1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00
llvm-mirror/lib/Target/Hexagon/HexagonTargetTransformInfo.h

178 lines
7.1 KiB
C
Raw Normal View History

//==- HexagonTargetTransformInfo.cpp - Hexagon specific TTI pass -*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
/// \file
/// This file implements a TargetTransformInfo analysis pass specific to the
/// Hexagon target machine. It uses the target's detailed information to provide
/// more precise answers to certain TTI queries, while letting the target
/// independent and default TTI implementations handle the rest.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONTARGETTRANSFORMINFO_H
#define LLVM_LIB_TARGET_HEXAGON_HEXAGONTARGETTRANSFORMINFO_H
#include "Hexagon.h"
#include "HexagonSubtarget.h"
#include "HexagonTargetMachine.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/IR/Function.h"
namespace llvm {
class Loop;
class ScalarEvolution;
class User;
class Value;
class HexagonTTIImpl : public BasicTTIImplBase<HexagonTTIImpl> {
using BaseT = BasicTTIImplBase<HexagonTTIImpl>;
using TTI = TargetTransformInfo;
friend BaseT;
const HexagonSubtarget &ST;
const HexagonTargetLowering &TLI;
const HexagonSubtarget *getST() const { return &ST; }
const HexagonTargetLowering *getTLI() const { return &TLI; }
bool useHVX() const;
// Returns the number of vector elements of Ty, if Ty is a vector type,
// or 1 if Ty is a scalar type. It is incorrect to call this function
// with any other type.
unsigned getTypeNumElements(Type *Ty) const;
public:
explicit HexagonTTIImpl(const HexagonTargetMachine *TM, const Function &F)
: BaseT(TM, F.getParent()->getDataLayout()),
ST(*TM->getSubtargetImpl(F)), TLI(*ST.getTargetLowering()) {}
/// \name Scalar TTI Implementations
/// @{
TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
// The Hexagon target can unroll loops with run-time trip counts.
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP);
void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
TTI::PeelingPreferences &PP);
/// Bias LSR towards creating post-increment opportunities.
TTI::AddressingModeKind
getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const;
// L1 cache prefetch.
[System Model] [TTI] Update cache and prefetch TTI interfaces Re-apply 9fdfb045ae8b/r365676 with fixes for PPC and Hexagon. This involved moving defaults from TargetTransformInfoImplBase to MCSubtargetInfo. Rework the TTI cache and software prefetching APIs to prepare for the introduction of a general system model. Changes include: - Marking existing interfaces const and/or override as appropriate - Adding comments - Adding BasicTTIImpl interfaces that delegate to a subtarget implementation - Moving the default TargetTransformInfoImplBase implementation to a default MCSubtarget implementation Only a handful of targets use these interfaces currently: AArch64, Hexagon, PPC and SystemZ. AArch64 already has a custom subtarget implementation, so its custom TTI implementation is migrated to use the new facilities in BasicTTIImpl to invoke its custom subtarget implementation. The custom TTI implementations continue to exist for the other targets with this change. They are not moved over to subtarget-based implementations. The end goal is to have the default subtarget implementation defer to the system model defined by the target. With this change, the default MCSubtargetInfo implementation essentially returns the defaults TargetTransformInfoImplBase used to return. Existing users of TTI defaults will hit the defaults now in MCSubtargetInfo. Targets that define their own custom TTI implementations won't use the BasicTTIImpl implementations that route to the subtarget. Once system models are in place for the targets that use these interfaces, their custom TTI implementations can be removed. Differential Revision: https://reviews.llvm.org/D63614 llvm-svn: 374205
2019-10-09 21:51:48 +02:00
unsigned getPrefetchDistance() const override;
unsigned getCacheLineSize() const override;
/// @}
/// \name Vector TTI Implementations
/// @{
unsigned getNumberOfRegisters(bool vector) const;
unsigned getMaxInterleaveFactor(unsigned VF);
TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const;
unsigned getMinVectorRegisterBitWidth() const;
ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const;
bool shouldMaximizeVectorBandwidth() const {
return true;
}
bool supportsEfficientVectorElementLoadStore() {
return false;
}
bool hasBranchDivergence() {
return false;
}
bool enableAggressiveInterleaving(bool LoopHasReductions) {
return false;
}
bool prefersVectorizedAddressing() {
return false;
}
bool enableInterleavedAccessVectorization() {
return true;
}
InstructionCost getScalarizationOverhead(VectorType *Ty,
const APInt &DemandedElts,
bool Insert, bool Extract);
InstructionCost getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
ArrayRef<Type *> Tys);
InstructionCost getCallInstrCost(Function *F, Type *RetTy,
ArrayRef<Type *> Tys,
TTI::TargetCostKind CostKind);
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind);
InstructionCost getAddressComputationCost(Type *Tp, ScalarEvolution *SE,
const SCEV *S);
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src,
MaybeAlign Alignment, unsigned AddressSpace,
TTI::TargetCostKind CostKind,
const Instruction *I = nullptr);
InstructionCost
getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency);
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
ArrayRef<int> Mask, int Index, Type *SubTp);
InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
const Value *Ptr, bool VariableMask,
Align Alignment,
TTI::TargetCostKind CostKind,
const Instruction *I);
InstructionCost getInterleavedMemoryOpCost(
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
Align Alignment, unsigned AddressSpace,
TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency,
bool UseMaskForCond = false, bool UseMaskForGaps = false);
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
CmpInst::Predicate VecPred,
TTI::TargetCostKind CostKind,
const Instruction *I = nullptr);
InstructionCost getArithmeticInstrCost(
unsigned Opcode, Type *Ty,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue,
TTI::OperandValueKind Opd2Info = TTI::OK_AnyValue,
TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None,
TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None,
ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
const Instruction *CxtI = nullptr);
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
TTI::CastContextHint CCH,
TTI::TargetCostKind CostKind,
const Instruction *I = nullptr);
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index);
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
const Instruction *I = nullptr) {
return 1;
}
bool isLegalMaskedStore(Type *DataType, Align Alignment);
bool isLegalMaskedLoad(Type *DataType, Align Alignment);
/// @}
InstructionCost getUserCost(const User *U, ArrayRef<const Value *> Operands,
TTI::TargetCostKind CostKind);
// Hexagon specific decision to generate a lookup table.
bool shouldBuildLookupTables() const;
};
} // end namespace llvm
#endif // LLVM_LIB_TARGET_HEXAGON_HEXAGONTARGETTRANSFORMINFO_H