2015-03-31 14:52:27 +02:00
|
|
|
//===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file implements a TargetTransformInfo analysis pass specific to the
|
|
|
|
// SystemZ target machine. It uses the target's detailed information to provide
|
|
|
|
// more precise answers to certain TTI queries, while letting the target
|
|
|
|
// independent and default TTI implementations handle the rest.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "SystemZTargetTransformInfo.h"
|
|
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
|
|
#include "llvm/CodeGen/BasicTTIImpl.h"
|
|
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#include "llvm/Target/CostTable.h"
|
|
|
|
#include "llvm/Target/TargetLowering.h"
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
#define DEBUG_TYPE "systemztti"
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// SystemZ cost model.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2015-08-05 20:08:10 +02:00
|
|
|
int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
|
2015-03-31 14:52:27 +02:00
|
|
|
assert(Ty->isIntegerTy());
|
|
|
|
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
|
|
// There is no cost model for constants with a bit size of 0. Return TCC_Free
|
|
|
|
// here, so that constant hoisting will ignore this constant.
|
|
|
|
if (BitSize == 0)
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
// No cost model for operations on integers larger than 64 bit implemented yet.
|
|
|
|
if (BitSize > 64)
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
|
|
|
|
if (Imm == 0)
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
|
|
|
|
if (Imm.getBitWidth() <= 64) {
|
|
|
|
// Constants loaded via lgfi.
|
|
|
|
if (isInt<32>(Imm.getSExtValue()))
|
|
|
|
return TTI::TCC_Basic;
|
|
|
|
// Constants loaded via llilf.
|
|
|
|
if (isUInt<32>(Imm.getZExtValue()))
|
|
|
|
return TTI::TCC_Basic;
|
|
|
|
// Constants loaded via llihf:
|
|
|
|
if ((Imm.getZExtValue() & 0xffffffff) == 0)
|
|
|
|
return TTI::TCC_Basic;
|
|
|
|
|
|
|
|
return 2 * TTI::TCC_Basic;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 4 * TTI::TCC_Basic;
|
|
|
|
}
|
|
|
|
|
2015-08-05 20:08:10 +02:00
|
|
|
int SystemZTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
|
|
|
|
const APInt &Imm, Type *Ty) {
|
2015-03-31 14:52:27 +02:00
|
|
|
assert(Ty->isIntegerTy());
|
|
|
|
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
|
|
// There is no cost model for constants with a bit size of 0. Return TCC_Free
|
|
|
|
// here, so that constant hoisting will ignore this constant.
|
|
|
|
if (BitSize == 0)
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
// No cost model for operations on integers larger than 64 bit implemented yet.
|
|
|
|
if (BitSize > 64)
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
|
|
|
|
switch (Opcode) {
|
|
|
|
default:
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
case Instruction::GetElementPtr:
|
|
|
|
// Always hoist the base address of a GetElementPtr. This prevents the
|
|
|
|
// creation of new constants for every base constant that gets constant
|
|
|
|
// folded with the offset.
|
|
|
|
if (Idx == 0)
|
|
|
|
return 2 * TTI::TCC_Basic;
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
case Instruction::Store:
|
|
|
|
if (Idx == 0 && Imm.getBitWidth() <= 64) {
|
|
|
|
// Any 8-bit immediate store can by implemented via mvi.
|
|
|
|
if (BitSize == 8)
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
// 16-bit immediate values can be stored via mvhhi/mvhi/mvghi.
|
|
|
|
if (isInt<16>(Imm.getSExtValue()))
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case Instruction::ICmp:
|
|
|
|
if (Idx == 1 && Imm.getBitWidth() <= 64) {
|
|
|
|
// Comparisons against signed 32-bit immediates implemented via cgfi.
|
|
|
|
if (isInt<32>(Imm.getSExtValue()))
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
// Comparisons against unsigned 32-bit immediates implemented via clgfi.
|
|
|
|
if (isUInt<32>(Imm.getZExtValue()))
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case Instruction::Add:
|
|
|
|
case Instruction::Sub:
|
|
|
|
if (Idx == 1 && Imm.getBitWidth() <= 64) {
|
|
|
|
// We use algfi/slgfi to add/subtract 32-bit unsigned immediates.
|
|
|
|
if (isUInt<32>(Imm.getZExtValue()))
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
// Or their negation, by swapping addition vs. subtraction.
|
|
|
|
if (isUInt<32>(-Imm.getSExtValue()))
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case Instruction::Mul:
|
|
|
|
if (Idx == 1 && Imm.getBitWidth() <= 64) {
|
|
|
|
// We use msgfi to multiply by 32-bit signed immediates.
|
|
|
|
if (isInt<32>(Imm.getSExtValue()))
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case Instruction::Or:
|
|
|
|
case Instruction::Xor:
|
|
|
|
if (Idx == 1 && Imm.getBitWidth() <= 64) {
|
|
|
|
// Masks supported by oilf/xilf.
|
|
|
|
if (isUInt<32>(Imm.getZExtValue()))
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
// Masks supported by oihf/xihf.
|
|
|
|
if ((Imm.getZExtValue() & 0xffffffff) == 0)
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case Instruction::And:
|
|
|
|
if (Idx == 1 && Imm.getBitWidth() <= 64) {
|
|
|
|
// Any 32-bit AND operation can by implemented via nilf.
|
|
|
|
if (BitSize <= 32)
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
// 64-bit masks supported by nilf.
|
|
|
|
if (isUInt<32>(~Imm.getZExtValue()))
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
// 64-bit masks supported by nilh.
|
|
|
|
if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff)
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
// Some 64-bit AND operations can be implemented via risbg.
|
|
|
|
const SystemZInstrInfo *TII = ST->getInstrInfo();
|
|
|
|
unsigned Start, End;
|
|
|
|
if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End))
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case Instruction::Shl:
|
|
|
|
case Instruction::LShr:
|
|
|
|
case Instruction::AShr:
|
|
|
|
// Always return TCC_Free for the shift value of a shift instruction.
|
|
|
|
if (Idx == 1)
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
break;
|
|
|
|
case Instruction::UDiv:
|
|
|
|
case Instruction::SDiv:
|
|
|
|
case Instruction::URem:
|
|
|
|
case Instruction::SRem:
|
|
|
|
case Instruction::Trunc:
|
|
|
|
case Instruction::ZExt:
|
|
|
|
case Instruction::SExt:
|
|
|
|
case Instruction::IntToPtr:
|
|
|
|
case Instruction::PtrToInt:
|
|
|
|
case Instruction::BitCast:
|
|
|
|
case Instruction::PHI:
|
|
|
|
case Instruction::Call:
|
|
|
|
case Instruction::Select:
|
|
|
|
case Instruction::Ret:
|
|
|
|
case Instruction::Load:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return SystemZTTIImpl::getIntImmCost(Imm, Ty);
|
|
|
|
}
|
|
|
|
|
2015-08-05 20:08:10 +02:00
|
|
|
int SystemZTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
|
|
|
|
const APInt &Imm, Type *Ty) {
|
2015-03-31 14:52:27 +02:00
|
|
|
assert(Ty->isIntegerTy());
|
|
|
|
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
|
|
// There is no cost model for constants with a bit size of 0. Return TCC_Free
|
|
|
|
// here, so that constant hoisting will ignore this constant.
|
|
|
|
if (BitSize == 0)
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
// No cost model for operations on integers larger than 64 bit implemented yet.
|
|
|
|
if (BitSize > 64)
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
|
|
|
|
switch (IID) {
|
|
|
|
default:
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
case Intrinsic::sadd_with_overflow:
|
|
|
|
case Intrinsic::uadd_with_overflow:
|
|
|
|
case Intrinsic::ssub_with_overflow:
|
|
|
|
case Intrinsic::usub_with_overflow:
|
|
|
|
// These get expanded to include a normal addition/subtraction.
|
|
|
|
if (Idx == 1 && Imm.getBitWidth() <= 64) {
|
|
|
|
if (isUInt<32>(Imm.getZExtValue()))
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
if (isUInt<32>(-Imm.getSExtValue()))
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case Intrinsic::smul_with_overflow:
|
|
|
|
case Intrinsic::umul_with_overflow:
|
|
|
|
// These get expanded to include a normal multiplication.
|
|
|
|
if (Idx == 1 && Imm.getBitWidth() <= 64) {
|
|
|
|
if (isInt<32>(Imm.getSExtValue()))
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case Intrinsic::experimental_stackmap:
|
|
|
|
if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
break;
|
|
|
|
case Intrinsic::experimental_patchpoint_void:
|
|
|
|
case Intrinsic::experimental_patchpoint_i64:
|
|
|
|
if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
|
|
|
|
return TTI::TCC_Free;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return SystemZTTIImpl::getIntImmCost(Imm, Ty);
|
|
|
|
}
|
2015-03-31 14:56:33 +02:00
|
|
|
|
|
|
|
TargetTransformInfo::PopcntSupportKind
|
|
|
|
SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) {
|
|
|
|
assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2");
|
|
|
|
if (ST->hasPopulationCount() && TyWidth <= 64)
|
|
|
|
return TTI::PSK_FastHardware;
|
|
|
|
return TTI::PSK_Software;
|
|
|
|
}
|
|
|
|
|
[LoopUnroll] Pass SCEV to getUnrollingPreferences hook. NFCI.
Reviewers: sanjoy, anna, reames, apilipenko, igor-laevsky, mkuper
Subscribers: jholewinski, arsenm, mzolotukhin, nemanjai, nhaehnle, javed.absar, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D34531
llvm-svn: 306554
2017-06-28 17:53:17 +02:00
|
|
|
void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
|
2016-09-28 11:41:38 +02:00
|
|
|
TTI::UnrollingPreferences &UP) {
|
|
|
|
// Find out if L contains a call, what the machine instruction count
|
|
|
|
// estimate is, and how many stores there are.
|
|
|
|
bool HasCall = false;
|
|
|
|
unsigned NumStores = 0;
|
|
|
|
for (auto &BB : L->blocks())
|
|
|
|
for (auto &I : *BB) {
|
|
|
|
if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) {
|
|
|
|
ImmutableCallSite CS(&I);
|
|
|
|
if (const Function *F = CS.getCalledFunction()) {
|
|
|
|
if (isLoweredToCall(F))
|
|
|
|
HasCall = true;
|
|
|
|
if (F->getIntrinsicID() == Intrinsic::memcpy ||
|
|
|
|
F->getIntrinsicID() == Intrinsic::memset)
|
|
|
|
NumStores++;
|
|
|
|
} else { // indirect call.
|
|
|
|
HasCall = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (isa<StoreInst>(&I)) {
|
|
|
|
Type *MemAccessTy = I.getOperand(0)->getType();
|
2017-04-12 13:49:08 +02:00
|
|
|
NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 0, 0);
|
2016-09-28 11:41:38 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// The z13 processor will run out of store tags if too many stores
|
|
|
|
// are fed into it too quickly. Therefore make sure there are not
|
|
|
|
// too many stores in the resulting unrolled loop.
|
|
|
|
unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX);
|
|
|
|
|
|
|
|
if (HasCall) {
|
|
|
|
// Only allow full unrolling if loop has any calls.
|
|
|
|
UP.FullUnrollMaxCount = Max;
|
|
|
|
UP.MaxCount = 1;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
UP.MaxCount = Max;
|
|
|
|
if (UP.MaxCount <= 1)
|
|
|
|
return;
|
|
|
|
|
|
|
|
// Allow partial and runtime trip count unrolling.
|
|
|
|
UP.Partial = UP.Runtime = true;
|
|
|
|
|
|
|
|
UP.PartialThreshold = 75;
|
|
|
|
UP.DefaultUnrollRuntimeCount = 4;
|
|
|
|
|
|
|
|
// Allow expensive instructions in the pre-header of the loop.
|
|
|
|
UP.AllowExpensiveTripCount = true;
|
|
|
|
|
|
|
|
UP.Force = true;
|
|
|
|
}
|
|
|
|
|
[SystemZ] Add CodeGen support for integer vector types
This the first of a series of patches to add CodeGen support exploiting
the instructions of the z13 vector facility. This patch adds support
for the native integer vector types (v16i8, v8i16, v4i32, v2i64).
When the vector facility is present, we default to the new vector ABI.
This is characterized by two major differences:
- Vector types are passed/returned in vector registers
(except for unnamed arguments of a variable-argument list function).
- Vector types are at most 8-byte aligned.
The reason for the choice of 8-byte vector alignment is that the hardware
is able to efficiently load vectors at 8-byte alignment, and the ABI only
guarantees 8-byte alignment of the stack pointer, so requiring any higher
alignment for vectors would require dynamic stack re-alignment code.
However, for compatibility with old code that may use vector types, when
*not* using the vector facility, the old alignment rules (vector types
are naturally aligned) remain in use.
These alignment rules are not only implemented at the C language level
(implemented in clang), but also at the LLVM IR level. This is done
by selecting a different DataLayout string depending on whether the
vector ABI is in effect or not.
Based on a patch by Richard Sandiford.
llvm-svn: 236521
2015-05-05 21:25:42 +02:00
|
|
|
unsigned SystemZTTIImpl::getNumberOfRegisters(bool Vector) {
|
|
|
|
if (!Vector)
|
|
|
|
// Discount the stack pointer. Also leave out %r0, since it can't
|
|
|
|
// be used in an address.
|
|
|
|
return 14;
|
|
|
|
if (ST->hasVector())
|
|
|
|
return 32;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
Const correctness for TTI::getRegisterBitWidth
Summary: The method TargetTransformInfo::getRegisterBitWidth() is declared const, but the type erasing implementation classes (TargetTransformInfo::Concept & TargetTransformInfo::Model) that were introduced by Chandler in https://reviews.llvm.org/D7293 do not have the method declared const. This is an NFC to tidy up the const consistency between TTI and its implementation.
Reviewers: chandlerc, rnk, reames
Reviewed By: reames
Subscribers: reames, jfb, arsenm, dschuff, nemanjai, nhaehnle, javed.absar, sbc100, jgravelle-google, llvm-commits
Differential Revision: https://reviews.llvm.org/D33903
llvm-svn: 305189
2017-06-12 16:22:21 +02:00
|
|
|
unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const {
|
[SystemZ] Add CodeGen support for integer vector types
This the first of a series of patches to add CodeGen support exploiting
the instructions of the z13 vector facility. This patch adds support
for the native integer vector types (v16i8, v8i16, v4i32, v2i64).
When the vector facility is present, we default to the new vector ABI.
This is characterized by two major differences:
- Vector types are passed/returned in vector registers
(except for unnamed arguments of a variable-argument list function).
- Vector types are at most 8-byte aligned.
The reason for the choice of 8-byte vector alignment is that the hardware
is able to efficiently load vectors at 8-byte alignment, and the ABI only
guarantees 8-byte alignment of the stack pointer, so requiring any higher
alignment for vectors would require dynamic stack re-alignment code.
However, for compatibility with old code that may use vector types, when
*not* using the vector facility, the old alignment rules (vector types
are naturally aligned) remain in use.
These alignment rules are not only implemented at the C language level
(implemented in clang), but also at the LLVM IR level. This is done
by selecting a different DataLayout string depending on whether the
vector ABI is in effect or not.
Based on a patch by Richard Sandiford.
llvm-svn: 236521
2015-05-05 21:25:42 +02:00
|
|
|
if (!Vector)
|
|
|
|
return 64;
|
|
|
|
if (ST->hasVector())
|
|
|
|
return 128;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-04-12 13:49:08 +02:00
|
|
|
int SystemZTTIImpl::getArithmeticInstrCost(
|
|
|
|
unsigned Opcode, Type *Ty,
|
|
|
|
TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
|
|
|
|
TTI::OperandValueProperties Opd1PropInfo,
|
|
|
|
TTI::OperandValueProperties Opd2PropInfo,
|
|
|
|
ArrayRef<const Value *> Args) {
|
|
|
|
|
|
|
|
// TODO: return a good value for BB-VECTORIZER that includes the
|
|
|
|
// immediate loads, which we do not want to count for the loop
|
|
|
|
// vectorizer, since they are hopefully hoisted out of the loop. This
|
|
|
|
// would require a new parameter 'InLoop', but not sure if constant
|
|
|
|
// args are common enough to motivate this.
|
|
|
|
|
|
|
|
unsigned ScalarBits = Ty->getScalarSizeInBits();
|
|
|
|
|
2017-05-17 14:46:26 +02:00
|
|
|
// Div with a constant which is a power of 2 will be converted by
|
|
|
|
// DAGCombiner to use shifts. With vector shift-element instructions, a
|
|
|
|
// vector sdiv costs about as much as a scalar one.
|
|
|
|
const unsigned SDivCostEstimate = 4;
|
|
|
|
bool SDivPow2 = false;
|
|
|
|
bool UDivPow2 = false;
|
|
|
|
if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv) &&
|
|
|
|
Args.size() == 2) {
|
|
|
|
const ConstantInt *CI = nullptr;
|
|
|
|
if (const Constant *C = dyn_cast<Constant>(Args[1])) {
|
|
|
|
if (C->getType()->isVectorTy())
|
|
|
|
CI = dyn_cast_or_null<const ConstantInt>(C->getSplatValue());
|
|
|
|
else
|
|
|
|
CI = dyn_cast<const ConstantInt>(C);
|
|
|
|
}
|
|
|
|
if (CI != nullptr &&
|
|
|
|
(CI->getValue().isPowerOf2() || (-CI->getValue()).isPowerOf2())) {
|
|
|
|
if (Opcode == Instruction::SDiv)
|
|
|
|
SDivPow2 = true;
|
|
|
|
else
|
|
|
|
UDivPow2 = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-04-12 13:49:08 +02:00
|
|
|
if (Ty->isVectorTy()) {
|
|
|
|
assert (ST->hasVector() && "getArithmeticInstrCost() called with vector type.");
|
|
|
|
unsigned VF = Ty->getVectorNumElements();
|
|
|
|
unsigned NumVectors = getNumberOfParts(Ty);
|
|
|
|
|
|
|
|
// These vector operations are custom handled, but are still supported
|
|
|
|
// with one instruction per vector, regardless of element size.
|
|
|
|
if (Opcode == Instruction::Shl || Opcode == Instruction::LShr ||
|
2017-05-17 14:46:26 +02:00
|
|
|
Opcode == Instruction::AShr || UDivPow2) {
|
2017-04-12 13:49:08 +02:00
|
|
|
return NumVectors;
|
|
|
|
}
|
|
|
|
|
2017-05-17 14:46:26 +02:00
|
|
|
if (SDivPow2)
|
|
|
|
return (NumVectors * SDivCostEstimate);
|
|
|
|
|
2017-04-12 13:49:08 +02:00
|
|
|
// These FP operations are supported with a single vector instruction for
|
|
|
|
// double (base implementation assumes float generally costs 2). For
|
|
|
|
// FP128, the scalar cost is 1, and there is no overhead since the values
|
|
|
|
// are already in scalar registers.
|
|
|
|
if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
|
|
|
|
Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
|
|
|
|
switch (ScalarBits) {
|
|
|
|
case 32: {
|
|
|
|
// Return the cost of multiple scalar invocation plus the cost of
|
|
|
|
// inserting and extracting the values.
|
|
|
|
unsigned ScalarCost = getArithmeticInstrCost(Opcode, Ty->getScalarType());
|
|
|
|
unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args);
|
|
|
|
// FIXME: VF 2 for these FP operations are currently just as
|
|
|
|
// expensive as for VF 4.
|
|
|
|
if (VF == 2)
|
|
|
|
Cost *= 2;
|
|
|
|
return Cost;
|
|
|
|
}
|
|
|
|
case 64:
|
|
|
|
case 128:
|
|
|
|
return NumVectors;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// There is no native support for FRem.
|
|
|
|
if (Opcode == Instruction::FRem) {
|
|
|
|
unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args);
|
|
|
|
// FIXME: VF 2 for float is currently just as expensive as for VF 4.
|
|
|
|
if (VF == 2 && ScalarBits == 32)
|
|
|
|
Cost *= 2;
|
|
|
|
return Cost;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else { // Scalar:
|
|
|
|
// These FP operations are supported with a dedicated instruction for
|
|
|
|
// float, double and fp128 (base implementation assumes float generally
|
|
|
|
// costs 2).
|
|
|
|
if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
|
|
|
|
Opcode == Instruction::FMul || Opcode == Instruction::FDiv)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
// There is no native support for FRem.
|
|
|
|
if (Opcode == Instruction::FRem)
|
|
|
|
return LIBCALL_COST;
|
|
|
|
|
|
|
|
if (Opcode == Instruction::LShr || Opcode == Instruction::AShr)
|
|
|
|
return (ScalarBits >= 32 ? 1 : 2 /*ext*/);
|
|
|
|
|
|
|
|
// Or requires one instruction, although it has custom handling for i64.
|
|
|
|
if (Opcode == Instruction::Or)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
if (Opcode == Instruction::Xor && ScalarBits == 1)
|
|
|
|
// 2 * ipm sequences ; xor ; shift ; compare
|
|
|
|
return 7;
|
|
|
|
|
2017-05-17 14:46:26 +02:00
|
|
|
if (UDivPow2)
|
|
|
|
return 1;
|
|
|
|
if (SDivPow2)
|
|
|
|
return SDivCostEstimate;
|
|
|
|
|
2017-04-12 13:49:08 +02:00
|
|
|
// An extra extension for narrow types is needed.
|
|
|
|
if ((Opcode == Instruction::SDiv || Opcode == Instruction::SRem))
|
|
|
|
// sext of op(s) for narrow types
|
|
|
|
return (ScalarBits < 32 ? 4 : (ScalarBits == 32 ? 2 : 1));
|
|
|
|
|
|
|
|
if (Opcode == Instruction::UDiv || Opcode == Instruction::URem)
|
|
|
|
// Clearing of low 64 bit reg + sext of op(s) for narrow types + dl[g]r
|
|
|
|
return (ScalarBits < 32 ? 4 : 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Fallback to the default implementation.
|
|
|
|
return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
|
|
|
|
Opd1PropInfo, Opd2PropInfo, Args);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
|
|
|
|
Type *SubTp) {
|
|
|
|
assert (Tp->isVectorTy());
|
|
|
|
assert (ST->hasVector() && "getShuffleCost() called.");
|
|
|
|
unsigned NumVectors = getNumberOfParts(Tp);
|
|
|
|
|
|
|
|
// TODO: Since fp32 is expanded, the shuffle cost should always be 0.
|
|
|
|
|
|
|
|
// FP128 values are always in scalar registers, so there is no work
|
|
|
|
// involved with a shuffle, except for broadcast. In that case register
|
|
|
|
// moves are done with a single instruction per element.
|
|
|
|
if (Tp->getScalarType()->isFP128Ty())
|
|
|
|
return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0);
|
|
|
|
|
|
|
|
switch (Kind) {
|
|
|
|
case TargetTransformInfo::SK_ExtractSubvector:
|
|
|
|
// ExtractSubvector Index indicates start offset.
|
|
|
|
|
|
|
|
// Extracting a subvector from first index is a noop.
|
|
|
|
return (Index == 0 ? 0 : NumVectors);
|
|
|
|
|
|
|
|
case TargetTransformInfo::SK_Broadcast:
|
|
|
|
// Loop vectorizer calls here to figure out the extra cost of
|
|
|
|
// broadcasting a loaded value to all elements of a vector. Since vlrep
|
|
|
|
// loads and replicates with a single instruction, adjust the returned
|
|
|
|
// value.
|
|
|
|
return NumVectors - 1;
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
|
|
|
// SystemZ supports single instruction permutation / replication.
|
|
|
|
return NumVectors;
|
|
|
|
}
|
|
|
|
|
|
|
|
return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return the log2 difference of the element sizes of the two vector types.
|
|
|
|
static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) {
|
|
|
|
unsigned Bits0 = Ty0->getScalarSizeInBits();
|
|
|
|
unsigned Bits1 = Ty1->getScalarSizeInBits();
|
|
|
|
|
|
|
|
if (Bits1 > Bits0)
|
|
|
|
return (Log2_32(Bits1) - Log2_32(Bits0));
|
|
|
|
|
|
|
|
return (Log2_32(Bits0) - Log2_32(Bits1));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return the number of instructions needed to truncate SrcTy to DstTy.
|
|
|
|
unsigned SystemZTTIImpl::
|
|
|
|
getVectorTruncCost(Type *SrcTy, Type *DstTy) {
|
|
|
|
assert (SrcTy->isVectorTy() && DstTy->isVectorTy());
|
|
|
|
assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() &&
|
|
|
|
"Packing must reduce size of vector type.");
|
|
|
|
assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() &&
|
|
|
|
"Packing should not change number of elements.");
|
|
|
|
|
|
|
|
// TODO: Since fp32 is expanded, the extract cost should always be 0.
|
|
|
|
|
|
|
|
unsigned NumParts = getNumberOfParts(SrcTy);
|
|
|
|
if (NumParts <= 2)
|
|
|
|
// Up to 2 vector registers can be truncated efficiently with pack or
|
|
|
|
// permute. The latter requires an immediate mask to be loaded, which
|
|
|
|
// typically gets hoisted out of a loop. TODO: return a good value for
|
|
|
|
// BB-VECTORIZER that includes the immediate loads, which we do not want
|
|
|
|
// to count for the loop vectorizer.
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
unsigned Cost = 0;
|
|
|
|
unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
|
|
|
|
unsigned VF = SrcTy->getVectorNumElements();
|
|
|
|
for (unsigned P = 0; P < Log2Diff; ++P) {
|
|
|
|
if (NumParts > 1)
|
|
|
|
NumParts /= 2;
|
|
|
|
Cost += NumParts;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Currently, a general mix of permutes and pack instructions is output by
|
|
|
|
// isel, which follow the cost computation above except for this case which
|
|
|
|
// is one instruction less:
|
|
|
|
if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 &&
|
|
|
|
DstTy->getScalarSizeInBits() == 8)
|
|
|
|
Cost--;
|
|
|
|
|
|
|
|
return Cost;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return the cost of converting a vector bitmask produced by a compare
|
|
|
|
// (SrcTy), to the type of the select or extend instruction (DstTy).
|
|
|
|
unsigned SystemZTTIImpl::
|
|
|
|
getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) {
|
|
|
|
assert (SrcTy->isVectorTy() && DstTy->isVectorTy() &&
|
|
|
|
"Should only be called with vector types.");
|
|
|
|
|
|
|
|
unsigned PackCost = 0;
|
|
|
|
unsigned SrcScalarBits = SrcTy->getScalarSizeInBits();
|
|
|
|
unsigned DstScalarBits = DstTy->getScalarSizeInBits();
|
|
|
|
unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
|
|
|
|
if (SrcScalarBits > DstScalarBits)
|
|
|
|
// The bitmask will be truncated.
|
|
|
|
PackCost = getVectorTruncCost(SrcTy, DstTy);
|
|
|
|
else if (SrcScalarBits < DstScalarBits) {
|
|
|
|
unsigned DstNumParts = getNumberOfParts(DstTy);
|
|
|
|
// Each vector select needs its part of the bitmask unpacked.
|
|
|
|
PackCost = Log2Diff * DstNumParts;
|
|
|
|
// Extra cost for moving part of mask before unpacking.
|
|
|
|
PackCost += DstNumParts - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return PackCost;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return the type of the compared operands. This is needed to compute the
|
|
|
|
// cost for a Select / ZExt or SExt instruction.
|
|
|
|
static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) {
|
|
|
|
Type *OpTy = nullptr;
|
|
|
|
if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0)))
|
|
|
|
OpTy = CI->getOperand(0)->getType();
|
|
|
|
else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0)))
|
2017-05-03 15:33:45 +02:00
|
|
|
if (LogicI->getNumOperands() == 2)
|
|
|
|
if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0)))
|
|
|
|
if (isa<CmpInst>(LogicI->getOperand(1)))
|
|
|
|
OpTy = CI0->getOperand(0)->getType();
|
2017-04-12 13:49:08 +02:00
|
|
|
|
|
|
|
if (OpTy != nullptr) {
|
|
|
|
if (VF == 1) {
|
|
|
|
assert (!OpTy->isVectorTy() && "Expected scalar type");
|
|
|
|
return OpTy;
|
|
|
|
}
|
|
|
|
// Return the potentially vectorized type based on 'I' and 'VF'. 'I' may
|
|
|
|
// be either scalar or already vectorized with a same or lesser VF.
|
|
|
|
Type *ElTy = OpTy->getScalarType();
|
|
|
|
return VectorType::get(ElTy, VF);
|
|
|
|
}
|
|
|
|
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
|
|
|
|
const Instruction *I) {
|
|
|
|
unsigned DstScalarBits = Dst->getScalarSizeInBits();
|
|
|
|
unsigned SrcScalarBits = Src->getScalarSizeInBits();
|
|
|
|
|
|
|
|
if (Src->isVectorTy()) {
|
|
|
|
assert (ST->hasVector() && "getCastInstrCost() called with vector type.");
|
|
|
|
assert (Dst->isVectorTy());
|
|
|
|
unsigned VF = Src->getVectorNumElements();
|
|
|
|
unsigned NumDstVectors = getNumberOfParts(Dst);
|
|
|
|
unsigned NumSrcVectors = getNumberOfParts(Src);
|
|
|
|
|
|
|
|
if (Opcode == Instruction::Trunc) {
|
|
|
|
if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits())
|
|
|
|
return 0; // Check for NOOP conversions.
|
|
|
|
return getVectorTruncCost(Src, Dst);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
|
|
|
|
if (SrcScalarBits >= 8) {
|
|
|
|
// ZExt/SExt will be handled with one unpack per doubling of width.
|
|
|
|
unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst);
|
|
|
|
|
|
|
|
// For types that spans multiple vector registers, some additional
|
|
|
|
// instructions are used to setup the unpacking.
|
|
|
|
unsigned NumSrcVectorOps =
|
|
|
|
(NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors)
|
|
|
|
: (NumDstVectors / 2));
|
|
|
|
|
|
|
|
return (NumUnpacks * NumDstVectors) + NumSrcVectorOps;
|
|
|
|
}
|
|
|
|
else if (SrcScalarBits == 1) {
|
|
|
|
// This should be extension of a compare i1 result.
|
|
|
|
// If we know what the widths of the compared operands, get the
|
|
|
|
// cost of converting it to Dst. Otherwise assume same widths.
|
|
|
|
unsigned Cost = 0;
|
|
|
|
Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
|
|
|
|
if (CmpOpTy != nullptr)
|
|
|
|
Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst);
|
|
|
|
if (Opcode == Instruction::ZExt)
|
|
|
|
// One 'vn' per dst vector with an immediate mask.
|
|
|
|
Cost += NumDstVectors;
|
|
|
|
return Cost;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP ||
|
|
|
|
Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) {
|
|
|
|
// TODO: Fix base implementation which could simplify things a bit here
|
|
|
|
// (seems to miss on differentiating on scalar/vector types).
|
|
|
|
|
|
|
|
// Only 64 bit vector conversions are natively supported.
|
|
|
|
if (SrcScalarBits == 64 && DstScalarBits == 64)
|
|
|
|
return NumDstVectors;
|
|
|
|
|
|
|
|
// Return the cost of multiple scalar invocation plus the cost of
|
|
|
|
// inserting and extracting the values. Base implementation does not
|
|
|
|
// realize float->int gets scalarized.
|
|
|
|
unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(),
|
|
|
|
Src->getScalarType());
|
|
|
|
unsigned TotCost = VF * ScalarCost;
|
|
|
|
bool NeedsInserts = true, NeedsExtracts = true;
|
|
|
|
// FP128 registers do not get inserted or extracted.
|
|
|
|
if (DstScalarBits == 128 &&
|
|
|
|
(Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP))
|
|
|
|
NeedsInserts = false;
|
|
|
|
if (SrcScalarBits == 128 &&
|
|
|
|
(Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI))
|
|
|
|
NeedsExtracts = false;
|
|
|
|
|
|
|
|
TotCost += getScalarizationOverhead(Dst, NeedsInserts, NeedsExtracts);
|
|
|
|
|
|
|
|
// FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4.
|
|
|
|
if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32)
|
|
|
|
TotCost *= 2;
|
|
|
|
|
|
|
|
return TotCost;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Opcode == Instruction::FPTrunc) {
|
|
|
|
if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements.
|
|
|
|
return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false);
|
|
|
|
else // double -> float
|
|
|
|
return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Opcode == Instruction::FPExt) {
|
|
|
|
if (SrcScalarBits == 32 && DstScalarBits == 64) {
|
|
|
|
// float -> double is very rare and currently unoptimized. Instead of
|
|
|
|
// using vldeb, which can do two at a time, all conversions are
|
|
|
|
// scalarized.
|
|
|
|
return VF * 2;
|
|
|
|
}
|
|
|
|
// -> fp128. VF * lxdb/lxeb + extraction of elements.
|
|
|
|
return VF + getScalarizationOverhead(Src, false, true);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else { // Scalar
|
|
|
|
assert (!Dst->isVectorTy());
|
|
|
|
|
|
|
|
if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)
|
|
|
|
return (SrcScalarBits >= 32 ? 1 : 2 /*i8/i16 extend*/);
|
|
|
|
|
|
|
|
if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
|
|
|
|
Src->isIntegerTy(1)) {
|
|
|
|
// This should be extension of a compare i1 result, which is done with
|
|
|
|
// ipm and a varying sequence of instructions.
|
|
|
|
unsigned Cost = 0;
|
|
|
|
if (Opcode == Instruction::SExt)
|
|
|
|
Cost = (DstScalarBits < 64 ? 3 : 4);
|
|
|
|
if (Opcode == Instruction::ZExt)
|
|
|
|
Cost = 3;
|
|
|
|
Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr);
|
|
|
|
if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy())
|
|
|
|
// If operands of an fp-type was compared, this costs +1.
|
|
|
|
Cost++;
|
|
|
|
|
|
|
|
return Cost;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return BaseT::getCastInstrCost(Opcode, Dst, Src, I);
|
|
|
|
}
|
|
|
|
|
|
|
|
int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
|
|
|
|
const Instruction *I) {
|
|
|
|
if (ValTy->isVectorTy()) {
|
|
|
|
assert (ST->hasVector() && "getCmpSelInstrCost() called with vector type.");
|
|
|
|
unsigned VF = ValTy->getVectorNumElements();
|
|
|
|
|
|
|
|
// Called with a compare instruction.
|
|
|
|
if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
|
|
|
|
unsigned PredicateExtraCost = 0;
|
|
|
|
if (I != nullptr) {
|
|
|
|
// Some predicates cost one or two extra instructions.
|
|
|
|
switch (dyn_cast<CmpInst>(I)->getPredicate()) {
|
|
|
|
case CmpInst::Predicate::ICMP_NE:
|
|
|
|
case CmpInst::Predicate::ICMP_UGE:
|
|
|
|
case CmpInst::Predicate::ICMP_ULE:
|
|
|
|
case CmpInst::Predicate::ICMP_SGE:
|
|
|
|
case CmpInst::Predicate::ICMP_SLE:
|
|
|
|
PredicateExtraCost = 1;
|
|
|
|
break;
|
|
|
|
case CmpInst::Predicate::FCMP_ONE:
|
|
|
|
case CmpInst::Predicate::FCMP_ORD:
|
|
|
|
case CmpInst::Predicate::FCMP_UEQ:
|
|
|
|
case CmpInst::Predicate::FCMP_UNO:
|
|
|
|
PredicateExtraCost = 2;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of
|
|
|
|
// floats. FIXME: <2 x float> generates same code as <4 x float>.
|
|
|
|
unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1);
|
|
|
|
unsigned NumVecs_cmp = getNumberOfParts(ValTy);
|
|
|
|
|
|
|
|
unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost));
|
|
|
|
return Cost;
|
|
|
|
}
|
|
|
|
else { // Called with a select instruction.
|
|
|
|
assert (Opcode == Instruction::Select);
|
|
|
|
|
|
|
|
// We can figure out the extra cost of packing / unpacking if the
|
|
|
|
// instruction was passed and the compare instruction is found.
|
|
|
|
unsigned PackCost = 0;
|
|
|
|
Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
|
|
|
|
if (CmpOpTy != nullptr)
|
|
|
|
PackCost =
|
|
|
|
getVectorBitmaskConversionCost(CmpOpTy, ValTy);
|
|
|
|
|
|
|
|
return getNumberOfParts(ValTy) /*vsel*/ + PackCost;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else { // Scalar
|
|
|
|
switch (Opcode) {
|
|
|
|
case Instruction::ICmp: {
|
|
|
|
unsigned Cost = 1;
|
|
|
|
if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16)
|
|
|
|
Cost += 2; // extend both operands
|
|
|
|
return Cost;
|
|
|
|
}
|
|
|
|
case Instruction::Select:
|
|
|
|
if (ValTy->isFloatingPointTy())
|
|
|
|
return 4; // No load on condition for FP, so this costs a conditional jump.
|
|
|
|
return 1; // Load On Condition.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr);
|
|
|
|
}
|
|
|
|
|
|
|
|
int SystemZTTIImpl::
|
|
|
|
getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
|
|
|
|
// vlvgp will insert two grs into a vector register, so only count half the
|
|
|
|
// number of instructions.
|
|
|
|
if (Opcode == Instruction::InsertElement &&
|
|
|
|
Val->getScalarType()->isIntegerTy(64))
|
|
|
|
return ((Index % 2 == 0) ? 1 : 0);
|
|
|
|
|
|
|
|
if (Opcode == Instruction::ExtractElement) {
|
|
|
|
int Cost = ((Val->getScalarSizeInBits() == 1) ? 2 /*+test-under-mask*/ : 1);
|
|
|
|
|
|
|
|
// Give a slight penalty for moving out of vector pipeline to FXU unit.
|
|
|
|
if (Index == 0 && Val->getScalarType()->isIntegerTy())
|
|
|
|
Cost += 1;
|
|
|
|
|
|
|
|
return Cost;
|
|
|
|
}
|
|
|
|
|
|
|
|
return BaseT::getVectorInstrCost(Opcode, Val, Index);
|
|
|
|
}
|
|
|
|
|
|
|
|
int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
|
|
|
|
unsigned Alignment, unsigned AddressSpace,
|
|
|
|
const Instruction *I) {
|
|
|
|
assert(!Src->isVoidTy() && "Invalid type");
|
|
|
|
|
|
|
|
if (!Src->isVectorTy() && Opcode == Instruction::Load &&
|
|
|
|
I != nullptr && I->hasOneUse()) {
|
|
|
|
const Instruction *UserI = cast<Instruction>(*I->user_begin());
|
|
|
|
unsigned Bits = Src->getScalarSizeInBits();
|
|
|
|
bool FoldsLoad = false;
|
|
|
|
switch (UserI->getOpcode()) {
|
|
|
|
case Instruction::ICmp:
|
|
|
|
case Instruction::Add:
|
|
|
|
case Instruction::Sub:
|
|
|
|
case Instruction::Mul:
|
|
|
|
case Instruction::SDiv:
|
|
|
|
case Instruction::UDiv:
|
|
|
|
case Instruction::And:
|
|
|
|
case Instruction::Or:
|
|
|
|
case Instruction::Xor:
|
|
|
|
// This also makes sense for float operations, but disabled for now due
|
|
|
|
// to regressions.
|
|
|
|
// case Instruction::FCmp:
|
|
|
|
// case Instruction::FAdd:
|
|
|
|
// case Instruction::FSub:
|
|
|
|
// case Instruction::FMul:
|
|
|
|
// case Instruction::FDiv:
|
|
|
|
FoldsLoad = (Bits == 32 || Bits == 64);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (FoldsLoad) {
|
|
|
|
assert (UserI->getNumOperands() == 2 &&
|
|
|
|
"Expected to only handle binops.");
|
|
|
|
|
|
|
|
// UserI can't fold two loads, so in that case return 0 cost only
|
|
|
|
// half of the time.
|
|
|
|
for (unsigned i = 0; i < 2; ++i) {
|
|
|
|
if (UserI->getOperand(i) == I)
|
|
|
|
continue;
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(UserI->getOperand(i))) {
|
|
|
|
if (LI->hasOneUse())
|
|
|
|
return i == 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned NumOps = getNumberOfParts(Src);
|
|
|
|
|
|
|
|
if (Src->getScalarSizeInBits() == 128)
|
|
|
|
// 128 bit scalars are held in a pair of two 64 bit registers.
|
|
|
|
NumOps *= 2;
|
|
|
|
|
|
|
|
return NumOps;
|
|
|
|
}
|
|
|
|
|
|
|
|
int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
|
|
|
|
unsigned Factor,
|
|
|
|
ArrayRef<unsigned> Indices,
|
|
|
|
unsigned Alignment,
|
|
|
|
unsigned AddressSpace) {
|
|
|
|
assert(isa<VectorType>(VecTy) &&
|
|
|
|
"Expect a vector type for interleaved memory op");
|
|
|
|
|
|
|
|
unsigned WideBits = (VecTy->isPtrOrPtrVectorTy() ?
|
|
|
|
(64U * VecTy->getVectorNumElements()) : VecTy->getPrimitiveSizeInBits());
|
|
|
|
assert (WideBits > 0 && "Could not compute size of vector");
|
|
|
|
int NumWideParts =
|
|
|
|
((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U));
|
|
|
|
|
|
|
|
// How many source vectors are handled to produce a vectorized operand?
|
|
|
|
int NumElsPerVector = (VecTy->getVectorNumElements() / NumWideParts);
|
|
|
|
int NumSrcParts =
|
|
|
|
((NumWideParts > NumElsPerVector) ? NumElsPerVector : NumWideParts);
|
|
|
|
|
|
|
|
// A Load group may have gaps.
|
|
|
|
unsigned NumOperands =
|
|
|
|
((Opcode == Instruction::Load) ? Indices.size() : Factor);
|
|
|
|
|
|
|
|
// Each needed permute takes two vectors as input.
|
|
|
|
if (NumSrcParts > 1)
|
|
|
|
NumSrcParts--;
|
|
|
|
int NumPermutes = NumSrcParts * NumOperands;
|
|
|
|
|
|
|
|
// Cost of load/store operations and the permutations needed.
|
|
|
|
return NumWideParts + NumPermutes;
|
|
|
|
}
|