;
void addAsmPrinter(AddMachinePass &, CreateMCStreamer) const {
llvm_unreachable("addAsmPrinter is not overridden");
}
/// Utilities for targets to add passes to the pass manager.
///
/// createTargetRegisterAllocator - Create the register allocator pass for
/// this target at the current optimization level.
void addTargetRegisterAllocator(AddMachinePass &, bool Optimized) const;
/// addMachinePasses helper to create the target-selected or overriden
/// regalloc pass.
void addRegAllocPass(AddMachinePass &, bool Optimized) const;
/// Add core register alloator passes which do the actual register assignment
/// and rewriting. \returns true if any passes were added.
Error addRegAssignmentFast(AddMachinePass &) const;
Error addRegAssignmentOptimized(AddMachinePass &) const;
private:
DerivedT &derived() { return static_cast<DerivedT &>(*this); }
const DerivedT &derived() const {
return static_cast<const DerivedT &>(*this);
}
};
template <typename Derived>
Error CodeGenPassBuilder<Derived>::buildPipeline(
ModulePassManager &MPM, MachineFunctionPassManager &MFPM,
raw_pwrite_stream &Out, raw_pwrite_stream *DwoOut,
CodeGenFileType FileType) const {
AddIRPass addIRPass(MPM, Opt.DebugPM);
addISelPasses(addIRPass);
AddMachinePass addPass(MFPM);
if (auto Err = addCoreISelPasses(addPass))
return std::move(Err);
if (auto Err = derived().addMachinePasses(addPass))
return std::move(Err);
derived().addAsmPrinter(
addPass, [this, &Out, DwoOut, FileType](MCContext &Ctx) {
return this->TM.createMCStreamer(Out, DwoOut, FileType, Ctx);
});
addPass(FreeMachineFunctionPass());
return Error::success();
}
static inline AAManager registerAAAnalyses(CFLAAType UseCFLAA) {
AAManager AA;
// The order in which these are registered determines their priority when
// being queried.
switch (UseCFLAA) {
case CFLAAType::Steensgaard:
AA.registerFunctionAnalysis<CFLSteensAA>();
break;
case CFLAAType::Andersen:
AA.registerFunctionAnalysis<CFLAndersAA>();
break;
case CFLAAType::Both:
AA.registerFunctionAnalysis<CFLAndersAA>();
AA.registerFunctionAnalysis<CFLSteensAA>();
break;
default:
break;
}
// Basic AliasAnalysis support.
// Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
// BasicAliasAnalysis wins if they disagree. This is intended to help
// support "obvious" type-punning idioms.
AA.registerFunctionAnalysis<TypeBasedAA>();
AA.registerFunctionAnalysis<ScopedNoAliasAA>();
AA.registerFunctionAnalysis<BasicAA>();
return AA;
}
template <typename Derived>
void CodeGenPassBuilder<Derived>::registerModuleAnalyses(
ModuleAnalysisManager &MAM) const {
#define MODULE_ANALYSIS(NAME, PASS_NAME, CONSTRUCTOR) \
MAM.registerPass([&] { return PASS_NAME CONSTRUCTOR; });
#include "MachinePassRegistry.def"
derived().registerTargetAnalysis(MAM);
}
template <typename Derived>
void CodeGenPassBuilder<Derived>::registerFunctionAnalyses(
FunctionAnalysisManager &FAM) const {
FAM.registerPass([this] { return registerAAAnalyses(this->Opt.UseCFLAA); });
#define FUNCTION_ANALYSIS(NAME, PASS_NAME, CONSTRUCTOR) \
FAM.registerPass([&] { return PASS_NAME CONSTRUCTOR; });
#include "MachinePassRegistry.def"
derived().registerTargetAnalysis(FAM);
}
template <typename Derived>
void CodeGenPassBuilder<Derived>::registerMachineFunctionAnalyses(
MachineFunctionAnalysisManager &MFAM) const {
#define MACHINE_FUNCTION_ANALYSIS(NAME, PASS_NAME, CONSTRUCTOR) \
MFAM.registerPass([&] { return PASS_NAME CONSTRUCTOR; });
#include "MachinePassRegistry.def"
derived().registerTargetAnalysis(MFAM);
}
// FIXME: For new PM, use pass name directly in commandline seems good.
// Translate stringfied pass name to its old commandline name. Returns the
// matching legacy name and a boolean value indicating if the pass is a machine
// pass.
template <typename Derived>
std::pair<StringRef, bool>
CodeGenPassBuilder<Derived>::getPassNameFromLegacyName(StringRef Name) const {
std::pair<StringRef, bool> Ret;
if (Name.empty())
return Ret;
#define FUNCTION_PASS(NAME, PASS_NAME, CONSTRUCTOR) \
if (Name == NAME) \
Ret = {#PASS_NAME, false};
#define DUMMY_FUNCTION_PASS(NAME, PASS_NAME, CONSTRUCTOR) \
if (Name == NAME) \
Ret = {#PASS_NAME, false};
#define MODULE_PASS(NAME, PASS_NAME, CONSTRUCTOR) \
if (Name == NAME) \
Ret = {#PASS_NAME, false};
#define DUMMY_MODULE_PASS(NAME, PASS_NAME, CONSTRUCTOR) \
if (Name == NAME) \
Ret = {#PASS_NAME, false};
#define MACHINE_MODULE_PASS(NAME, PASS_NAME, CONSTRUCTOR) \
if (Name == NAME) \
Ret = {#PASS_NAME, true};
#define DUMMY_MACHINE_MODULE_PASS(NAME, PASS_NAME, CONSTRUCTOR) \
if (Name == NAME) \
Ret = {#PASS_NAME, true};
#define MACHINE_FUNCTION_PASS(NAME, PASS_NAME, CONSTRUCTOR) \
if (Name == NAME) \
Ret = {#PASS_NAME, true};
#define DUMMY_MACHINE_FUNCTION_PASS(NAME, PASS_NAME, CONSTRUCTOR) \
if (Name == NAME) \
Ret = {#PASS_NAME, true};
#include "llvm/CodeGen/MachinePassRegistry.def"
if (Ret.first.empty())
Ret = derived().getTargetPassNameFromLegacyName(Name);
if (Ret.first.empty())
report_fatal_error(Twine('\"') + Twine(Name) +
Twine("\" pass could not be found."));
return Ret;
}
template <typename Derived>
void CodeGenPassBuilder<Derived>::addISelPasses(AddIRPass &addPass) const {
if (TM.useEmulatedTLS())
addPass(LowerEmuTLSPass());
addPass(PreISelIntrinsicLoweringPass());
derived().addIRPasses(addPass);
derived().addCodeGenPrepare(addPass);
addPassesToHandleExceptions(addPass);
derived().addISelPrepare(addPass);
}
/// Add common target configurable passes that perform LLVM IR to IR transforms
/// following machine independent optimization.
template <typename Derived>
void CodeGenPassBuilder<Derived>::addIRPasses(AddIRPass &addPass) const {
// Before running any passes, run the verifier to determine if the input
// coming from the front-end and/or optimizer is valid.
if (!Opt.DisableVerify)
addPass(VerifierPass());
// Run loop strength reduction before anything else.
if (getOptLevel() != CodeGenOpt::None && !Opt.DisableLSR) {
addPass(createFunctionToLoopPassAdaptor(
LoopStrengthReducePass(), /*UseMemorySSA*/ true, Opt.DebugPM));
// FIXME: use -stop-after so we could remove PrintLSR
if (Opt.PrintLSR)
addPass(PrintFunctionPass(dbgs(), "\n\n*** Code after LSR ***\n"));
}
if (getOptLevel() != CodeGenOpt::None) {
// The MergeICmpsPass tries to create memcmp calls by grouping sequences of
// loads and compares. ExpandMemCmpPass then tries to expand those calls
// into optimally-sized loads and compares. The transforms are enabled by a
// target lowering hook.
if (!Opt.DisableMergeICmps)
addPass(MergeICmpsPass());
addPass(ExpandMemCmpPass());
}
// Run GC lowering passes for builtin collectors
// TODO: add a pass insertion point here
addPass(GCLoweringPass());
addPass(ShadowStackGCLoweringPass());
addPass(LowerConstantIntrinsicsPass());
// Make sure that no unreachable blocks are instruction selected.
addPass(UnreachableBlockElimPass());
// Prepare expensive constants for SelectionDAG.
if (getOptLevel() != CodeGenOpt::None && !Opt.DisableConstantHoisting)
addPass(ConstantHoistingPass());
// Replace calls to LLVM intrinsics (e.g., exp, log) operating on vector
// operands with calls to the corresponding functions in a vector library.
if (getOptLevel() != CodeGenOpt::None)
addPass(ReplaceWithVeclib());
if (getOptLevel() != CodeGenOpt::None && !Opt.DisablePartialLibcallInlining)
addPass(PartiallyInlineLibCallsPass());
// Instrument function entry and exit, e.g. with calls to mcount().
addPass(EntryExitInstrumenterPass(/*PostInlining=*/true));
// Add scalarization of target's unsupported masked memory intrinsics pass.
// the unsupported intrinsic will be replaced with a chain of basic blocks,
// that stores/loads element one-by-one if the appropriate mask bit is set.
addPass(ScalarizeMaskedMemIntrinPass());
// Expand reduction intrinsics into shuffle sequences if the target wants to.
addPass(ExpandReductionsPass());
}
/// Turn exception handling constructs into something the code generators can
/// handle.
template <typename Derived>
void CodeGenPassBuilder<Derived>::addPassesToHandleExceptions(
AddIRPass &addPass) const {
const MCAsmInfo *MCAI = TM.getMCAsmInfo();
assert(MCAI && "No MCAsmInfo");
switch (MCAI->getExceptionHandlingType()) {
case ExceptionHandling::SjLj:
// SjLj piggy-backs on dwarf for this bit. The cleanups done apply to both
// Dwarf EH prepare needs to be run after SjLj prepare. Otherwise,
// catch info can get misplaced when a selector ends up more than one block
// removed from the parent invoke(s). This could happen when a landing
// pad is shared by multiple invokes and is also a target of a normal
// edge from elsewhere.
addPass(SjLjEHPreparePass());
LLVM_FALLTHROUGH;
case ExceptionHandling::DwarfCFI:
case ExceptionHandling::ARM:
case ExceptionHandling::AIX:
addPass(DwarfEHPass(getOptLevel()));
break;
case ExceptionHandling::WinEH:
// We support using both GCC-style and MSVC-style exceptions on Windows, so
// add both preparation passes. Each pass will only actually run if it
// recognizes the personality function.
addPass(WinEHPass());
addPass(DwarfEHPass(getOptLevel()));
break;
case ExceptionHandling::Wasm:
// Wasm EH uses Windows EH instructions, but it does not need to demote PHIs
// on catchpads and cleanuppads because it does not outline them into
// funclets. Catchswitch blocks are not lowered in SelectionDAG, so we
// should remove PHIs there.
addPass(WinEHPass(/*DemoteCatchSwitchPHIOnly=*/false));
addPass(WasmEHPass());
break;
case ExceptionHandling::None:
addPass(LowerInvokePass());
// The lower invoke pass may create unreachable code. Remove it.
addPass(UnreachableBlockElimPass());
break;
}
}
/// Add pass to prepare the LLVM IR for code generation. This should be done
/// before exception handling preparation passes.
template <typename Derived>
void CodeGenPassBuilder<Derived>::addCodeGenPrepare(AddIRPass &addPass) const {
if (getOptLevel() != CodeGenOpt::None && !Opt.DisableCGP)
addPass(CodeGenPreparePass());
// TODO: Default ctor'd RewriteSymbolPass is no-op.
// addPass(RewriteSymbolPass());
}
/// Add common passes that perform LLVM IR to IR transforms in preparation for
/// instruction selection.
template <typename Derived>
void CodeGenPassBuilder<Derived>::addISelPrepare(AddIRPass &addPass) const {
derived().addPreISel(addPass);
// Add both the safe stack and the stack protection passes: each of them will
// only protect functions that have corresponding attributes.
addPass(SafeStackPass());
addPass(StackProtectorPass());
if (Opt.PrintISelInput)
addPass(PrintFunctionPass(dbgs(),
"\n\n*** Final LLVM Code input to ISel ***\n"));
// All passes which modify the LLVM IR are now complete; run the verifier
// to ensure that the IR is valid.
if (!Opt.DisableVerify)
addPass(VerifierPass());
}
template <typename Derived>
Error CodeGenPassBuilder<Derived>::addCoreISelPasses(
AddMachinePass &addPass) const {
// Enable FastISel with -fast-isel, but allow that to be overridden.
TM.setO0WantsFastISel(Opt.EnableFastISelOption.getValueOr(true));
// Determine an instruction selector.
enum class SelectorType { SelectionDAG, FastISel, GlobalISel };
SelectorType Selector;
if (Opt.EnableFastISelOption && *Opt.EnableFastISelOption == true)
Selector = SelectorType::FastISel;
else if ((Opt.EnableGlobalISelOption &&
*Opt.EnableGlobalISelOption == true) ||
(TM.Options.EnableGlobalISel &&
(!Opt.EnableGlobalISelOption ||
*Opt.EnableGlobalISelOption == false)))
Selector = SelectorType::GlobalISel;
else if (TM.getOptLevel() == CodeGenOpt::None && TM.getO0WantsFastISel())
Selector = SelectorType::FastISel;
else
Selector = SelectorType::SelectionDAG;
// Set consistently TM.Options.EnableFastISel and EnableGlobalISel.
if (Selector == SelectorType::FastISel) {
TM.setFastISel(true);
TM.setGlobalISel(false);
} else if (Selector == SelectorType::GlobalISel) {
TM.setFastISel(false);
TM.setGlobalISel(true);
}
// Add instruction selector passes.
if (Selector == SelectorType::GlobalISel) {
if (auto Err = derived().addIRTranslator(addPass))
return std::move(Err);
derived().addPreLegalizeMachineIR(addPass);
if (auto Err = derived().addLegalizeMachineIR(addPass))
return std::move(Err);
// Before running the register bank selector, ask the target if it
// wants to run some passes.
derived().addPreRegBankSelect(addPass);
if (auto Err = derived().addRegBankSelect(addPass))
return std::move(Err);
derived().addPreGlobalInstructionSelect(addPass);
if (auto Err = derived().addGlobalInstructionSelect(addPass))
return std::move(Err);
// Pass to reset the MachineFunction if the ISel failed.
addPass(ResetMachineFunctionPass(reportDiagnosticWhenGlobalISelFallback(),
isGlobalISelAbortEnabled()));
// Provide a fallback path when we do not want to abort on
// not-yet-supported input.
if (!isGlobalISelAbortEnabled())
if (auto Err = derived().addInstSelector(addPass))
return std::move(Err);
} else if (auto Err = derived().addInstSelector(addPass))
return std::move(Err);
// Expand pseudo-instructions emitted by ISel. Don't run the verifier before
// FinalizeISel.
addPass(FinalizeISelPass());
// // Print the instruction selected machine code...
// printAndVerify("After Instruction Selection");
return Error::success();
}
/// Add the complete set of target-independent postISel code generator passes.
///
/// This can be read as the standard order of major LLVM CodeGen stages. Stages
/// with nontrivial configuration or multiple passes are broken out below in
/// add%Stage routines.
///
/// Any CodeGenPassBuilder<Derived>::addXX routine may be overriden by the
/// Target. The addPre/Post methods with empty header implementations allow
/// injecting target-specific fixups just before or after major stages.
/// Additionally, targets have the flexibility to change pass order within a
/// stage by overriding default implementation of add%Stage routines below. Each
/// technique has maintainability tradeoffs because alternate pass orders are
/// not well supported. addPre/Post works better if the target pass is easily
/// tied to a common pass. But if it has subtle dependencies on multiple passes,
/// the target should override the stage instead.
template <typename Derived>
Error CodeGenPassBuilder<Derived>::addMachinePasses(
AddMachinePass &addPass) const {
// Add passes that optimize machine instructions in SSA form.
if (getOptLevel() != CodeGenOpt::None) {
derived().addMachineSSAOptimization(addPass);
} else {
// If the target requests it, assign local variables to stack slots relative
// to one another and simplify frame index references where possible.
addPass(LocalStackSlotPass());
}
if (TM.Options.EnableIPRA)
addPass(RegUsageInfoPropagationPass());
// Run pre-ra passes.
derived().addPreRegAlloc(addPass);
// Run register allocation and passes that are tightly coupled with it,
// including phi elimination and scheduling.
if (*Opt.OptimizeRegAlloc) {
derived().addOptimizedRegAlloc(addPass);
} else {
if (auto Err = derived().addFastRegAlloc(addPass))
return Err;
}
// Run post-ra passes.
derived().addPostRegAlloc(addPass);
[RemoveRedundantDebugValues] Add a Pass that removes redundant DBG_VALUEs This new MIR pass removes redundant DBG_VALUEs. After the register allocator is done, more precisely, after the Virtual Register Rewriter, we end up having duplicated DBG_VALUEs, since some virtual registers are being rewritten into the same physical register as some of existing DBG_VALUEs. Each DBG_VALUE should indicate (at least before the LiveDebugValues) variables assignment, but it is being clobbered for function parameters during the SelectionDAG since it generates new DBG_VALUEs after COPY instructions, even though the parameter has no assignment. For example, if we had a DBG_VALUE $regX as an entry debug value representing the parameter, and a COPY and after the COPY, DBG_VALUE $virt_reg, and after the virtregrewrite the $virt_reg gets rewritten into $regX, we'd end up having redundant DBG_VALUE. This breaks the definition of the DBG_VALUE since some analysis passes might be built on top of that premise..., and this patch tries to fix the MIR with the respect to that. This first patch performs bacward scan, by trying to detect a sequence of consecutive DBG_VALUEs, and to remove all DBG_VALUEs describing one variable but the last one: For example: (1) DBG_VALUE $edi, !"var1", ... (2) DBG_VALUE $esi, !"var2", ... (3) DBG_VALUE $edi, !"var1", ... ... in this case, we can remove (1). By combining the forward scan that will be introduced in the next patch (from this stack), by inspecting the statistics, the RemoveRedundantDebugValues removes 15032 instructions by using gdb-7.11 as a testbed. Differential Revision: https://reviews.llvm.org/D105279
2021-06-28 14:15:31 +02:00
addPass(RemoveRedundantDebugValuesPass());
// Insert prolog/epilog code. Eliminate abstract frame index references...
if (getOptLevel() != CodeGenOpt::None) {
addPass(PostRAMachineSinkingPass());
addPass(ShrinkWrapPass());
}
addPass(PrologEpilogInserterPass());
/// Add passes that optimize machine instructions after register allocation.
if (getOptLevel() != CodeGenOpt::None)
derived().addMachineLateOptimization(addPass);
// Expand pseudo instructions before second scheduling pass.
addPass(ExpandPostRAPseudosPass());
// Run pre-sched2 passes.
derived().addPreSched2(addPass);
if (Opt.EnableImplicitNullChecks)
addPass(ImplicitNullChecksPass());
// Second pass scheduler.
// Let Target optionally insert this pass by itself at some other
// point.
if (getOptLevel() != CodeGenOpt::None &&
!TM.targetSchedulesPostRAScheduling()) {
if (Opt.MISchedPostRA)
addPass(PostMachineSchedulerPass());
else
addPass(PostRASchedulerPass());
}
// GC
derived().addGCPasses(addPass);
// Basic block placement.
if (getOptLevel() != CodeGenOpt::None)
derived().addBlockPlacement(addPass);
// Insert before XRay Instrumentation.
addPass(FEntryInserterPass());
addPass(XRayInstrumentationPass());
addPass(PatchableFunctionPass());
derived().addPreEmitPass(addPass);
if (TM.Options.EnableIPRA)
// Collect register usage information and produce a register mask of
// clobbered registers, to be used to optimize call sites.
addPass(RegUsageInfoCollectorPass());
addPass(FuncletLayoutPass());
addPass(StackMapLivenessPass());
addPass(LiveDebugValuesPass());
if (TM.Options.EnableMachineOutliner && getOptLevel() != CodeGenOpt::None &&
Opt.EnableMachineOutliner != RunOutliner::NeverOutline) {
bool RunOnAllFunctions =
(Opt.EnableMachineOutliner == RunOutliner::AlwaysOutline);
bool AddOutliner = RunOnAllFunctions || TM.Options.SupportsDefaultOutlining;
if (AddOutliner)
addPass(MachineOutlinerPass(RunOnAllFunctions));
}
// Add passes that directly emit MI after all other MI passes.
derived().addPreEmitPass2(addPass);
return Error::success();
}
/// Add passes that optimize machine instructions in SSA form.
template <typename Derived>
void CodeGenPassBuilder<Derived>::addMachineSSAOptimization(
AddMachinePass &addPass) const {
// Pre-ra tail duplication.
addPass(EarlyTailDuplicatePass());
// Optimize PHIs before DCE: removing dead PHI cycles may make more
// instructions dead.
addPass(OptimizePHIsPass());
// This pass merges large allocas. StackSlotColoring is a different pass
// which merges spill slots.
addPass(StackColoringPass());
// If the target requests it, assign local variables to stack slots relative
// to one another and simplify frame index references where possible.
addPass(LocalStackSlotPass());
// With optimization, dead code should already be eliminated. However
// there is one known exception: lowered code for arguments that are only
// used by tail calls, where the tail calls reuse the incoming stack
// arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
addPass(DeadMachineInstructionElimPass());
// Allow targets to insert passes that improve instruction level parallelism,
// like if-conversion. Such passes will typically need dominator trees and
// loop info, just like LICM and CSE below.
derived().addILPOpts(addPass);
addPass(EarlyMachineLICMPass());
addPass(MachineCSEPass());
addPass(MachineSinkingPass());
addPass(PeepholeOptimizerPass());
// Clean-up the dead code that may have been generated by peephole
// rewriting.
addPass(DeadMachineInstructionElimPass());
}
//===---------------------------------------------------------------------===//
/// Register Allocation Pass Configuration
//===---------------------------------------------------------------------===//
/// Instantiate the default register allocator pass for this target for either
/// the optimized or unoptimized allocation path. This will be added to the pass
/// manager by addFastRegAlloc in the unoptimized case or addOptimizedRegAlloc
/// in the optimized case.
///
/// A target that uses the standard regalloc pass order for fast or optimized
/// allocation may still override this for per-target regalloc
/// selection. But -regalloc=... always takes precedence.
template <typename Derived>
void CodeGenPassBuilder<Derived>::addTargetRegisterAllocator(
AddMachinePass &addPass, bool Optimized) const {
if (Optimized)
addPass(RAGreedyPass());
else
addPass(RAFastPass());
}
/// Find and instantiate the register allocation pass requested by this target
/// at the current optimization level. Different register allocators are
/// defined as separate passes because they may require different analysis.
template <typename Derived>
void CodeGenPassBuilder<Derived>::addRegAllocPass(AddMachinePass &addPass,
bool Optimized) const {
if (Opt.RegAlloc == RegAllocType::Default)
// With no -regalloc= override, ask the target for a regalloc pass.
derived().addTargetRegisterAllocator(addPass, Optimized);
else if (Opt.RegAlloc == RegAllocType::Basic)
addPass(RABasicPass());
else if (Opt.RegAlloc == RegAllocType::Fast)
addPass(RAFastPass());
else if (Opt.RegAlloc == RegAllocType::Greedy)
addPass(RAGreedyPass());
else if (Opt.RegAlloc == RegAllocType::PBQP)
addPass(RAPBQPPass());
else
llvm_unreachable("unknonwn register allocator type");
}
template <typename Derived>
Error CodeGenPassBuilder<Derived>::addRegAssignmentFast(
AddMachinePass &addPass) const {
if (Opt.RegAlloc != RegAllocType::Default &&
Opt.RegAlloc != RegAllocType::Fast)
return make_error<StringError>(
"Must use fast (default) register allocator for unoptimized regalloc.",
inconvertibleErrorCode());
addRegAllocPass(addPass, false);
return Error::success();
}
template <typename Derived>
Error CodeGenPassBuilder<Derived>::addRegAssignmentOptimized(
AddMachinePass &addPass) const {
// Add the selected register allocation pass.
addRegAllocPass(addPass, true);
// Allow targets to change the register assignments before rewriting.
derived().addPreRewrite(addPass);
// Finally rewrite virtual registers.
addPass(VirtRegRewriterPass());
// Perform stack slot coloring and post-ra machine LICM.
//
// FIXME: Re-enable coloring with register when it's capable of adding
// kill markers.
addPass(StackSlotColoringPass());
return Error::success();
}
/// Add the minimum set of target-independent passes that are required for
/// register allocation. No coalescing or scheduling.
template <typename Derived>
Error CodeGenPassBuilder<Derived>::addFastRegAlloc(
AddMachinePass &addPass) const {
addPass(PHIEliminationPass());
addPass(TwoAddressInstructionPass());
return derived().addRegAssignmentFast(addPass);
}
/// Add standard target-independent passes that are tightly coupled with
/// optimized register allocation, including coalescing, machine instruction
/// scheduling, and register allocation itself.
template <typename Derived>
void CodeGenPassBuilder<Derived>::addOptimizedRegAlloc(
AddMachinePass &addPass) const {
addPass(DetectDeadLanesPass());
addPass(ProcessImplicitDefsPass());
// Edge splitting is smarter with machine loop info.
addPass(PHIEliminationPass());
// Eventually, we want to run LiveIntervals before PHI elimination.
if (Opt.EarlyLiveIntervals)
addPass(LiveIntervalsPass());
addPass(TwoAddressInstructionPass());
addPass(RegisterCoalescerPass());
// The machine scheduler may accidentally create disconnected components
// when moving subregister definitions around, avoid this by splitting them to
// separate vregs before. Splitting can also improve reg. allocation quality.
addPass(RenameIndependentSubregsPass());
// PreRA instruction scheduling.
addPass(MachineSchedulerPass());
if (derived().addRegAssignmentOptimized(addPass)) {
// Allow targets to expand pseudo instructions depending on the choice of
// registers before MachineCopyPropagation.
derived().addPostRewrite(addPass);
// Copy propagate to forward register uses and try to eliminate COPYs that
// were not coalesced.
addPass(MachineCopyPropagationPass());
// Run post-ra machine LICM to hoist reloads / remats.
//
// FIXME: can this move into MachineLateOptimization?
addPass(MachineLICMPass());
}
}
//===---------------------------------------------------------------------===//
/// Post RegAlloc Pass Configuration
//===---------------------------------------------------------------------===//
/// Add passes that optimize machine instructions after register allocation.
template <typename Derived>
void CodeGenPassBuilder<Derived>::addMachineLateOptimization(
AddMachinePass &addPass) const {
// Branch folding must be run after regalloc and prolog/epilog insertion.
addPass(BranchFolderPass());
// Tail duplication.
// Note that duplicating tail just increases code size and degrades
// performance for targets that require Structured Control Flow.
// In addition it can also make CFG irreducible. Thus we disable it.
if (!TM.requiresStructuredCFG())
addPass(TailDuplicatePass());
// Copy propagation.
addPass(MachineCopyPropagationPass());
}
/// Add standard basic block placement passes.
template <typename Derived>
void CodeGenPassBuilder<Derived>::addBlockPlacement(
AddMachinePass &addPass) const {
addPass(MachineBlockPlacementPass());
// Run a separate pass to collect block placement statistics.
if (Opt.EnableBlockPlacementStats)
addPass(MachineBlockPlacementStatsPass());
}
} // namespace llvm
#endif // LLVM_CODEGEN_CODEGENPASSBUILDER_H