1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-18 18:42:46 +02:00
llvm-mirror/lib/MC/MCSubtargetInfo.cpp

352 lines
12 KiB
C++
Raw Normal View History

//===- MCSubtargetInfo.cpp - Subtarget Information ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/MC/MCSchedule.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstring>
using namespace llvm;
/// Find KV in array using binary search.
template <typename T>
static const T *Find(StringRef S, ArrayRef<T> A) {
// Binary search the array
auto F = llvm::lower_bound(A, S);
// If not found then return NULL
if (F == A.end() || StringRef(F->Key) != S) return nullptr;
// Return the found array item
return F;
}
/// For each feature that is (transitively) implied by this feature, set it.
static
void SetImpliedBits(FeatureBitset &Bits, const FeatureBitset &Implies,
ArrayRef<SubtargetFeatureKV> FeatureTable) {
// OR the Implies bits in outside the loop. This allows the Implies for CPUs
// which might imply features not in FeatureTable to use this.
Bits |= Implies;
for (const SubtargetFeatureKV &FE : FeatureTable)
if (Implies.test(FE.Value))
SetImpliedBits(Bits, FE.Implies.getAsBitset(), FeatureTable);
}
/// For each feature that (transitively) implies this feature, clear it.
static
void ClearImpliedBits(FeatureBitset &Bits, unsigned Value,
ArrayRef<SubtargetFeatureKV> FeatureTable) {
for (const SubtargetFeatureKV &FE : FeatureTable) {
if (FE.Implies.getAsBitset().test(Value)) {
Bits.reset(FE.Value);
ClearImpliedBits(Bits, FE.Value, FeatureTable);
}
}
}
static void ApplyFeatureFlag(FeatureBitset &Bits, StringRef Feature,
ArrayRef<SubtargetFeatureKV> FeatureTable) {
assert(SubtargetFeatures::hasFlag(Feature) &&
"Feature flags should start with '+' or '-'");
// Find feature in table.
const SubtargetFeatureKV *FeatureEntry =
Find(SubtargetFeatures::StripFlag(Feature), FeatureTable);
// If there is a match
if (FeatureEntry) {
// Enable/disable feature in bits
if (SubtargetFeatures::isEnabled(Feature)) {
Bits.set(FeatureEntry->Value);
// For each feature that this implies, set it.
SetImpliedBits(Bits, FeatureEntry->Implies.getAsBitset(), FeatureTable);
} else {
Bits.reset(FeatureEntry->Value);
// For each feature that implies this, clear it.
ClearImpliedBits(Bits, FeatureEntry->Value, FeatureTable);
}
} else {
errs() << "'" << Feature << "' is not a recognized feature for this target"
<< " (ignoring feature)\n";
}
}
/// Return the length of the longest entry in the table.
template <typename T>
static size_t getLongestEntryLength(ArrayRef<T> Table) {
size_t MaxLen = 0;
for (auto &I : Table)
MaxLen = std::max(MaxLen, std::strlen(I.Key));
return MaxLen;
}
/// Display help for feature and mcpu choices.
static void Help(ArrayRef<SubtargetSubTypeKV> CPUTable,
ArrayRef<SubtargetFeatureKV> FeatTable) {
// the static variable ensures that the help information only gets
// printed once even though a target machine creates multiple subtargets
static bool PrintOnce = false;
if (PrintOnce) {
return;
}
// Determine the length of the longest CPU and Feature entries.
unsigned MaxCPULen = getLongestEntryLength(CPUTable);
unsigned MaxFeatLen = getLongestEntryLength(FeatTable);
// Print the CPU table.
errs() << "Available CPUs for this target:\n\n";
for (auto &CPU : CPUTable)
errs() << format(" %-*s - Select the %s processor.\n", MaxCPULen, CPU.Key,
CPU.Key);
errs() << '\n';
// Print the Feature table.
errs() << "Available features for this target:\n\n";
for (auto &Feature : FeatTable)
errs() << format(" %-*s - %s.\n", MaxFeatLen, Feature.Key, Feature.Desc);
errs() << '\n';
errs() << "Use +feature to enable a feature, or -feature to disable it.\n"
"For example, llc -mcpu=mycpu -mattr=+feature1,-feature2\n";
PrintOnce = true;
}
/// Display help for mcpu choices only
static void cpuHelp(ArrayRef<SubtargetSubTypeKV> CPUTable) {
// the static variable ensures that the help information only gets
// printed once even though a target machine creates multiple subtargets
static bool PrintOnce = false;
if (PrintOnce) {
return;
}
// Print the CPU table.
errs() << "Available CPUs for this target:\n\n";
for (auto &CPU : CPUTable)
errs() << "\t" << CPU.Key << "\n";
errs() << '\n';
errs() << "Use -mcpu or -mtune to specify the target's processor.\n"
"For example, clang --target=aarch64-unknown-linux-gui "
"-mcpu=cortex-a35\n";
PrintOnce = true;
}
static FeatureBitset getFeatures(StringRef CPU, StringRef FS,
ArrayRef<SubtargetSubTypeKV> ProcDesc,
ArrayRef<SubtargetFeatureKV> ProcFeatures) {
SubtargetFeatures Features(FS);
if (ProcDesc.empty() || ProcFeatures.empty())
return FeatureBitset();
assert(std::is_sorted(std::begin(ProcDesc), std::end(ProcDesc)) &&
"CPU table is not sorted");
assert(std::is_sorted(std::begin(ProcFeatures), std::end(ProcFeatures)) &&
"CPU features table is not sorted");
// Resulting bits
FeatureBitset Bits;
// Check if help is needed
if (CPU == "help")
Help(ProcDesc, ProcFeatures);
// Find CPU entry if CPU name is specified.
else if (!CPU.empty()) {
const SubtargetSubTypeKV *CPUEntry = Find(CPU, ProcDesc);
// If there is a match
if (CPUEntry) {
// Set the features implied by this CPU feature, if any.
SetImpliedBits(Bits, CPUEntry->Implies.getAsBitset(), ProcFeatures);
} else {
errs() << "'" << CPU << "' is not a recognized processor for this target"
<< " (ignoring processor)\n";
}
}
// Iterate through each feature
for (const std::string &Feature : Features.getFeatures()) {
// Check for help
if (Feature == "+help")
Help(ProcDesc, ProcFeatures);
else if (Feature == "+cpuhelp")
cpuHelp(ProcDesc);
else
ApplyFeatureFlag(Bits, Feature, ProcFeatures);
}
return Bits;
}
void MCSubtargetInfo::InitMCProcessorInfo(StringRef CPU, StringRef FS) {
FeatureBits = getFeatures(CPU, FS, ProcDesc, ProcFeatures);
if (!CPU.empty())
CPUSchedModel = &getSchedModelForCPU(CPU);
else
CPUSchedModel = &MCSchedModel::GetDefaultSchedModel();
}
void MCSubtargetInfo::setDefaultFeatures(StringRef CPU, StringRef FS) {
FeatureBits = getFeatures(CPU, FS, ProcDesc, ProcFeatures);
}
MCSubtargetInfo::MCSubtargetInfo(const Triple &TT, StringRef C, StringRef FS,
ArrayRef<SubtargetFeatureKV> PF,
ArrayRef<SubtargetSubTypeKV> PD,
const MCWriteProcResEntry *WPR,
const MCWriteLatencyEntry *WL,
const MCReadAdvanceEntry *RA,
const InstrStage *IS, const unsigned *OC,
const unsigned *FP)
: TargetTriple(TT), CPU(std::string(C)), ProcFeatures(PF), ProcDesc(PD),
WriteProcResTable(WPR), WriteLatencyTable(WL), ReadAdvanceTable(RA),
Stages(IS), OperandCycles(OC), ForwardingPaths(FP) {
InitMCProcessorInfo(CPU, FS);
}
FeatureBitset MCSubtargetInfo::ToggleFeature(uint64_t FB) {
FeatureBits.flip(FB);
return FeatureBits;
}
FeatureBitset MCSubtargetInfo::ToggleFeature(const FeatureBitset &FB) {
FeatureBits ^= FB;
return FeatureBits;
}
FeatureBitset MCSubtargetInfo::SetFeatureBitsTransitively(
const FeatureBitset &FB) {
SetImpliedBits(FeatureBits, FB, ProcFeatures);
return FeatureBits;
}
FeatureBitset MCSubtargetInfo::ClearFeatureBitsTransitively(
const FeatureBitset &FB) {
for (unsigned I = 0, E = FB.size(); I < E; I++) {
if (FB[I]) {
FeatureBits.reset(I);
ClearImpliedBits(FeatureBits, I, ProcFeatures);
}
}
return FeatureBits;
}
FeatureBitset MCSubtargetInfo::ToggleFeature(StringRef Feature) {
// Find feature in table.
const SubtargetFeatureKV *FeatureEntry =
Find(SubtargetFeatures::StripFlag(Feature), ProcFeatures);
// If there is a match
if (FeatureEntry) {
if (FeatureBits.test(FeatureEntry->Value)) {
FeatureBits.reset(FeatureEntry->Value);
// For each feature that implies this, clear it.
ClearImpliedBits(FeatureBits, FeatureEntry->Value, ProcFeatures);
} else {
FeatureBits.set(FeatureEntry->Value);
// For each feature that this implies, set it.
SetImpliedBits(FeatureBits, FeatureEntry->Implies.getAsBitset(),
ProcFeatures);
}
} else {
errs() << "'" << Feature << "' is not a recognized feature for this target"
<< " (ignoring feature)\n";
}
return FeatureBits;
}
FeatureBitset MCSubtargetInfo::ApplyFeatureFlag(StringRef FS) {
::ApplyFeatureFlag(FeatureBits, FS, ProcFeatures);
return FeatureBits;
}
bool MCSubtargetInfo::checkFeatures(StringRef FS) const {
SubtargetFeatures T(FS);
FeatureBitset Set, All;
for (std::string F : T.getFeatures()) {
::ApplyFeatureFlag(Set, F, ProcFeatures);
if (F[0] == '-')
F[0] = '+';
::ApplyFeatureFlag(All, F, ProcFeatures);
}
return (FeatureBits & All) == Set;
}
const MCSchedModel &MCSubtargetInfo::getSchedModelForCPU(StringRef CPU) const {
assert(std::is_sorted(ProcDesc.begin(), ProcDesc.end()) &&
"Processor machine model table is not sorted");
// Find entry
const SubtargetSubTypeKV *CPUEntry = Find(CPU, ProcDesc);
if (!CPUEntry) {
if (CPU != "help") // Don't error if the user asked for help.
errs() << "'" << CPU
<< "' is not a recognized processor for this target"
<< " (ignoring processor)\n";
return MCSchedModel::GetDefaultSchedModel();
}
assert(CPUEntry->SchedModel && "Missing processor SchedModel value");
return *CPUEntry->SchedModel;
}
InstrItineraryData
MCSubtargetInfo::getInstrItineraryForCPU(StringRef CPU) const {
const MCSchedModel &SchedModel = getSchedModelForCPU(CPU);
return InstrItineraryData(SchedModel, Stages, OperandCycles, ForwardingPaths);
}
void MCSubtargetInfo::initInstrItins(InstrItineraryData &InstrItins) const {
InstrItins = InstrItineraryData(getSchedModel(), Stages, OperandCycles,
ForwardingPaths);
}
[System Model] [TTI] Update cache and prefetch TTI interfaces Re-apply 9fdfb045ae8b/r365676 with fixes for PPC and Hexagon. This involved moving defaults from TargetTransformInfoImplBase to MCSubtargetInfo. Rework the TTI cache and software prefetching APIs to prepare for the introduction of a general system model. Changes include: - Marking existing interfaces const and/or override as appropriate - Adding comments - Adding BasicTTIImpl interfaces that delegate to a subtarget implementation - Moving the default TargetTransformInfoImplBase implementation to a default MCSubtarget implementation Only a handful of targets use these interfaces currently: AArch64, Hexagon, PPC and SystemZ. AArch64 already has a custom subtarget implementation, so its custom TTI implementation is migrated to use the new facilities in BasicTTIImpl to invoke its custom subtarget implementation. The custom TTI implementations continue to exist for the other targets with this change. They are not moved over to subtarget-based implementations. The end goal is to have the default subtarget implementation defer to the system model defined by the target. With this change, the default MCSubtargetInfo implementation essentially returns the defaults TargetTransformInfoImplBase used to return. Existing users of TTI defaults will hit the defaults now in MCSubtargetInfo. Targets that define their own custom TTI implementations won't use the BasicTTIImpl implementations that route to the subtarget. Once system models are in place for the targets that use these interfaces, their custom TTI implementations can be removed. Differential Revision: https://reviews.llvm.org/D63614 llvm-svn: 374205
2019-10-09 21:51:48 +02:00
Optional<unsigned> MCSubtargetInfo::getCacheSize(unsigned Level) const {
return Optional<unsigned>();
}
Optional<unsigned>
MCSubtargetInfo::getCacheAssociativity(unsigned Level) const {
return Optional<unsigned>();
}
Optional<unsigned> MCSubtargetInfo::getCacheLineSize(unsigned Level) const {
return Optional<unsigned>();
}
unsigned MCSubtargetInfo::getPrefetchDistance() const {
return 0;
}
unsigned MCSubtargetInfo::getMaxPrefetchIterationsAhead() const {
return UINT_MAX;
}
bool MCSubtargetInfo::enableWritePrefetching() const {
return false;
}
unsigned MCSubtargetInfo::getMinPrefetchStride(unsigned NumMemAccesses,
unsigned NumStridedMemAccesses,
unsigned NumPrefetches,
bool HasCall) const {
[System Model] [TTI] Update cache and prefetch TTI interfaces Re-apply 9fdfb045ae8b/r365676 with fixes for PPC and Hexagon. This involved moving defaults from TargetTransformInfoImplBase to MCSubtargetInfo. Rework the TTI cache and software prefetching APIs to prepare for the introduction of a general system model. Changes include: - Marking existing interfaces const and/or override as appropriate - Adding comments - Adding BasicTTIImpl interfaces that delegate to a subtarget implementation - Moving the default TargetTransformInfoImplBase implementation to a default MCSubtarget implementation Only a handful of targets use these interfaces currently: AArch64, Hexagon, PPC and SystemZ. AArch64 already has a custom subtarget implementation, so its custom TTI implementation is migrated to use the new facilities in BasicTTIImpl to invoke its custom subtarget implementation. The custom TTI implementations continue to exist for the other targets with this change. They are not moved over to subtarget-based implementations. The end goal is to have the default subtarget implementation defer to the system model defined by the target. With this change, the default MCSubtargetInfo implementation essentially returns the defaults TargetTransformInfoImplBase used to return. Existing users of TTI defaults will hit the defaults now in MCSubtargetInfo. Targets that define their own custom TTI implementations won't use the BasicTTIImpl implementations that route to the subtarget. Once system models are in place for the targets that use these interfaces, their custom TTI implementations can be removed. Differential Revision: https://reviews.llvm.org/D63614 llvm-svn: 374205
2019-10-09 21:51:48 +02:00
return 1;
}