1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00
llvm-mirror/include/llvm/CodeGen/CommandFlags.h

176 lines
4.3 KiB
C
Raw Normal View History

//===-- CommandFlags.h - Command Line Flags Interface -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains codegen-specific flags that are shared between different
// command line tools. The tools "llc" and "opt" both use this file to prevent
// flag duplication.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_COMMANDFLAGS_H
#define LLVM_CODEGEN_COMMANDFLAGS_H
#include "llvm/ADT/FloatingPointMode.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/MC/MCTargetOptionsCommandFlags.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Target/TargetOptions.h"
#include <string>
#include <vector>
namespace llvm {
class Module;
namespace codegen {
std::string getMArch();
std::string getMCPU();
std::vector<std::string> getMAttrs();
Reloc::Model getRelocModel();
Optional<Reloc::Model> getExplicitRelocModel();
ThreadModel::Model getThreadModel();
CodeModel::Model getCodeModel();
Optional<CodeModel::Model> getExplicitCodeModel();
llvm::ExceptionHandling getExceptionModel();
CodeGenFileType getFileType();
Optional<CodeGenFileType> getExplicitFileType();
CodeGenFileType getFileType();
FramePointerKind getFramePointerUsage();
bool getEnableUnsafeFPMath();
bool getEnableNoInfsFPMath();
bool getEnableNoNaNsFPMath();
bool getEnableNoSignedZerosFPMath();
bool getEnableNoTrappingFPMath();
DenormalMode::DenormalModeKind getDenormalFPMath();
DenormalMode::DenormalModeKind getDenormalFP32Math();
bool getEnableHonorSignDependentRoundingFPMath();
llvm::FloatABI::ABIType getFloatABIForCalls();
llvm::FPOpFusion::FPOpFusionMode getFuseFPOps();
bool getDontPlaceZerosInBSS();
bool getEnableGuaranteedTailCallOpt();
bool getEnableAIXExtendedAltivecABI();
bool getDisableTailCalls();
bool getStackSymbolOrdering();
unsigned getOverrideStackAlignment();
bool getStackRealign();
std::string getTrapFuncName();
bool getUseCtors();
bool getRelaxELFRelocations();
bool getDataSections();
Optional<bool> getExplicitDataSections();
bool getFunctionSections();
Optional<bool> getExplicitFunctionSections();
bool getIgnoreXCOFFVisibility();
bool getXCOFFTracebackTable();
std::string getBBSections();
unsigned getTLSSize();
bool getEmulatedTLS();
bool getUniqueSectionNames();
bool getUniqueBasicBlockSectionNames();
llvm::EABI getEABIVersion();
llvm::DebuggerKind getDebuggerTuningOpt();
bool getEnableStackSizeSection();
bool getEnableAddrsig();
bool getEmitCallSiteInfo();
bool getEnableMachineFunctionSplitter();
bool getEnableDebugEntryValues();
[CSSPGO] Pseudo probes for function calls. An indirect call site needs to be probed for its potential call targets. With CSSPGO a direct call also needs a probe so that a calling context can be represented by a stack of callsite probes. Unlike pseudo probes for basic blocks that are in form of standalone intrinsic call instructions, pseudo probes for callsites have to be attached to the call instruction, thus a separate instruction would not work. One possible way of attaching a probe to a call instruction is to use a special metadata that carries information about the probe. The special metadata will have to make its way through the optimization pipeline down to object emission. This requires additional efforts to maintain the metadata in various places. Given that the `!dbg` metadata is a first-class metadata and has all essential support in place , leveraging the `!dbg` metadata as a channel to encode pseudo probe information is probably the easiest solution. With the requirement of not inflating `!dbg` metadata that is allocated for almost every instruction, we found that the 32-bit DWARF discriminator field which mainly serves AutoFDO can be reused for pseudo probes. DWARF discriminators distinguish identical source locations between instructions and with pseudo probes such support is not required. In this change we are using the discriminator field to encode the ID and type of a callsite probe and the encoded value will be unpacked and consumed right before object emission. When a callsite is inlined, the callsite discriminator field will go with the inlined instructions. The `!dbg` metadata of an inlined instruction is in form of a scope stack. The top of the stack is the instruction's original `!dbg` metadata and the bottom of the stack is for the original callsite of the top-level inliner. Except for the top of the stack, all other elements of the stack actually refer to the nested inlined callsites whose discriminator field (which actually represents a calliste probe) can be used together to represent the inline context of an inlined PseudoProbeInst or CallInst. To avoid collision with the baseline AutoFDO in various places that handles dwarf discriminators where a check against the `-pseudo-probe-for-profiling` switch is not available, a special encoding scheme is used to tell apart a pseudo probe discriminator from a regular discriminator. For the regular discriminator, if all lowest 3 bits are non-zero, it means the discriminator is basically empty and all higher 29 bits can be reversed for pseudo probe use. Callsite pseudo probes are inserted in `SampleProfileProbePass` and a target-independent MIR pass `PseudoProbeInserter` is added to unpack the probe ID/type from `!dbg`. Note that with this work the switch -debug-info-for-profiling will not work with -pseudo-probe-for-profiling anymore. They cannot be used at the same time. Reviewed By: wmi Differential Revision: https://reviews.llvm.org/D91756
2020-12-02 06:44:06 +01:00
bool getPseudoProbeForProfiling();
bool getValueTrackingVariableLocations();
bool getForceDwarfFrameSection();
bool getXRayOmitFunctionIndex();
bool getDebugStrictDwarf();
/// Create this object with static storage to register codegen-related command
/// line options.
struct RegisterCodeGenFlags {
RegisterCodeGenFlags();
};
llvm::BasicBlockSection getBBSectionsMode(llvm::TargetOptions &Options);
/// Common utility function tightly tied to the options listed here. Initializes
/// a TargetOptions object with CodeGen flags and returns it.
/// \p TheTriple is used to determine the default value for options if
/// options are not explicitly specified. If those triple dependant options
/// value do not have effect for your component, a default Triple() could be
/// passed in.
TargetOptions InitTargetOptionsFromCodeGenFlags(const llvm::Triple &TheTriple);
std::string getCPUStr();
std::string getFeaturesStr();
std::vector<std::string> getFeatureList();
void renderBoolStringAttr(AttrBuilder &B, StringRef Name, bool Val);
/// Set function attributes of function \p F based on CPU, Features, and command
/// line flags.
void setFunctionAttributes(StringRef CPU, StringRef Features, Function &F);
/// Set function attributes of functions in Module M based on CPU,
/// Features, and command line flags.
void setFunctionAttributes(StringRef CPU, StringRef Features, Module &M);
} // namespace codegen
} // namespace llvm
#endif // LLVM_CODEGEN_COMMANDFLAGS_H