1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 03:02:36 +01:00
llvm-mirror/include/llvm/MC/MCInstrAnalysis.h

100 lines
3.4 KiB
C
Raw Normal View History

//===- llvm/MC/MCInstrAnalysis.h - InstrDesc target hooks -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the MCInstrAnalysis class which the MCTargetDescs can
// derive from to give additional information to MC.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_MC_MCINSTRANALYSIS_H
#define LLVM_MC_MCINSTRANALYSIS_H
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include <cstdint>
namespace llvm {
class MCRegisterInfo;
class MCInstrAnalysis {
protected:
friend class Target;
const MCInstrInfo *Info;
public:
MCInstrAnalysis(const MCInstrInfo *Info) : Info(Info) {}
virtual ~MCInstrAnalysis() = default;
virtual bool isBranch(const MCInst &Inst) const {
return Info->get(Inst.getOpcode()).isBranch();
}
virtual bool isConditionalBranch(const MCInst &Inst) const {
return Info->get(Inst.getOpcode()).isConditionalBranch();
}
virtual bool isUnconditionalBranch(const MCInst &Inst) const {
return Info->get(Inst.getOpcode()).isUnconditionalBranch();
}
virtual bool isIndirectBranch(const MCInst &Inst) const {
return Info->get(Inst.getOpcode()).isIndirectBranch();
}
virtual bool isCall(const MCInst &Inst) const {
return Info->get(Inst.getOpcode()).isCall();
}
virtual bool isReturn(const MCInst &Inst) const {
return Info->get(Inst.getOpcode()).isReturn();
}
MC: Disassembled CFG reconstruction. This patch builds on some existing code to do CFG reconstruction from a disassembled binary: - MCModule represents the binary, and has a list of MCAtoms. - MCAtom represents either disassembled instructions (MCTextAtom), or contiguous data (MCDataAtom), and covers a specific range of addresses. - MCBasicBlock and MCFunction form the reconstructed CFG. An MCBB is backed by an MCTextAtom, and has the usual successors/predecessors. - MCObjectDisassembler creates a module from an ObjectFile using a disassembler. It first builds an atom for each section. It can also construct the CFG, and this splits the text atoms into basic blocks. MCModule and MCAtom were only sketched out; MCFunction and MCBB were implemented under the experimental "-cfg" llvm-objdump -macho option. This cleans them up for further use; llvm-objdump -d -cfg now generates graphviz files for each function found in the binary. In the future, MCObjectDisassembler may be the right place to do "intelligent" disassembly: for example, handling constant islands is just a matter of splitting the atom, using information that may be available in the ObjectFile. Also, better initial atom formation than just using sections is possible using symbols (and things like Mach-O's function_starts load command). This brings two minor regressions in llvm-objdump -macho -cfg: - The printing of a relocation's referenced symbol. - An annotation on loop BBs, i.e., which are their own successor. Relocation printing is replaced by the MCSymbolizer; the basic CFG annotation will be superseded by more related functionality. llvm-svn: 182628
2013-05-24 03:07:04 +02:00
virtual bool isTerminator(const MCInst &Inst) const {
return Info->get(Inst.getOpcode()).isTerminator();
}
/// Returns true if at least one of the register writes performed by
/// \param Inst implicitly clears the upper portion of all super-registers.
///
/// Example: on X86-64, a write to EAX implicitly clears the upper half of
/// RAX. Also (still on x86) an XMM write perfomed by an AVX 128-bit
/// instruction implicitly clears the upper portion of the correspondent
/// YMM register.
///
/// This method also updates an APInt which is used as mask of register
/// writes. There is one bit for every explicit/implicit write performed by
/// the instruction. If a write implicitly clears its super-registers, then
/// the corresponding bit is set (vic. the corresponding bit is cleared).
///
/// The first bits in the APint are related to explicit writes. The remaining
/// bits are related to implicit writes. The sequence of writes follows the
/// machine operand sequence. For implicit writes, the sequence is defined by
/// the MCInstrDesc.
///
/// The assumption is that the bit-width of the APInt is correctly set by
/// the caller. The default implementation conservatively assumes that none of
/// the writes clears the upper portion of a super-register.
virtual bool clearsSuperRegisters(const MCRegisterInfo &MRI,
const MCInst &Inst,
APInt &Writes) const;
/// Given a branch instruction try to get the address the branch
/// targets. Return true on success, and the address in Target.
MC: Disassembled CFG reconstruction. This patch builds on some existing code to do CFG reconstruction from a disassembled binary: - MCModule represents the binary, and has a list of MCAtoms. - MCAtom represents either disassembled instructions (MCTextAtom), or contiguous data (MCDataAtom), and covers a specific range of addresses. - MCBasicBlock and MCFunction form the reconstructed CFG. An MCBB is backed by an MCTextAtom, and has the usual successors/predecessors. - MCObjectDisassembler creates a module from an ObjectFile using a disassembler. It first builds an atom for each section. It can also construct the CFG, and this splits the text atoms into basic blocks. MCModule and MCAtom were only sketched out; MCFunction and MCBB were implemented under the experimental "-cfg" llvm-objdump -macho option. This cleans them up for further use; llvm-objdump -d -cfg now generates graphviz files for each function found in the binary. In the future, MCObjectDisassembler may be the right place to do "intelligent" disassembly: for example, handling constant islands is just a matter of splitting the atom, using information that may be available in the ObjectFile. Also, better initial atom formation than just using sections is possible using symbols (and things like Mach-O's function_starts load command). This brings two minor regressions in llvm-objdump -macho -cfg: - The printing of a relocation's referenced symbol. - An annotation on loop BBs, i.e., which are their own successor. Relocation printing is replaced by the MCSymbolizer; the basic CFG annotation will be superseded by more related functionality. llvm-svn: 182628
2013-05-24 03:07:04 +02:00
virtual bool
evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size,
uint64_t &Target) const;
};
} // end namespace llvm
#endif // LLVM_MC_MCINSTRANALYSIS_H