1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-22 12:33:33 +02:00
llvm-mirror/lib/Transforms/IPO/InlineAlways.cpp

90 lines
3.2 KiB
C++
Raw Normal View History

2008-09-03 21:52:17 +02:00
//===- InlineAlways.cpp - Code to inline always_inline functions ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
2008-09-03 21:52:17 +02:00
// This file implements a custom inliner that handles only functions that
2008-09-03 22:25:40 +02:00
// are marked as "always inline".
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "inline"
#include "llvm/CallingConv.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Module.h"
#include "llvm/Type.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/InlinerPass.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/SmallPtrSet.h"
using namespace llvm;
namespace {
// AlwaysInliner only inlines functions that are mark as "always inline".
class AlwaysInliner : public Inliner {
InlineCostAnalyzer CA;
public:
2011-10-01 03:27:56 +02:00
// Use extremely low threshold.
2012-02-25 04:07:57 +01:00
AlwaysInliner() : Inliner(ID, -2000000000, /*InsertLifetime*/true) {
initializeAlwaysInlinerPass(*PassRegistry::getPassRegistry());
}
AlwaysInliner(bool InsertLifetime) : Inliner(ID, -2000000000,
InsertLifetime) {
initializeAlwaysInlinerPass(*PassRegistry::getPassRegistry());
}
static char ID; // Pass identification, replacement for typeid
InlineCost getInlineCost(CallSite CS) {
Start removing the use of an ad-hoc 'never inline' set and instead directly query the function information which this set was representing. This simplifies the interface of the inline cost analysis, and makes the always-inline pass significantly more efficient. Previously, always-inline would first make a single set of every function in the module *except* those marked with the always-inline attribute. It would then query this set at every call site to see if the function was a member of the set, and if so, refuse to inline it. This is quite wasteful. Instead, simply check the function attribute directly when looking at the callsite. The normal inliner also had similar redundancy. It added every function in the module with the noinline attribute to its set to ignore, even though inside the cost analysis function we *already tested* the noinline attribute and produced the same result. The only tricky part of removing this is that we have to be able to correctly remove only the functions inlined by the always-inline pass when finalizing, which requires a bit of a hack. Still, much less of a hack than the set of all non-always-inline functions was. While I was touching this function, I switched a heavy-weight set to a vector with sort+unique. The algorithm already had a two-phase insert and removal pattern, we were just needlessly paying the uniquing cost on every insert. This probably speeds up some compiles by a small amount (-O0 compiles with lots of always-inline, so potentially heavy libc++ users), but I've not tried to measure it. I believe there is no functional change here, but yell if you spot one. None are intended. Finally, the direction this is going in is to greatly simplify the inline cost query interface so that we can replace its implementation with a much more clever one. Along the way, all the APIs get simplified, so it seems incrementally good. llvm-svn: 152903
2012-03-16 07:10:13 +01:00
Function *Callee = CS.getCalledFunction();
// We assume indirect calls aren't calling an always-inline function.
if (!Callee) return InlineCost::getNever();
// We can't inline calls to external functions.
// FIXME: We shouldn't even get here.
if (Callee->isDeclaration()) return InlineCost::getNever();
// Return never for anything not marked as always inline.
if (!Callee->hasFnAttr(Attribute::AlwaysInline))
return InlineCost::getNever();
// We still have to check the inline cost in case there are reasons to
// not inline which trump the always-inline attribute such as setjmp and
// indirectbr.
Initial commit for the rewrite of the inline cost analysis to operate on a per-callsite walk of the called function's instructions, in breadth-first order over the potentially reachable set of basic blocks. This is a major shift in how inline cost analysis works to improve the accuracy and rationality of inlining decisions. A brief outline of the algorithm this moves to: - Build a simplification mapping based on the callsite arguments to the function arguments. - Push the entry block onto a worklist of potentially-live basic blocks. - Pop the first block off of the *front* of the worklist (for breadth-first ordering) and walk its instructions using a custom InstVisitor. - For each instruction's operands, re-map them based on the simplification mappings available for the given callsite. - Compute any simplification possible of the instruction after re-mapping, and store that back int othe simplification mapping. - Compute any bonuses, costs, or other impacts of the instruction on the cost metric. - When the terminator is reached, replace any conditional value in the terminator with any simplifications from the mapping we have, and add any successors which are not proven to be dead from these simplifications to the worklist. - Pop the next block off of the front of the worklist, and repeat. - As soon as the cost of inlining exceeds the threshold for the callsite, stop analyzing the function in order to bound cost. The primary goal of this algorithm is to perfectly handle dead code paths. We do not want any code in trivially dead code paths to impact inlining decisions. The previous metric was *extremely* flawed here, and would always subtract the average cost of two successors of a conditional branch when it was proven to become an unconditional branch at the callsite. There was no handling of wildly different costs between the two successors, which would cause inlining when the path actually taken was too large, and no inlining when the path actually taken was trivially simple. There was also no handling of the code *path*, only the immediate successors. These problems vanish completely now. See the added regression tests for the shiny new features -- we skip recursive function calls, SROA-killing instructions, and high cost complex CFG structures when dead at the callsite being analyzed. Switching to this algorithm required refactoring the inline cost interface to accept the actual threshold rather than simply returning a single cost. The resulting interface is pretty bad, and I'm planning to do lots of interface cleanup after this patch. Several other refactorings fell out of this, but I've tried to minimize them for this patch. =/ There is still more cleanup that can be done here. Please point out anything that you see in review. I've worked really hard to try to mirror at least the spirit of all of the previous heuristics in the new model. It's not clear that they are all correct any more, but I wanted to minimize the change in this single patch, it's already a bit ridiculous. One heuristic that is *not* yet mirrored is to allow inlining of functions with a dynamic alloca *if* the caller has a dynamic alloca. I will add this back, but I think the most reasonable way requires changes to the inliner itself rather than just the cost metric, and so I've deferred this for a subsequent patch. The test case is XFAIL-ed until then. As mentioned in the review mail, this seems to make Clang run about 1% to 2% faster in -O0, but makes its binary size grow by just under 4%. I've looked into the 4% growth, and it can be fixed, but requires changes to other parts of the inliner. llvm-svn: 153812
2012-03-31 14:42:41 +02:00
return CA.getInlineCost(CS, getInlineThreshold(CS));
}
2011-10-01 03:27:56 +02:00
virtual bool doFinalization(CallGraph &CG) {
Start removing the use of an ad-hoc 'never inline' set and instead directly query the function information which this set was representing. This simplifies the interface of the inline cost analysis, and makes the always-inline pass significantly more efficient. Previously, always-inline would first make a single set of every function in the module *except* those marked with the always-inline attribute. It would then query this set at every call site to see if the function was a member of the set, and if so, refuse to inline it. This is quite wasteful. Instead, simply check the function attribute directly when looking at the callsite. The normal inliner also had similar redundancy. It added every function in the module with the noinline attribute to its set to ignore, even though inside the cost analysis function we *already tested* the noinline attribute and produced the same result. The only tricky part of removing this is that we have to be able to correctly remove only the functions inlined by the always-inline pass when finalizing, which requires a bit of a hack. Still, much less of a hack than the set of all non-always-inline functions was. While I was touching this function, I switched a heavy-weight set to a vector with sort+unique. The algorithm already had a two-phase insert and removal pattern, we were just needlessly paying the uniquing cost on every insert. This probably speeds up some compiles by a small amount (-O0 compiles with lots of always-inline, so potentially heavy libc++ users), but I've not tried to measure it. I believe there is no functional change here, but yell if you spot one. None are intended. Finally, the direction this is going in is to greatly simplify the inline cost query interface so that we can replace its implementation with a much more clever one. Along the way, all the APIs get simplified, so it seems incrementally good. llvm-svn: 152903
2012-03-16 07:10:13 +01:00
return removeDeadFunctions(CG, /*AlwaysInlineOnly=*/true);
}
virtual bool doInitialization(CallGraph &CG);
};
}
char AlwaysInliner::ID = 0;
INITIALIZE_PASS_BEGIN(AlwaysInliner, "always-inline",
"Inliner for always_inline functions", false, false)
INITIALIZE_AG_DEPENDENCY(CallGraph)
INITIALIZE_PASS_END(AlwaysInliner, "always-inline",
"Inliner for always_inline functions", false, false)
Pass *llvm::createAlwaysInlinerPass() { return new AlwaysInliner(); }
Pass *llvm::createAlwaysInlinerPass(bool InsertLifetime) {
return new AlwaysInliner(InsertLifetime);
}
2011-10-01 03:27:56 +02:00
// doInitialization - Initializes the vector of functions that have not
// been annotated with the "always inline" attribute.
bool AlwaysInliner::doInitialization(CallGraph &CG) {
CA.setTargetData(getAnalysisIfAvailable<TargetData>());
return false;
}