1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-22 20:43:44 +02:00
llvm-mirror/lib/Transforms/IPO/FunctionAttrs.cpp

1161 lines
40 KiB
C++
Raw Normal View History

//===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements interprocedural passes which walk the
/// call-graph deducing and/or propagating function attributes.
///
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Analysis/AliasAnalysis.h"
[PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible with the new pass manager, and no longer relying on analysis groups. This builds essentially a ground-up new AA infrastructure stack for LLVM. The core ideas are the same that are used throughout the new pass manager: type erased polymorphism and direct composition. The design is as follows: - FunctionAAResults is a type-erasing alias analysis results aggregation interface to walk a single query across a range of results from different alias analyses. Currently this is function-specific as we always assume that aliasing queries are *within* a function. - AAResultBase is a CRTP utility providing stub implementations of various parts of the alias analysis result concept, notably in several cases in terms of other more general parts of the interface. This can be used to implement only a narrow part of the interface rather than the entire interface. This isn't really ideal, this logic should be hoisted into FunctionAAResults as currently it will cause a significant amount of redundant work, but it faithfully models the behavior of the prior infrastructure. - All the alias analysis passes are ported to be wrapper passes for the legacy PM and new-style analysis passes for the new PM with a shared result object. In some cases (most notably CFL), this is an extremely naive approach that we should revisit when we can specialize for the new pass manager. - BasicAA has been restructured to reflect that it is much more fundamentally a function analysis because it uses dominator trees and loop info that need to be constructed for each function. All of the references to getting alias analysis results have been updated to use the new aggregation interface. All the preservation and other pass management code has been updated accordingly. The way the FunctionAAResultsWrapperPass works is to detect the available alias analyses when run, and add them to the results object. This means that we should be able to continue to respect when various passes are added to the pipeline, for example adding CFL or adding TBAA passes should just cause their results to be available and to get folded into this. The exception to this rule is BasicAA which really needs to be a function pass due to using dominator trees and loop info. As a consequence, the FunctionAAResultsWrapperPass directly depends on BasicAA and always includes it in the aggregation. This has significant implications for preserving analyses. Generally, most passes shouldn't bother preserving FunctionAAResultsWrapperPass because rebuilding the results just updates the set of known AA passes. The exception to this rule are LoopPass instances which need to preserve all the function analyses that the loop pass manager will end up needing. This means preserving both BasicAAWrapperPass and the aggregating FunctionAAResultsWrapperPass. Now, when preserving an alias analysis, you do so by directly preserving that analysis. This is only necessary for non-immutable-pass-provided alias analyses though, and there are only three of interest: BasicAA, GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is preserved when needed because it (like DominatorTree and LoopInfo) is marked as a CFG-only pass. I've expanded GlobalsAA into the preserved set everywhere we previously were preserving all of AliasAnalysis, and I've added SCEVAA in the intersection of that with where we preserve SCEV itself. One significant challenge to all of this is that the CGSCC passes were actually using the alias analysis implementations by taking advantage of a pretty amazing set of loop holes in the old pass manager's analysis management code which allowed analysis groups to slide through in many cases. Moving away from analysis groups makes this problem much more obvious. To fix it, I've leveraged the flexibility the design of the new PM components provides to just directly construct the relevant alias analyses for the relevant functions in the IPO passes that need them. This is a bit hacky, but should go away with the new pass manager, and is already in many ways cleaner than the prior state. Another significant challenge is that various facilities of the old alias analysis infrastructure just don't fit any more. The most significant of these is the alias analysis 'counter' pass. That pass relied on the ability to snoop on AA queries at different points in the analysis group chain. Instead, I'm planning to build printing functionality directly into the aggregation layer. I've not included that in this patch merely to keep it smaller. Note that all of this needs a nearly complete rewrite of the AA documentation. I'm planning to do that, but I'd like to make sure the new design settles, and to flesh out a bit more of what it looks like in the new pass manager first. Differential Revision: http://reviews.llvm.org/D12080 llvm-svn: 247167
2015-09-09 19:55:00 +02:00
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Analysis/CaptureTracking.h"
[PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible with the new pass manager, and no longer relying on analysis groups. This builds essentially a ground-up new AA infrastructure stack for LLVM. The core ideas are the same that are used throughout the new pass manager: type erased polymorphism and direct composition. The design is as follows: - FunctionAAResults is a type-erasing alias analysis results aggregation interface to walk a single query across a range of results from different alias analyses. Currently this is function-specific as we always assume that aliasing queries are *within* a function. - AAResultBase is a CRTP utility providing stub implementations of various parts of the alias analysis result concept, notably in several cases in terms of other more general parts of the interface. This can be used to implement only a narrow part of the interface rather than the entire interface. This isn't really ideal, this logic should be hoisted into FunctionAAResults as currently it will cause a significant amount of redundant work, but it faithfully models the behavior of the prior infrastructure. - All the alias analysis passes are ported to be wrapper passes for the legacy PM and new-style analysis passes for the new PM with a shared result object. In some cases (most notably CFL), this is an extremely naive approach that we should revisit when we can specialize for the new pass manager. - BasicAA has been restructured to reflect that it is much more fundamentally a function analysis because it uses dominator trees and loop info that need to be constructed for each function. All of the references to getting alias analysis results have been updated to use the new aggregation interface. All the preservation and other pass management code has been updated accordingly. The way the FunctionAAResultsWrapperPass works is to detect the available alias analyses when run, and add them to the results object. This means that we should be able to continue to respect when various passes are added to the pipeline, for example adding CFL or adding TBAA passes should just cause their results to be available and to get folded into this. The exception to this rule is BasicAA which really needs to be a function pass due to using dominator trees and loop info. As a consequence, the FunctionAAResultsWrapperPass directly depends on BasicAA and always includes it in the aggregation. This has significant implications for preserving analyses. Generally, most passes shouldn't bother preserving FunctionAAResultsWrapperPass because rebuilding the results just updates the set of known AA passes. The exception to this rule are LoopPass instances which need to preserve all the function analyses that the loop pass manager will end up needing. This means preserving both BasicAAWrapperPass and the aggregating FunctionAAResultsWrapperPass. Now, when preserving an alias analysis, you do so by directly preserving that analysis. This is only necessary for non-immutable-pass-provided alias analyses though, and there are only three of interest: BasicAA, GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is preserved when needed because it (like DominatorTree and LoopInfo) is marked as a CFG-only pass. I've expanded GlobalsAA into the preserved set everywhere we previously were preserving all of AliasAnalysis, and I've added SCEVAA in the intersection of that with where we preserve SCEV itself. One significant challenge to all of this is that the CGSCC passes were actually using the alias analysis implementations by taking advantage of a pretty amazing set of loop holes in the old pass manager's analysis management code which allowed analysis groups to slide through in many cases. Moving away from analysis groups makes this problem much more obvious. To fix it, I've leveraged the flexibility the design of the new PM components provides to just directly construct the relevant alias analyses for the relevant functions in the IPO passes that need them. This is a bit hacky, but should go away with the new pass manager, and is already in many ways cleaner than the prior state. Another significant challenge is that various facilities of the old alias analysis infrastructure just don't fit any more. The most significant of these is the alias analysis 'counter' pass. That pass relied on the ability to snoop on AA queries at different points in the analysis group chain. Instead, I'm planning to build printing functionality directly into the aggregation layer. I've not included that in this patch merely to keep it smaller. Note that all of this needs a nearly complete rewrite of the AA documentation. I'm planning to do that, but I'd like to make sure the new design settles, and to flesh out a bit more of what it looks like in the new pass manager first. Differential Revision: http://reviews.llvm.org/D12080 llvm-svn: 247167
2015-09-09 19:55:00 +02:00
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
using namespace llvm;
#define DEBUG_TYPE "functionattrs"
STATISTIC(NumReadNone, "Number of functions marked readnone");
STATISTIC(NumReadOnly, "Number of functions marked readonly");
STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
STATISTIC(NumNoAlias, "Number of function returns marked noalias");
STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
namespace {
typedef SmallSetVector<Function *, 8> SCCNodeSet;
}
namespace {
struct PostOrderFunctionAttrs : public CallGraphSCCPass {
static char ID; // Pass identification, replacement for typeid
PostOrderFunctionAttrs() : CallGraphSCCPass(ID) {
initializePostOrderFunctionAttrsPass(*PassRegistry::getPassRegistry());
}
bool runOnSCC(CallGraphSCC &SCC) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
addUsedAAAnalyses(AU);
CallGraphSCCPass::getAnalysisUsage(AU);
}
private:
TargetLibraryInfo *TLI;
};
}
char PostOrderFunctionAttrs::ID = 0;
INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrs, "functionattrs",
"Deduce function attributes", false, false)
[PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible with the new pass manager, and no longer relying on analysis groups. This builds essentially a ground-up new AA infrastructure stack for LLVM. The core ideas are the same that are used throughout the new pass manager: type erased polymorphism and direct composition. The design is as follows: - FunctionAAResults is a type-erasing alias analysis results aggregation interface to walk a single query across a range of results from different alias analyses. Currently this is function-specific as we always assume that aliasing queries are *within* a function. - AAResultBase is a CRTP utility providing stub implementations of various parts of the alias analysis result concept, notably in several cases in terms of other more general parts of the interface. This can be used to implement only a narrow part of the interface rather than the entire interface. This isn't really ideal, this logic should be hoisted into FunctionAAResults as currently it will cause a significant amount of redundant work, but it faithfully models the behavior of the prior infrastructure. - All the alias analysis passes are ported to be wrapper passes for the legacy PM and new-style analysis passes for the new PM with a shared result object. In some cases (most notably CFL), this is an extremely naive approach that we should revisit when we can specialize for the new pass manager. - BasicAA has been restructured to reflect that it is much more fundamentally a function analysis because it uses dominator trees and loop info that need to be constructed for each function. All of the references to getting alias analysis results have been updated to use the new aggregation interface. All the preservation and other pass management code has been updated accordingly. The way the FunctionAAResultsWrapperPass works is to detect the available alias analyses when run, and add them to the results object. This means that we should be able to continue to respect when various passes are added to the pipeline, for example adding CFL or adding TBAA passes should just cause their results to be available and to get folded into this. The exception to this rule is BasicAA which really needs to be a function pass due to using dominator trees and loop info. As a consequence, the FunctionAAResultsWrapperPass directly depends on BasicAA and always includes it in the aggregation. This has significant implications for preserving analyses. Generally, most passes shouldn't bother preserving FunctionAAResultsWrapperPass because rebuilding the results just updates the set of known AA passes. The exception to this rule are LoopPass instances which need to preserve all the function analyses that the loop pass manager will end up needing. This means preserving both BasicAAWrapperPass and the aggregating FunctionAAResultsWrapperPass. Now, when preserving an alias analysis, you do so by directly preserving that analysis. This is only necessary for non-immutable-pass-provided alias analyses though, and there are only three of interest: BasicAA, GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is preserved when needed because it (like DominatorTree and LoopInfo) is marked as a CFG-only pass. I've expanded GlobalsAA into the preserved set everywhere we previously were preserving all of AliasAnalysis, and I've added SCEVAA in the intersection of that with where we preserve SCEV itself. One significant challenge to all of this is that the CGSCC passes were actually using the alias analysis implementations by taking advantage of a pretty amazing set of loop holes in the old pass manager's analysis management code which allowed analysis groups to slide through in many cases. Moving away from analysis groups makes this problem much more obvious. To fix it, I've leveraged the flexibility the design of the new PM components provides to just directly construct the relevant alias analyses for the relevant functions in the IPO passes that need them. This is a bit hacky, but should go away with the new pass manager, and is already in many ways cleaner than the prior state. Another significant challenge is that various facilities of the old alias analysis infrastructure just don't fit any more. The most significant of these is the alias analysis 'counter' pass. That pass relied on the ability to snoop on AA queries at different points in the analysis group chain. Instead, I'm planning to build printing functionality directly into the aggregation layer. I've not included that in this patch merely to keep it smaller. Note that all of this needs a nearly complete rewrite of the AA documentation. I'm planning to do that, but I'd like to make sure the new design settles, and to flesh out a bit more of what it looks like in the new pass manager first. Differential Revision: http://reviews.llvm.org/D12080 llvm-svn: 247167
2015-09-09 19:55:00 +02:00
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(PostOrderFunctionAttrs, "functionattrs",
"Deduce function attributes", false, false)
Pass *llvm::createPostOrderFunctionAttrsPass() { return new PostOrderFunctionAttrs(); }
namespace {
/// The three kinds of memory access relevant to 'readonly' and
/// 'readnone' attributes.
enum MemoryAccessKind {
MAK_ReadNone = 0,
MAK_ReadOnly = 1,
MAK_MayWrite = 2
};
}
static MemoryAccessKind checkFunctionMemoryAccess(Function &F, AAResults &AAR,
const SCCNodeSet &SCCNodes) {
FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
if (MRB == FMRB_DoesNotAccessMemory)
// Already perfect!
return MAK_ReadNone;
// Definitions with weak linkage may be overridden at linktime with
// something that writes memory, so treat them like declarations.
if (F.isDeclaration() || F.mayBeOverridden()) {
if (AliasAnalysis::onlyReadsMemory(MRB))
return MAK_ReadOnly;
// Conservatively assume it writes to memory.
return MAK_MayWrite;
}
// Scan the function body for instructions that may read or write memory.
bool ReadsMemory = false;
for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
Instruction *I = &*II;
// Some instructions can be ignored even if they read or write memory.
// Detect these now, skipping to the next instruction if one is found.
CallSite CS(cast<Value>(I));
if (CS) {
// Ignore calls to functions in the same SCC, as long as the call sites
// don't have operand bundles. Calls with operand bundles are allowed to
// have memory effects not described by the memory effects of the call
// target.
if (!CS.hasOperandBundles() && CS.getCalledFunction() &&
SCCNodes.count(CS.getCalledFunction()))
continue;
FunctionModRefBehavior MRB = AAR.getModRefBehavior(CS);
// If the call doesn't access memory, we're done.
if (!(MRB & MRI_ModRef))
continue;
if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
// The call could access any memory. If that includes writes, give up.
if (MRB & MRI_Mod)
return MAK_MayWrite;
// If it reads, note it.
if (MRB & MRI_Ref)
ReadsMemory = true;
continue;
}
// Check whether all pointer arguments point to local memory, and
// ignore calls that only access local memory.
for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
CI != CE; ++CI) {
Value *Arg = *CI;
if (!Arg->getType()->isPtrOrPtrVectorTy())
continue;
AAMDNodes AAInfo;
I->getAAMetadata(AAInfo);
MemoryLocation Loc(Arg, MemoryLocation::UnknownSize, AAInfo);
// Skip accesses to local or constant memory as they don't impact the
// externally visible mod/ref behavior.
if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
continue;
if (MRB & MRI_Mod)
// Writes non-local memory. Give up.
return MAK_MayWrite;
if (MRB & MRI_Ref)
// Ok, it reads non-local memory.
ReadsMemory = true;
}
continue;
} else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
// Ignore non-volatile loads from local memory. (Atomic is okay here.)
if (!LI->isVolatile()) {
MemoryLocation Loc = MemoryLocation::get(LI);
if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
continue;
}
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
// Ignore non-volatile stores to local memory. (Atomic is okay here.)
if (!SI->isVolatile()) {
MemoryLocation Loc = MemoryLocation::get(SI);
if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
continue;
}
} else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
// Ignore vaargs on local memory.
MemoryLocation Loc = MemoryLocation::get(VI);
if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
continue;
}
// Any remaining instructions need to be taken seriously! Check if they
// read or write memory.
if (I->mayWriteToMemory())
// Writes memory. Just give up.
return MAK_MayWrite;
// If this instruction may read memory, remember that.
ReadsMemory |= I->mayReadFromMemory();
}
return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
}
/// Deduce readonly/readnone attributes for the SCC.
template <typename AARGetterT>
static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT AARGetter) {
2008-09-29 15:35:31 +02:00
// Check if any of the functions in the SCC read or write memory. If they
// write memory then they can't be marked readnone or readonly.
bool ReadsMemory = false;
for (Function *F : SCCNodes) {
// Call the callable parameter to look up AA results for this function.
AAResults &AAR = AARGetter(*F);
[PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible with the new pass manager, and no longer relying on analysis groups. This builds essentially a ground-up new AA infrastructure stack for LLVM. The core ideas are the same that are used throughout the new pass manager: type erased polymorphism and direct composition. The design is as follows: - FunctionAAResults is a type-erasing alias analysis results aggregation interface to walk a single query across a range of results from different alias analyses. Currently this is function-specific as we always assume that aliasing queries are *within* a function. - AAResultBase is a CRTP utility providing stub implementations of various parts of the alias analysis result concept, notably in several cases in terms of other more general parts of the interface. This can be used to implement only a narrow part of the interface rather than the entire interface. This isn't really ideal, this logic should be hoisted into FunctionAAResults as currently it will cause a significant amount of redundant work, but it faithfully models the behavior of the prior infrastructure. - All the alias analysis passes are ported to be wrapper passes for the legacy PM and new-style analysis passes for the new PM with a shared result object. In some cases (most notably CFL), this is an extremely naive approach that we should revisit when we can specialize for the new pass manager. - BasicAA has been restructured to reflect that it is much more fundamentally a function analysis because it uses dominator trees and loop info that need to be constructed for each function. All of the references to getting alias analysis results have been updated to use the new aggregation interface. All the preservation and other pass management code has been updated accordingly. The way the FunctionAAResultsWrapperPass works is to detect the available alias analyses when run, and add them to the results object. This means that we should be able to continue to respect when various passes are added to the pipeline, for example adding CFL or adding TBAA passes should just cause their results to be available and to get folded into this. The exception to this rule is BasicAA which really needs to be a function pass due to using dominator trees and loop info. As a consequence, the FunctionAAResultsWrapperPass directly depends on BasicAA and always includes it in the aggregation. This has significant implications for preserving analyses. Generally, most passes shouldn't bother preserving FunctionAAResultsWrapperPass because rebuilding the results just updates the set of known AA passes. The exception to this rule are LoopPass instances which need to preserve all the function analyses that the loop pass manager will end up needing. This means preserving both BasicAAWrapperPass and the aggregating FunctionAAResultsWrapperPass. Now, when preserving an alias analysis, you do so by directly preserving that analysis. This is only necessary for non-immutable-pass-provided alias analyses though, and there are only three of interest: BasicAA, GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is preserved when needed because it (like DominatorTree and LoopInfo) is marked as a CFG-only pass. I've expanded GlobalsAA into the preserved set everywhere we previously were preserving all of AliasAnalysis, and I've added SCEVAA in the intersection of that with where we preserve SCEV itself. One significant challenge to all of this is that the CGSCC passes were actually using the alias analysis implementations by taking advantage of a pretty amazing set of loop holes in the old pass manager's analysis management code which allowed analysis groups to slide through in many cases. Moving away from analysis groups makes this problem much more obvious. To fix it, I've leveraged the flexibility the design of the new PM components provides to just directly construct the relevant alias analyses for the relevant functions in the IPO passes that need them. This is a bit hacky, but should go away with the new pass manager, and is already in many ways cleaner than the prior state. Another significant challenge is that various facilities of the old alias analysis infrastructure just don't fit any more. The most significant of these is the alias analysis 'counter' pass. That pass relied on the ability to snoop on AA queries at different points in the analysis group chain. Instead, I'm planning to build printing functionality directly into the aggregation layer. I've not included that in this patch merely to keep it smaller. Note that all of this needs a nearly complete rewrite of the AA documentation. I'm planning to do that, but I'd like to make sure the new design settles, and to flesh out a bit more of what it looks like in the new pass manager first. Differential Revision: http://reviews.llvm.org/D12080 llvm-svn: 247167
2015-09-09 19:55:00 +02:00
switch (checkFunctionMemoryAccess(*F, AAR, SCCNodes)) {
case MAK_MayWrite:
return false;
case MAK_ReadOnly:
ReadsMemory = true;
break;
case MAK_ReadNone:
// Nothing to do!
break;
}
}
// Success! Functions in this SCC do not access memory, or only read memory.
// Give them the appropriate attribute.
bool MadeChange = false;
for (Function *F : SCCNodes) {
if (F->doesNotAccessMemory())
// Already perfect!
continue;
if (F->onlyReadsMemory() && ReadsMemory)
// No change.
continue;
MadeChange = true;
// Clear out any existing attributes.
AttrBuilder B;
B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
F->removeAttributes(
AttributeSet::FunctionIndex,
AttributeSet::get(F->getContext(), AttributeSet::FunctionIndex, B));
// Add in the new attribute.
F->addAttribute(AttributeSet::FunctionIndex,
ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
if (ReadsMemory)
++NumReadOnly;
else
++NumReadNone;
}
return MadeChange;
}
namespace {
/// For a given pointer Argument, this retains a list of Arguments of functions
/// in the same SCC that the pointer data flows into. We use this to build an
/// SCC of the arguments.
struct ArgumentGraphNode {
Argument *Definition;
SmallVector<ArgumentGraphNode *, 4> Uses;
};
class ArgumentGraph {
// We store pointers to ArgumentGraphNode objects, so it's important that
// that they not move around upon insert.
typedef std::map<Argument *, ArgumentGraphNode> ArgumentMapTy;
ArgumentMapTy ArgumentMap;
// There is no root node for the argument graph, in fact:
// void f(int *x, int *y) { if (...) f(x, y); }
// is an example where the graph is disconnected. The SCCIterator requires a
// single entry point, so we maintain a fake ("synthetic") root node that
// uses every node. Because the graph is directed and nothing points into
// the root, it will not participate in any SCCs (except for its own).
ArgumentGraphNode SyntheticRoot;
public:
ArgumentGraph() { SyntheticRoot.Definition = nullptr; }
typedef SmallVectorImpl<ArgumentGraphNode *>::iterator iterator;
iterator begin() { return SyntheticRoot.Uses.begin(); }
iterator end() { return SyntheticRoot.Uses.end(); }
ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
ArgumentGraphNode *operator[](Argument *A) {
ArgumentGraphNode &Node = ArgumentMap[A];
Node.Definition = A;
SyntheticRoot.Uses.push_back(&Node);
return &Node;
}
};
/// This tracker checks whether callees are in the SCC, and if so it does not
/// consider that a capture, instead adding it to the "Uses" list and
/// continuing with the analysis.
struct ArgumentUsesTracker : public CaptureTracker {
ArgumentUsesTracker(const SCCNodeSet &SCCNodes)
: Captured(false), SCCNodes(SCCNodes) {}
void tooManyUses() override { Captured = true; }
bool captured(const Use *U) override {
CallSite CS(U->getUser());
if (!CS.getInstruction()) {
Captured = true;
return true;
}
Function *F = CS.getCalledFunction();
if (!F || F->isDeclaration() || F->mayBeOverridden() ||
!SCCNodes.count(F)) {
Captured = true;
return true;
}
// Note: the callee and the two successor blocks *follow* the argument
// operands. This means there is no need to adjust UseIndex to account for
// these.
unsigned UseIndex =
std::distance(const_cast<const Use *>(CS.arg_begin()), U);
assert(UseIndex < CS.data_operands_size() &&
"Indirect function calls should have been filtered above!");
if (UseIndex >= CS.getNumArgOperands()) {
// Data operand, but not a argument operand -- must be a bundle operand
assert(CS.hasOperandBundles() && "Must be!");
// CaptureTracking told us that we're being captured by an operand bundle
// use. In this case it does not matter if the callee is within our SCC
// or not -- we've been captured in some unknown way, and we have to be
// conservative.
Captured = true;
return true;
}
if (UseIndex >= F->arg_size()) {
assert(F->isVarArg() && "More params than args in non-varargs call");
Captured = true;
return true;
}
Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
return false;
}
bool Captured; // True only if certainly captured (used outside our SCC).
SmallVector<Argument *, 4> Uses; // Uses within our SCC.
const SCCNodeSet &SCCNodes;
};
}
namespace llvm {
template <> struct GraphTraits<ArgumentGraphNode *> {
typedef ArgumentGraphNode NodeType;
typedef SmallVectorImpl<ArgumentGraphNode *>::iterator ChildIteratorType;
static inline NodeType *getEntryNode(NodeType *A) { return A; }
static inline ChildIteratorType child_begin(NodeType *N) {
return N->Uses.begin();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->Uses.end();
}
};
template <>
struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
static NodeType *getEntryNode(ArgumentGraph *AG) {
return AG->getEntryNode();
}
static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
return AG->begin();
}
static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
};
}
/// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
static Attribute::AttrKind
determinePointerReadAttrs(Argument *A,
const SmallPtrSet<Argument *, 8> &SCCNodes) {
SmallVector<Use *, 32> Worklist;
SmallSet<Use *, 32> Visited;
// inalloca arguments are always clobbered by the call.
if (A->hasInAllocaAttr())
return Attribute::None;
bool IsRead = false;
// We don't need to track IsWritten. If A is written to, return immediately.
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] llvm-svn: 203364
2014-03-09 04:16:01 +01:00
for (Use &U : A->uses()) {
Visited.insert(&U);
Worklist.push_back(&U);
}
while (!Worklist.empty()) {
Use *U = Worklist.pop_back_val();
Instruction *I = cast<Instruction>(U->getUser());
switch (I->getOpcode()) {
case Instruction::BitCast:
case Instruction::GetElementPtr:
case Instruction::PHI:
case Instruction::Select:
case Instruction::AddrSpaceCast:
// The original value is not read/written via this if the new value isn't.
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] llvm-svn: 203364
2014-03-09 04:16:01 +01:00
for (Use &UU : I->uses())
if (Visited.insert(&UU).second)
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] llvm-svn: 203364
2014-03-09 04:16:01 +01:00
Worklist.push_back(&UU);
break;
case Instruction::Call:
case Instruction::Invoke: {
bool Captures = true;
if (I->getType()->isVoidTy())
Captures = false;
auto AddUsersToWorklistIfCapturing = [&] {
if (Captures)
for (Use &UU : I->uses())
if (Visited.insert(&UU).second)
Worklist.push_back(&UU);
};
CallSite CS(I);
if (CS.doesNotAccessMemory()) {
AddUsersToWorklistIfCapturing();
continue;
}
Function *F = CS.getCalledFunction();
if (!F) {
if (CS.onlyReadsMemory()) {
IsRead = true;
AddUsersToWorklistIfCapturing();
continue;
}
return Attribute::None;
}
// Note: the callee and the two successor blocks *follow* the argument
// operands. This means there is no need to adjust UseIndex to account
// for these.
unsigned UseIndex = std::distance(CS.arg_begin(), U);
// U cannot be the callee operand use: since we're exploring the
// transitive uses of an Argument, having such a use be a callee would
// imply the CallSite is an indirect call or invoke; and we'd take the
// early exit above.
assert(UseIndex < CS.data_operands_size() &&
"Data operand use expected!");
bool IsOperandBundleUse = UseIndex >= CS.getNumArgOperands();
if (UseIndex >= F->arg_size() && !IsOperandBundleUse) {
assert(F->isVarArg() && "More params than args in non-varargs call");
return Attribute::None;
}
Captures &= !CS.doesNotCapture(UseIndex);
// Since the optimizer (by design) cannot see the data flow corresponding
// to a operand bundle use, these cannot participate in the optimistic SCC
// analysis. Instead, we model the operand bundle uses as arguments in
// call to a function external to the SCC.
if (!SCCNodes.count(&*std::next(F->arg_begin(), UseIndex)) ||
IsOperandBundleUse) {
// The accessors used on CallSite here do the right thing for calls and
// invokes with operand bundles.
if (!CS.onlyReadsMemory() && !CS.onlyReadsMemory(UseIndex))
return Attribute::None;
if (!CS.doesNotAccessMemory(UseIndex))
IsRead = true;
}
AddUsersToWorklistIfCapturing();
break;
}
case Instruction::Load:
IsRead = true;
break;
case Instruction::ICmp:
case Instruction::Ret:
break;
default:
return Attribute::None;
}
}
return IsRead ? Attribute::ReadOnly : Attribute::ReadNone;
}
/// Deduce nocapture attributes for the SCC.
static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) {
bool Changed = false;
ArgumentGraph AG;
AttrBuilder B;
B.addAttribute(Attribute::NoCapture);
// Check each function in turn, determining which pointer arguments are not
// captured.
for (Function *F : SCCNodes) {
// Definitions with weak linkage may be overridden at linktime with
// something that captures pointers, so treat them like declarations.
if (F->isDeclaration() || F->mayBeOverridden())
continue;
// Functions that are readonly (or readnone) and nounwind and don't return
// a value can't capture arguments. Don't analyze them.
if (F->onlyReadsMemory() && F->doesNotThrow() &&
F->getReturnType()->isVoidTy()) {
for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
++A) {
if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
A->addAttr(AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
++NumNoCapture;
Changed = true;
}
}
continue;
}
for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
++A) {
if (!A->getType()->isPointerTy())
continue;
bool HasNonLocalUses = false;
if (!A->hasNoCaptureAttr()) {
ArgumentUsesTracker Tracker(SCCNodes);
PointerMayBeCaptured(&*A, &Tracker);
if (!Tracker.Captured) {
if (Tracker.Uses.empty()) {
// If it's trivially not captured, mark it nocapture now.
A->addAttr(
AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
++NumNoCapture;
Changed = true;
} else {
// If it's not trivially captured and not trivially not captured,
// then it must be calling into another function in our SCC. Save
// its particulars for Argument-SCC analysis later.
ArgumentGraphNode *Node = AG[&*A];
for (SmallVectorImpl<Argument *>::iterator
UI = Tracker.Uses.begin(),
UE = Tracker.Uses.end();
UI != UE; ++UI) {
Node->Uses.push_back(AG[*UI]);
if (*UI != A)
HasNonLocalUses = true;
}
}
}
// Otherwise, it's captured. Don't bother doing SCC analysis on it.
}
if (!HasNonLocalUses && !A->onlyReadsMemory()) {
// Can we determine that it's readonly/readnone without doing an SCC?
// Note that we don't allow any calls at all here, or else our result
// will be dependent on the iteration order through the functions in the
// SCC.
SmallPtrSet<Argument *, 8> Self;
Self.insert(&*A);
Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self);
if (R != Attribute::None) {
AttrBuilder B;
B.addAttribute(R);
A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
Changed = true;
R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
}
}
}
}
// The graph we've collected is partial because we stopped scanning for
// argument uses once we solved the argument trivially. These partial nodes
// show up as ArgumentGraphNode objects with an empty Uses list, and for
// these nodes the final decision about whether they capture has already been
// made. If the definition doesn't have a 'nocapture' attribute by now, it
// captures.
for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
if (ArgumentSCC.size() == 1) {
if (!ArgumentSCC[0]->Definition)
continue; // synthetic root node
// eg. "void f(int* x) { if (...) f(x); }"
if (ArgumentSCC[0]->Uses.size() == 1 &&
ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
Argument *A = ArgumentSCC[0]->Definition;
A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
++NumNoCapture;
Changed = true;
}
continue;
}
bool SCCCaptured = false;
for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
I != E && !SCCCaptured; ++I) {
ArgumentGraphNode *Node = *I;
if (Node->Uses.empty()) {
if (!Node->Definition->hasNoCaptureAttr())
SCCCaptured = true;
}
}
if (SCCCaptured)
continue;
SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
// Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for
// quickly looking up whether a given Argument is in this ArgumentSCC.
for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); I != E; ++I) {
ArgumentSCCNodes.insert((*I)->Definition);
}
for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
I != E && !SCCCaptured; ++I) {
ArgumentGraphNode *N = *I;
for (SmallVectorImpl<ArgumentGraphNode *>::iterator UI = N->Uses.begin(),
UE = N->Uses.end();
UI != UE; ++UI) {
Argument *A = (*UI)->Definition;
if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
continue;
SCCCaptured = true;
break;
}
}
if (SCCCaptured)
continue;
for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
Argument *A = ArgumentSCC[i]->Definition;
A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
++NumNoCapture;
Changed = true;
}
// We also want to compute readonly/readnone. With a small number of false
// negatives, we can assume that any pointer which is captured isn't going
// to be provably readonly or readnone, since by definition we can't
// analyze all uses of a captured pointer.
//
// The false negatives happen when the pointer is captured by a function
// that promises readonly/readnone behaviour on the pointer, then the
// pointer's lifetime ends before anything that writes to arbitrary memory.
// Also, a readonly/readnone pointer may be returned, but returning a
// pointer is capturing it.
Attribute::AttrKind ReadAttr = Attribute::ReadNone;
for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
Argument *A = ArgumentSCC[i]->Definition;
Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes);
if (K == Attribute::ReadNone)
continue;
if (K == Attribute::ReadOnly) {
ReadAttr = Attribute::ReadOnly;
continue;
}
ReadAttr = K;
break;
}
if (ReadAttr != Attribute::None) {
AttrBuilder B, R;
B.addAttribute(ReadAttr);
R.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
Argument *A = ArgumentSCC[i]->Definition;
// Clear out existing readonly/readnone attributes
A->removeAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, R));
A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
ReadAttr == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
Changed = true;
}
}
}
return Changed;
}
/// Tests whether a function is "malloc-like".
///
/// A function is "malloc-like" if it returns either null or a pointer that
/// doesn't alias any other pointer visible to the caller.
static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
SmallSetVector<Value *, 8> FlowsToReturn;
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
if (ReturnInst *Ret = dyn_cast<ReturnInst>(I->getTerminator()))
FlowsToReturn.insert(Ret->getReturnValue());
for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
Value *RetVal = FlowsToReturn[i];
if (Constant *C = dyn_cast<Constant>(RetVal)) {
if (!C->isNullValue() && !isa<UndefValue>(C))
return false;
continue;
}
if (isa<Argument>(RetVal))
return false;
if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
switch (RVI->getOpcode()) {
// Extend the analysis by looking upwards.
case Instruction::BitCast:
case Instruction::GetElementPtr:
case Instruction::AddrSpaceCast:
FlowsToReturn.insert(RVI->getOperand(0));
continue;
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(RVI);
FlowsToReturn.insert(SI->getTrueValue());
FlowsToReturn.insert(SI->getFalseValue());
continue;
}
case Instruction::PHI: {
PHINode *PN = cast<PHINode>(RVI);
for (Value *IncValue : PN->incoming_values())
FlowsToReturn.insert(IncValue);
continue;
}
// Check whether the pointer came from an allocation.
case Instruction::Alloca:
break;
case Instruction::Call:
case Instruction::Invoke: {
CallSite CS(RVI);
if (CS.paramHasAttr(0, Attribute::NoAlias))
break;
if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
break;
} // fall-through
default:
return false; // Did not come from an allocation.
}
if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
return false;
}
return true;
}
/// Deduce noalias attributes for the SCC.
static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) {
// Check each function in turn, determining which functions return noalias
// pointers.
for (Function *F : SCCNodes) {
// Already noalias.
if (F->doesNotAlias(0))
continue;
// Definitions with weak linkage may be overridden at linktime, so
// treat them like declarations.
if (F->isDeclaration() || F->mayBeOverridden())
return false;
// We annotate noalias return values, which are only applicable to
// pointer types.
if (!F->getReturnType()->isPointerTy())
continue;
if (!isFunctionMallocLike(F, SCCNodes))
return false;
}
bool MadeChange = false;
for (Function *F : SCCNodes) {
if (F->doesNotAlias(0) || !F->getReturnType()->isPointerTy())
continue;
F->setDoesNotAlias(0);
++NumNoAlias;
MadeChange = true;
}
return MadeChange;
}
/// Tests whether this function is known to not return null.
///
/// Requires that the function returns a pointer.
///
/// Returns true if it believes the function will not return a null, and sets
/// \p Speculative based on whether the returned conclusion is a speculative
/// conclusion due to SCC calls.
static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
const TargetLibraryInfo &TLI, bool &Speculative) {
assert(F->getReturnType()->isPointerTy() &&
"nonnull only meaningful on pointer types");
Speculative = false;
SmallSetVector<Value *, 8> FlowsToReturn;
for (BasicBlock &BB : *F)
if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
FlowsToReturn.insert(Ret->getReturnValue());
for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
Value *RetVal = FlowsToReturn[i];
// If this value is locally known to be non-null, we're good
if (isKnownNonNull(RetVal, &TLI))
continue;
// Otherwise, we need to look upwards since we can't make any local
// conclusions.
Instruction *RVI = dyn_cast<Instruction>(RetVal);
if (!RVI)
return false;
switch (RVI->getOpcode()) {
// Extend the analysis by looking upwards.
case Instruction::BitCast:
case Instruction::GetElementPtr:
case Instruction::AddrSpaceCast:
FlowsToReturn.insert(RVI->getOperand(0));
continue;
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(RVI);
FlowsToReturn.insert(SI->getTrueValue());
FlowsToReturn.insert(SI->getFalseValue());
continue;
}
case Instruction::PHI: {
PHINode *PN = cast<PHINode>(RVI);
for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
FlowsToReturn.insert(PN->getIncomingValue(i));
continue;
}
case Instruction::Call:
case Instruction::Invoke: {
CallSite CS(RVI);
Function *Callee = CS.getCalledFunction();
// A call to a node within the SCC is assumed to return null until
// proven otherwise
if (Callee && SCCNodes.count(Callee)) {
Speculative = true;
continue;
}
return false;
}
default:
return false; // Unknown source, may be null
};
llvm_unreachable("should have either continued or returned");
}
return true;
}
/// Deduce nonnull attributes for the SCC.
static bool addNonNullAttrs(const SCCNodeSet &SCCNodes,
const TargetLibraryInfo &TLI) {
// Speculative that all functions in the SCC return only nonnull
// pointers. We may refute this as we analyze functions.
bool SCCReturnsNonNull = true;
bool MadeChange = false;
// Check each function in turn, determining which functions return nonnull
// pointers.
for (Function *F : SCCNodes) {
// Already nonnull.
if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
Attribute::NonNull))
continue;
// Definitions with weak linkage may be overridden at linktime, so
// treat them like declarations.
if (F->isDeclaration() || F->mayBeOverridden())
return false;
// We annotate nonnull return values, which are only applicable to
// pointer types.
if (!F->getReturnType()->isPointerTy())
continue;
bool Speculative = false;
if (isReturnNonNull(F, SCCNodes, TLI, Speculative)) {
if (!Speculative) {
// Mark the function eagerly since we may discover a function
// which prevents us from speculating about the entire SCC
DEBUG(dbgs() << "Eagerly marking " << F->getName() << " as nonnull\n");
F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
++NumNonNullReturn;
MadeChange = true;
}
continue;
}
// At least one function returns something which could be null, can't
// speculate any more.
SCCReturnsNonNull = false;
}
if (SCCReturnsNonNull) {
for (Function *F : SCCNodes) {
if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
Attribute::NonNull) ||
!F->getReturnType()->isPointerTy())
continue;
DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
++NumNonNullReturn;
MadeChange = true;
}
}
return MadeChange;
}
/// Removes convergent attributes where we can prove that none of the SCC's
/// callees are themselves convergent. Returns true if successful at removing
/// the attribute.
static bool removeConvergentAttrs(const SCCNodeSet &SCCNodes) {
// Determines whether a function can be made non-convergent, ignoring all
// other functions in SCC. (A function can *actually* be made non-convergent
// only if all functions in its SCC can be made convergent.)
auto CanRemoveConvergent = [&](Function *F) {
if (!F->isConvergent())
return true;
// Can't remove convergent from declarations.
if (F->isDeclaration())
return false;
for (Instruction &I : instructions(*F))
if (auto CS = CallSite(&I)) {
// Can't remove convergent if any of F's callees -- ignoring functions
// in the SCC itself -- are convergent. This needs to consider both
// function calls and intrinsic calls. We also assume indirect calls
// might call a convergent function.
// FIXME: We should revisit this when we put convergent onto calls
// instead of functions so that indirect calls which should be
// convergent are required to be marked as such.
Function *Callee = CS.getCalledFunction();
if (!Callee || (SCCNodes.count(Callee) == 0 && Callee->isConvergent()))
return false;
}
return true;
};
// We can remove the convergent attr from functions in the SCC if they all
// can be made non-convergent (because they call only non-convergent
// functions, other than each other).
if (!llvm::all_of(SCCNodes, CanRemoveConvergent))
return false;
// If we got here, all of the SCC's callees are non-convergent. Therefore all
// of the SCC's functions can be marked as non-convergent.
for (Function *F : SCCNodes) {
if (F->isConvergent())
DEBUG(dbgs() << "Removing convergent attr from " << F->getName() << "\n");
F->setNotConvergent();
}
return true;
}
static bool setDoesNotRecurse(Function &F) {
if (F.doesNotRecurse())
return false;
F.setDoesNotRecurse();
++NumNoRecurse;
return true;
}
static bool addNoRecurseAttrs(const CallGraphSCC &SCC) {
// Try and identify functions that do not recurse.
// If the SCC contains multiple nodes we know for sure there is recursion.
if (!SCC.isSingular())
return false;
const CallGraphNode *CGN = *SCC.begin();
Function *F = CGN->getFunction();
if (!F || F->isDeclaration() || F->doesNotRecurse())
return false;
// If all of the calls in F are identifiable and are to norecurse functions, F
// is norecurse. This check also detects self-recursion as F is not currently
// marked norecurse, so any called from F to F will not be marked norecurse.
if (std::all_of(CGN->begin(), CGN->end(),
[](const CallGraphNode::CallRecord &CR) {
Function *F = CR.second->getFunction();
return F && F->doesNotRecurse();
}))
// Function calls a potentially recursive function.
return setDoesNotRecurse(*F);
// Nothing else we can deduce usefully during the postorder traversal.
return false;
}
bool PostOrderFunctionAttrs::runOnSCC(CallGraphSCC &SCC) {
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
bool Changed = false;
// We compute dedicated AA results for each function in the SCC as needed. We
// use a lambda referencing external objects so that they live long enough to
// be queried, but we re-use them each time.
Optional<BasicAAResult> BAR;
Optional<AAResults> AAR;
auto AARGetter = [&](Function &F) -> AAResults & {
BAR.emplace(createLegacyPMBasicAAResult(*this, F));
AAR.emplace(createLegacyPMAAResults(*this, F, *BAR));
return *AAR;
};
// Fill SCCNodes with the elements of the SCC. Used for quickly looking up
// whether a given CallGraphNode is in this SCC. Also track whether there are
// any external or opt-none nodes that will prevent us from optimizing any
// part of the SCC.
SCCNodeSet SCCNodes;
bool ExternalNode = false;
for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
Function *F = (*I)->getFunction();
if (!F || F->hasFnAttribute(Attribute::OptimizeNone)) {
// External node or function we're trying not to optimize - we both avoid
// transform them and avoid leveraging information they provide.
ExternalNode = true;
continue;
}
SCCNodes.insert(F);
}
Changed |= addReadAttrs(SCCNodes, AARGetter);
Changed |= addArgumentAttrs(SCCNodes);
// If we have no external nodes participating in the SCC, we can deduce some
// more precise attributes as well.
if (!ExternalNode) {
Changed |= addNoAliasAttrs(SCCNodes);
Changed |= addNonNullAttrs(SCCNodes, *TLI);
Changed |= removeConvergentAttrs(SCCNodes);
}
Changed |= addNoRecurseAttrs(SCC);
return Changed;
}
namespace {
/// A pass to do RPO deduction and propagation of function attributes.
///
/// This pass provides a general RPO or "top down" propagation of
/// function attributes. For a few (rare) cases, we can deduce significantly
/// more about function attributes by working in RPO, so this pass
/// provides the compliment to the post-order pass above where the majority of
/// deduction is performed.
// FIXME: Currently there is no RPO CGSCC pass structure to slide into and so
// this is a boring module pass, but eventually it should be an RPO CGSCC pass
// when such infrastructure is available.
struct ReversePostOrderFunctionAttrs : public ModulePass {
static char ID; // Pass identification, replacement for typeid
ReversePostOrderFunctionAttrs() : ModulePass(ID) {
initializeReversePostOrderFunctionAttrsPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<CallGraphWrapperPass>();
}
};
}
char ReversePostOrderFunctionAttrs::ID = 0;
INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrs, "rpo-functionattrs",
"Deduce function attributes in RPO", false, false)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_END(ReversePostOrderFunctionAttrs, "rpo-functionattrs",
"Deduce function attributes in RPO", false, false)
Pass *llvm::createReversePostOrderFunctionAttrsPass() {
return new ReversePostOrderFunctionAttrs();
}
static bool addNoRecurseAttrsTopDown(Function &F) {
// We check the preconditions for the function prior to calling this to avoid
// the cost of building up a reversible post-order list. We assert them here
// to make sure none of the invariants this relies on were violated.
assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
assert(!F.doesNotRecurse() &&
"This function has already been deduced as norecurs!");
assert(F.hasInternalLinkage() &&
"Can only do top-down deduction for internal linkage functions!");
// If F is internal and all of its uses are calls from a non-recursive
// functions, then none of its calls could in fact recurse without going
// through a function marked norecurse, and so we can mark this function too
// as norecurse. Note that the uses must actually be calls -- otherwise
// a pointer to this function could be returned from a norecurse function but
// this function could be recursively (indirectly) called. Note that this
// also detects if F is directly recursive as F is not yet marked as
// a norecurse function.
for (auto *U : F.users()) {
auto *I = dyn_cast<Instruction>(U);
if (!I)
return false;
CallSite CS(I);
if (!CS || !CS.getParent()->getParent()->doesNotRecurse())
return false;
}
return setDoesNotRecurse(F);
}
bool ReversePostOrderFunctionAttrs::runOnModule(Module &M) {
// We only have a post-order SCC traversal (because SCCs are inherently
// discovered in post-order), so we accumulate them in a vector and then walk
// it in reverse. This is simpler than using the RPO iterator infrastructure
// because we need to combine SCC detection and the PO walk of the call
// graph. We can also cheat egregiously because we're primarily interested in
// synthesizing norecurse and so we can only save the singular SCCs as SCCs
// with multiple functions in them will clearly be recursive.
auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
SmallVector<Function *, 16> Worklist;
for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
if (I->size() != 1)
continue;
Function *F = I->front()->getFunction();
if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
F->hasInternalLinkage())
Worklist.push_back(F);
}
bool Changed = false;
for (auto *F : reverse(Worklist))
Changed |= addNoRecurseAttrsTopDown(*F);
return Changed;
}