[SCEV] Fix ScalarEvolution tests under NPM
Many tests use opt's -analyze feature, which does not translate well to
NPM and has better alternatives. The alternative here is to explicitly
add a pass that calls ScalarEvolution::print().
The legacy pass manager RUNs aren't changing, but they are now pinned to
the legacy pass manager. For each legacy pass manager RUN, I added a
corresponding NPM RUN using the 'print<scalar-evolution>' pass. For
compatibility with update_analyze_test_checks.py and existing test
CHECKs, 'print<scalar-evolution>' now prints what -analyze prints per
function.
This was generated by the following Python script and failures were
manually fixed up:
import sys
for i in sys.argv:
with open(i, 'r') as f:
s = f.read()
with open(i, 'w') as f:
for l in s.splitlines():
if "RUN:" in l and ' -analyze ' in l and '\\' not in l:
f.write(l.replace(' -analyze ', ' -analyze -enable-new-pm=0 '))
f.write('\n')
f.write(l.replace(' -analyze ', ' -disable-output ').replace(' -scalar-evolution ', ' "-passes=print<scalar-evolution>" ').replace(" | ", " 2>&1 | "))
f.write('\n')
else:
f.write(l)
There are a couple failures still in ScalarEvolution under NPM, but
those are due to other unrelated naming conflicts.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D83798
2020-07-16 20:09:47 +02:00
|
|
|
; RUN: opt -S -analyze -enable-new-pm=0 -scalar-evolution < %s 2>&1 | FileCheck %s
|
|
|
|
; RUN: opt -S -disable-output "-passes=print<scalar-evolution>" < %s 2>&1 2>&1 | FileCheck %s
|
2017-03-20 21:25:46 +01:00
|
|
|
|
|
|
|
; umin is represented using -1 * umax in scalar evolution. -1 is considered as the
|
|
|
|
; constant of the multiply expression (-1 * ((-1 + (-1 * %a)) umax (-1 + (-1 * %b)))).
|
|
|
|
; Returns the greatest power of 2 divisor by evaluating the minimal trailing zeros
|
|
|
|
; for the trip count expression.
|
|
|
|
;
|
|
|
|
; int foo(uint32_t a, uint32_t b, uint32_t *c) {
|
|
|
|
; for (uint32_t i = 0; i < (uint32_t)(a < b ? a : b) + 1; i++)
|
|
|
|
; c[i] = i;
|
|
|
|
; return 0;
|
|
|
|
; }
|
|
|
|
;
|
|
|
|
; CHECK: Loop %for.body: Trip multiple is 1
|
|
|
|
|
|
|
|
define i32 @foo(i32 %a, i32 %b, i32* %c) {
|
|
|
|
entry:
|
|
|
|
%cmp = icmp ult i32 %a, %b
|
|
|
|
%cond = select i1 %cmp, i32 %a, i32 %b
|
|
|
|
%add = add i32 %cond, 1
|
|
|
|
%cmp18 = icmp eq i32 %add, 0
|
|
|
|
br i1 %cmp18, label %for.cond.cleanup, label %for.body.preheader
|
|
|
|
|
|
|
|
for.body.preheader: ; preds = %entry
|
|
|
|
br label %for.body
|
|
|
|
|
|
|
|
for.cond.cleanup.loopexit: ; preds = %for.body
|
|
|
|
br label %for.cond.cleanup
|
|
|
|
|
|
|
|
for.cond.cleanup: ; preds = %for.cond.cleanup.loopexit, %entry
|
|
|
|
ret i32 0
|
|
|
|
|
|
|
|
for.body: ; preds = %for.body.preheader, %for.body
|
|
|
|
%i.09 = phi i32 [ %inc, %for.body ], [ 0, %for.body.preheader ]
|
|
|
|
%arrayidx = getelementptr inbounds i32, i32* %c, i32 %i.09
|
|
|
|
store i32 %i.09, i32* %arrayidx, align 4
|
|
|
|
%inc = add nuw i32 %i.09, 1
|
|
|
|
%cmp1 = icmp ult i32 %inc, %add
|
|
|
|
br i1 %cmp1, label %for.body, label %for.cond.cleanup.loopexit
|
|
|
|
}
|
|
|
|
|
|
|
|
; Overflow may happen for the multiply expression n * 3, verify that trip
|
|
|
|
; multiple is set to 1 if NUW/NSW are not set.
|
|
|
|
;
|
|
|
|
; __attribute__((noinline)) void a(unsigned n) {
|
|
|
|
; #pragma unroll(3)
|
|
|
|
; for (unsigned i = 0; i != n * 3; ++i)
|
|
|
|
; printf("TEST%u\n", i);
|
|
|
|
; }
|
|
|
|
; int main() { a(2863311531U); }
|
|
|
|
;
|
|
|
|
; CHECK: Loop %for.body: Trip multiple is 1
|
|
|
|
|
|
|
|
@.str2 = private unnamed_addr constant [8 x i8] c"TEST%u\0A\00", align 1
|
|
|
|
|
|
|
|
define void @foo2(i32 %n) {
|
|
|
|
entry:
|
|
|
|
%mul = mul i32 %n, 3
|
|
|
|
%cmp4 = icmp eq i32 %mul, 0
|
|
|
|
br i1 %cmp4, label %for.cond.cleanup, label %for.body.preheader
|
|
|
|
|
|
|
|
for.body.preheader: ; preds = %entry
|
|
|
|
br label %for.body
|
|
|
|
|
|
|
|
for.cond.cleanup.loopexit: ; preds = %for.body
|
|
|
|
br label %for.cond.cleanup
|
|
|
|
|
|
|
|
for.cond.cleanup: ; preds = %for.cond.cleanup.loopexit, %entry
|
|
|
|
ret void
|
|
|
|
|
|
|
|
for.body: ; preds = %for.body.preheader, %for.body
|
|
|
|
%i.05 = phi i32 [ %inc, %for.body ], [ 0, %for.body.preheader ]
|
|
|
|
%call = tail call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([8 x i8], [8 x i8]* @.str2, i32 0, i32 0), i32 %i.05)
|
|
|
|
%inc = add nuw i32 %i.05, 1
|
|
|
|
%cmp = icmp eq i32 %inc, %mul
|
|
|
|
br i1 %cmp, label %for.cond.cleanup.loopexit, label %for.body
|
|
|
|
}
|
|
|
|
|
|
|
|
declare i32 @printf(i8* nocapture readonly, ...)
|
|
|
|
|
|
|
|
|
|
|
|
; If we couldn't prove no overflow for the multiply expression 24 * n,
|
|
|
|
; returns the greatest power of 2 divisor. If overflows happens
|
|
|
|
; the trip count is still divisible by the greatest power of 2 divisor.
|
|
|
|
;
|
|
|
|
; CHECK: Loop %l3: Trip multiple is 8
|
|
|
|
|
|
|
|
declare void @f()
|
|
|
|
|
|
|
|
define i32 @foo3(i32 %n) {
|
|
|
|
entry:
|
|
|
|
%loop_ctl = mul i32 %n, 24
|
|
|
|
br label %l3
|
|
|
|
|
|
|
|
l3:
|
|
|
|
%x.0 = phi i32 [ 0, %entry ], [ %inc, %l3 ]
|
|
|
|
call void @f()
|
|
|
|
%inc = add i32 %x.0, 1
|
|
|
|
%exitcond = icmp eq i32 %inc, %loop_ctl
|
|
|
|
br i1 %exitcond, label %exit, label %l3
|
|
|
|
|
|
|
|
exit:
|
|
|
|
ret i32 0
|
|
|
|
}
|
|
|
|
|
|
|
|
; If the trip count is a constant, verify that we obtained the trip
|
|
|
|
; count itself. For huge trip counts, or zero, we return 1.
|
|
|
|
;
|
|
|
|
; CHECK: Loop %l3: Trip multiple is 3
|
|
|
|
|
|
|
|
define i32 @foo4(i32 %n) {
|
|
|
|
entry:
|
|
|
|
br label %l3
|
|
|
|
|
|
|
|
l3:
|
|
|
|
%x.0 = phi i32 [ 0, %entry ], [ %inc, %l3 ]
|
|
|
|
call void @f()
|
|
|
|
%inc = add i32 %x.0, 1
|
|
|
|
%exitcond = icmp eq i32 %inc, 3
|
|
|
|
br i1 %exitcond, label %exit, label %l3
|
|
|
|
|
|
|
|
exit:
|
|
|
|
ret i32 0
|
|
|
|
}
|
|
|
|
|
2021-05-26 20:51:17 +02:00
|
|
|
; If there are multiple exits, the result is the GCD of the multiples
|
|
|
|
; of each individual exit (since we don't know which is taken).
|
|
|
|
|
|
|
|
; CHECK: Loop %l4: Trip multiple is 50
|
|
|
|
|
|
|
|
define i32 @foo5(i32 %n) {
|
|
|
|
entry:
|
|
|
|
br label %l4
|
|
|
|
|
|
|
|
l4:
|
|
|
|
%x.0 = phi i32 [ 0, %entry ], [ %inc, %l4-latch ]
|
|
|
|
call void @f()
|
|
|
|
%inc = add i32 %x.0, 1
|
|
|
|
%earlycond = icmp eq i32 %inc, 150
|
|
|
|
br i1 %earlycond, label %exit, label %l4-latch
|
|
|
|
|
|
|
|
l4-latch:
|
|
|
|
%exitcond = icmp eq i32 %inc, 200
|
|
|
|
br i1 %exitcond, label %exit, label %l4
|
|
|
|
|
|
|
|
exit:
|
|
|
|
ret i32 0
|
|
|
|
}
|
|
|
|
|