1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00
llvm-mirror/tools/llvm-cfi-verify/lib/FileAnalysis.h

250 lines
9.9 KiB
C
Raw Normal View History

//===- FileAnalysis.h -------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CFI_VERIFY_FILE_ANALYSIS_H
#define LLVM_CFI_VERIFY_FILE_ANALYSIS_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/DebugInfo/Symbolize/Symbolize.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include <functional>
#include <set>
#include <string>
#include <unordered_map>
namespace llvm {
namespace cfi_verify {
struct GraphResult;
extern bool IgnoreDWARFFlag;
enum class CFIProtectionStatus {
// This instruction is protected by CFI.
PROTECTED,
// The instruction is not an indirect control flow instruction, and thus
// shouldn't be protected.
FAIL_NOT_INDIRECT_CF,
// There is a path to the instruction that was unexpected.
FAIL_ORPHANS,
// There is a path to the instruction from a conditional branch that does not
// properly check the destination for this vcall/icall.
FAIL_BAD_CONDITIONAL_BRANCH,
// One of the operands of the indirect CF instruction is modified between the
// CFI-check and execution.
FAIL_REGISTER_CLOBBERED,
// The instruction referenced does not exist. This normally indicates an
// error in the program, where you try and validate a graph that was created
// in a different FileAnalysis object.
FAIL_INVALID_INSTRUCTION,
};
StringRef stringCFIProtectionStatus(CFIProtectionStatus Status);
// Disassembler and analysis tool for machine code files. Keeps track of non-
// sequential control flows, including indirect control flow instructions.
class FileAnalysis {
public:
// A metadata struct for an instruction.
struct Instr {
uint64_t VMAddress; // Virtual memory address of this instruction.
MCInst Instruction; // Instruction.
uint64_t InstructionSize; // Size of this instruction.
bool Valid; // Is this a valid instruction? If false, Instr::Instruction is
// undefined.
};
// Construct a FileAnalysis from a file path.
static Expected<FileAnalysis> Create(StringRef Filename);
// Construct and take ownership of the supplied object. Do not use this
// constructor, prefer to use FileAnalysis::Create instead.
FileAnalysis(object::OwningBinary<object::Binary> Binary);
FileAnalysis() = delete;
FileAnalysis(const FileAnalysis &) = delete;
FileAnalysis(FileAnalysis &&Other) = default;
// Returns the instruction at the provided address. Returns nullptr if there
// is no instruction at the provided address.
const Instr *getInstruction(uint64_t Address) const;
// Returns the instruction at the provided adress, dying if the instruction is
// not found.
const Instr &getInstructionOrDie(uint64_t Address) const;
// Returns a pointer to the previous/next instruction in sequence,
// respectively. Returns nullptr if the next/prev instruction doesn't exist,
// or if the provided instruction doesn't exist.
const Instr *getPrevInstructionSequential(const Instr &InstrMeta) const;
const Instr *getNextInstructionSequential(const Instr &InstrMeta) const;
// Returns whether this instruction is used by CFI to trap the program.
bool isCFITrap(const Instr &InstrMeta) const;
// Returns whether this instruction is a call to a function that will trap on
// CFI violations (i.e., it serves as a trap in this instance).
bool willTrapOnCFIViolation(const Instr &InstrMeta) const;
// Returns whether this function can fall through to the next instruction.
// Undefined (and bad) instructions cannot fall through, and instruction that
// modify the control flow can only fall through if they are conditional
// branches or calls.
bool canFallThrough(const Instr &InstrMeta) const;
// Returns the definitive next instruction. This is different from the next
// instruction sequentially as it will follow unconditional branches (assuming
// they can be resolved at compile time, i.e. not indirect). This method
// returns nullptr if the provided instruction does not transfer control flow
// to exactly one instruction that is known deterministically at compile time.
// Also returns nullptr if the deterministic target does not exist in this
// file.
const Instr *getDefiniteNextInstruction(const Instr &InstrMeta) const;
// Get a list of deterministic control flows that lead to the provided
// instruction. This list includes all static control flow cross-references as
// well as the previous instruction if it can fall through.
std::set<const Instr *>
getDirectControlFlowXRefs(const Instr &InstrMeta) const;
// Returns whether this instruction uses a register operand.
bool usesRegisterOperand(const Instr &InstrMeta) const;
// Returns the list of indirect instructions.
const std::set<object::SectionedAddress> &getIndirectInstructions() const;
const MCRegisterInfo *getRegisterInfo() const;
const MCInstrInfo *getMCInstrInfo() const;
const MCInstrAnalysis *getMCInstrAnalysis() const;
// Returns the inlining information for the provided address.
Expected<DIInliningInfo>
symbolizeInlinedCode(object::SectionedAddress Address);
// Returns whether the provided Graph represents a protected indirect control
// flow instruction in this file.
CFIProtectionStatus validateCFIProtection(const GraphResult &Graph) const;
// Returns the first place the operand register is clobbered between the CFI-
// check and the indirect CF instruction execution. We do this by walking
// backwards from the indirect CF and ensuring there is at most one load
// involving the operand register (which is the indirect CF itself on x86).
// If the register is not modified, returns the address of the indirect CF
// instruction. The result is undefined if the provided graph does not fall
// under either the FAIL_REGISTER_CLOBBERED or PROTECTED status (see
// CFIProtectionStatus).
uint64_t indirectCFOperandClobber(const GraphResult& Graph) const;
// Prints an instruction to the provided stream using this object's pretty-
// printers.
void printInstruction(const Instr &InstrMeta, raw_ostream &OS) const;
protected:
// Construct a blank object with the provided triple and features. Used in
// testing, where a sub class will dependency inject protected methods to
// allow analysis of raw binary, without requiring a fully valid ELF file.
FileAnalysis(const Triple &ObjectTriple, const SubtargetFeatures &Features);
// Add an instruction to this object.
void addInstruction(const Instr &Instruction);
// Disassemble and parse the provided bytes into this object. Instruction
// address calculation is done relative to the provided SectionAddress.
void parseSectionContents(ArrayRef<uint8_t> SectionBytes,
object::SectionedAddress Address);
// Constructs and initialises members required for disassembly.
Error initialiseDisassemblyMembers();
// Parses code sections from the internal object file. Saves them into the
// internal members. Should only be called once by Create().
Error parseCodeSections();
// Parses the symbol table to look for the addresses of functions that will
// trap on CFI violations.
Error parseSymbolTable();
private:
// Members that describe the input file.
object::OwningBinary<object::Binary> Binary;
const object::ObjectFile *Object = nullptr;
Triple ObjectTriple;
std::string ArchName;
std::string MCPU;
const Target *ObjectTarget = nullptr;
SubtargetFeatures Features;
// Members required for disassembly.
std::unique_ptr<const MCRegisterInfo> RegisterInfo;
std::unique_ptr<const MCAsmInfo> AsmInfo;
std::unique_ptr<MCSubtargetInfo> SubtargetInfo;
std::unique_ptr<const MCInstrInfo> MII;
MCObjectFileInfo MOFI;
std::unique_ptr<MCContext> Context;
std::unique_ptr<const MCDisassembler> Disassembler;
std::unique_ptr<const MCInstrAnalysis> MIA;
std::unique_ptr<MCInstPrinter> Printer;
// Symbolizer used for debug information parsing.
std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
// A mapping between the virtual memory address to the instruction metadata
// struct. TODO(hctim): Reimplement this as a sorted vector to avoid per-
// insertion allocation.
std::map<uint64_t, Instr> Instructions;
// Contains a mapping between a specific address, and a list of instructions
// that use this address as a branch target (including call instructions).
DenseMap<uint64_t, std::vector<uint64_t>> StaticBranchTargetings;
// A list of addresses of indirect control flow instructions.
std::set<object::SectionedAddress> IndirectInstructions;
// The addresses of functions that will trap on CFI violations.
SmallSet<uint64_t, 4> TrapOnFailFunctionAddresses;
};
class UnsupportedDisassembly : public ErrorInfo<UnsupportedDisassembly> {
public:
static char ID;
std::string Text;
UnsupportedDisassembly(StringRef Text);
void log(raw_ostream &OS) const override;
std::error_code convertToErrorCode() const override;
};
} // namespace cfi_verify
} // namespace llvm
#endif // LLVM_CFI_VERIFY_FILE_ANALYSIS_H