1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 11:33:24 +02:00
llvm-mirror/tools/dsymutil/DwarfLinker.cpp

1346 lines
49 KiB
C++
Raw Normal View History

//===- tools/dsymutil/DwarfLinker.cpp - Dwarf debug info linker -----------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "DebugMap.h"
#include "BinaryHolder.h"
#include "DebugMap.h"
#include "dsymutil.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/DIE.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h"
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Object/MachO.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <string>
namespace llvm {
namespace dsymutil {
namespace {
void warn(const Twine &Warning, const Twine &Context) {
errs() << Twine("while processing ") + Context + ":\n";
errs() << Twine("warning: ") + Warning + "\n";
}
bool error(const Twine &Error, const Twine &Context) {
errs() << Twine("while processing ") + Context + ":\n";
errs() << Twine("error: ") + Error + "\n";
return false;
}
/// \brief Stores all information relating to a compile unit, be it in
/// its original instance in the object file to its brand new cloned
/// and linked DIE tree.
class CompileUnit {
public:
/// \brief Information gathered about a DIE in the object file.
struct DIEInfo {
uint64_t Address; ///< Linked address of the described entity.
uint32_t ParentIdx; ///< The index of this DIE's parent.
bool Keep; ///< Is the DIE part of the linked output?
bool InDebugMap; ///< Was this DIE's entity found in the map?
};
CompileUnit(DWARFUnit &OrigUnit) : OrigUnit(OrigUnit) {
Info.resize(OrigUnit.getNumDIEs());
}
// Workaround MSVC not supporting implicit move ops
CompileUnit(CompileUnit &&RHS)
: OrigUnit(RHS.OrigUnit), Info(std::move(RHS.Info)),
CUDie(std::move(RHS.CUDie)), StartOffset(RHS.StartOffset),
NextUnitOffset(RHS.NextUnitOffset) {}
DWARFUnit &getOrigUnit() const { return OrigUnit; }
DIE *getOutputUnitDIE() const { return CUDie.get(); }
void setOutputUnitDIE(DIE *Die) { CUDie.reset(Die); }
DIEInfo &getInfo(unsigned Idx) { return Info[Idx]; }
const DIEInfo &getInfo(unsigned Idx) const { return Info[Idx]; }
uint64_t getStartOffset() const { return StartOffset; }
uint64_t getNextUnitOffset() const { return NextUnitOffset; }
/// \brief Set the start and end offsets for this unit. Must be
/// called after the CU's DIEs have been cloned. The unit start
/// offset will be set to \p DebugInfoSize.
/// \returns the next unit offset (which is also the current
/// debug_info section size).
uint64_t computeOffsets(uint64_t DebugInfoSize);
private:
DWARFUnit &OrigUnit;
std::vector<DIEInfo> Info; ///< DIE info indexed by DIE index.
std::unique_ptr<DIE> CUDie; ///< Root of the linked DIE tree.
uint64_t StartOffset;
uint64_t NextUnitOffset;
};
uint64_t CompileUnit::computeOffsets(uint64_t DebugInfoSize) {
StartOffset = DebugInfoSize;
NextUnitOffset = StartOffset + 11 /* Header size */;
// The root DIE might be null, meaning that the Unit had nothing to
// contribute to the linked output. In that case, we will emit the
// unit header without any actual DIE.
if (CUDie)
NextUnitOffset += CUDie->getSize();
return NextUnitOffset;
}
/// \brief A string table that doesn't need relocations.
///
/// We are doing a final link, no need for a string table that
/// has relocation entries for every reference to it. This class
/// provides this ablitity by just associating offsets with
/// strings.
class NonRelocatableStringpool {
public:
/// \brief Entries are stored into the StringMap and simply linked
/// together through the second element of this pair in order to
/// keep track of insertion order.
typedef StringMap<std::pair<uint32_t, StringMapEntryBase *>, BumpPtrAllocator>
MapTy;
NonRelocatableStringpool()
: CurrentEndOffset(0), Sentinel(0), Last(&Sentinel) {
// Legacy dsymutil puts an empty string at the start of the line
// table.
getStringOffset("");
}
/// \brief Get the offset of string \p S in the string table. This
/// can insert a new element or return the offset of a preexisitng
/// one.
uint32_t getStringOffset(StringRef S);
/// \brief Get permanent storage for \p S (but do not necessarily
/// emit \p S in the output section).
/// \returns The StringRef that points to permanent storage to use
/// in place of \p S.
StringRef internString(StringRef S);
// \brief Return the first entry of the string table.
const MapTy::MapEntryTy *getFirstEntry() const {
return getNextEntry(&Sentinel);
}
// \brief Get the entry following \p E in the string table or null
// if \p E was the last entry.
const MapTy::MapEntryTy *getNextEntry(const MapTy::MapEntryTy *E) const {
return static_cast<const MapTy::MapEntryTy *>(E->getValue().second);
}
uint64_t getSize() { return CurrentEndOffset; }
private:
MapTy Strings;
uint32_t CurrentEndOffset;
MapTy::MapEntryTy Sentinel, *Last;
};
/// \brief Get the offset of string \p S in the string table. This
/// can insert a new element or return the offset of a preexisitng
/// one.
uint32_t NonRelocatableStringpool::getStringOffset(StringRef S) {
if (S.empty() && !Strings.empty())
return 0;
std::pair<uint32_t, StringMapEntryBase *> Entry(0, nullptr);
MapTy::iterator It;
bool Inserted;
// A non-empty string can't be at offset 0, so if we have an entry
// with a 0 offset, it must be a previously interned string.
std::tie(It, Inserted) = Strings.insert(std::make_pair(S, Entry));
if (Inserted || It->getValue().first == 0) {
// Set offset and chain at the end of the entries list.
It->getValue().first = CurrentEndOffset;
CurrentEndOffset += S.size() + 1; // +1 for the '\0'.
Last->getValue().second = &*It;
Last = &*It;
}
return It->getValue().first;
};
/// \brief Put \p S into the StringMap so that it gets permanent
/// storage, but do not actually link it in the chain of elements
/// that go into the output section. A latter call to
/// getStringOffset() with the same string will chain it though.
StringRef NonRelocatableStringpool::internString(StringRef S) {
std::pair<uint32_t, StringMapEntryBase *> Entry(0, nullptr);
auto InsertResult = Strings.insert(std::make_pair(S, Entry));
return InsertResult.first->getKey();
};
/// \brief The Dwarf streaming logic
///
/// All interactions with the MC layer that is used to build the debug
/// information binary representation are handled in this class.
class DwarfStreamer {
/// \defgroup MCObjects MC layer objects constructed by the streamer
/// @{
std::unique_ptr<MCRegisterInfo> MRI;
std::unique_ptr<MCAsmInfo> MAI;
std::unique_ptr<MCObjectFileInfo> MOFI;
std::unique_ptr<MCContext> MC;
MCAsmBackend *MAB; // Owned by MCStreamer
std::unique_ptr<MCInstrInfo> MII;
std::unique_ptr<MCSubtargetInfo> MSTI;
MCCodeEmitter *MCE; // Owned by MCStreamer
MCStreamer *MS; // Owned by AsmPrinter
std::unique_ptr<TargetMachine> TM;
std::unique_ptr<AsmPrinter> Asm;
/// @}
/// \brief the file we stream the linked Dwarf to.
std::unique_ptr<raw_fd_ostream> OutFile;
public:
/// \brief Actually create the streamer and the ouptut file.
///
/// This could be done directly in the constructor, but it feels
/// more natural to handle errors through return value.
bool init(Triple TheTriple, StringRef OutputFilename);
/// \brief Dump the file to the disk.
bool finish();
AsmPrinter &getAsmPrinter() const { return *Asm; }
/// \brief Set the current output section to debug_info and change
/// the MC Dwarf version to \p DwarfVersion.
void switchToDebugInfoSection(unsigned DwarfVersion);
/// \brief Emit the compilation unit header for \p Unit in the
/// debug_info section.
///
/// As a side effect, this also switches the current Dwarf version
/// of the MC layer to the one of U.getOrigUnit().
void emitCompileUnitHeader(CompileUnit &Unit);
/// \brief Recursively emit the DIE tree rooted at \p Die.
void emitDIE(DIE &Die);
/// \brief Emit the abbreviation table \p Abbrevs to the
/// debug_abbrev section.
void emitAbbrevs(const std::vector<DIEAbbrev *> &Abbrevs);
/// \brief Emit the string table described by \p Pool.
void emitStrings(const NonRelocatableStringpool &Pool);
};
bool DwarfStreamer::init(Triple TheTriple, StringRef OutputFilename) {
std::string ErrorStr;
std::string TripleName;
StringRef Context = "dwarf streamer init";
// Get the target.
const Target *TheTarget =
TargetRegistry::lookupTarget(TripleName, TheTriple, ErrorStr);
if (!TheTarget)
return error(ErrorStr, Context);
TripleName = TheTriple.getTriple();
// Create all the MC Objects.
MRI.reset(TheTarget->createMCRegInfo(TripleName));
if (!MRI)
return error(Twine("no register info for target ") + TripleName, Context);
MAI.reset(TheTarget->createMCAsmInfo(*MRI, TripleName));
if (!MAI)
return error("no asm info for target " + TripleName, Context);
MOFI.reset(new MCObjectFileInfo);
MC.reset(new MCContext(MAI.get(), MRI.get(), MOFI.get()));
MOFI->InitMCObjectFileInfo(TripleName, Reloc::Default, CodeModel::Default,
*MC);
MAB = TheTarget->createMCAsmBackend(*MRI, TripleName, "");
if (!MAB)
return error("no asm backend for target " + TripleName, Context);
MII.reset(TheTarget->createMCInstrInfo());
if (!MII)
return error("no instr info info for target " + TripleName, Context);
MSTI.reset(TheTarget->createMCSubtargetInfo(TripleName, "", ""));
if (!MSTI)
return error("no subtarget info for target " + TripleName, Context);
MCE = TheTarget->createMCCodeEmitter(*MII, *MRI, *MSTI, *MC);
if (!MCE)
return error("no code emitter for target " + TripleName, Context);
// Create the output file.
std::error_code EC;
OutFile =
llvm::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::F_None);
if (EC)
return error(Twine(OutputFilename) + ": " + EC.message(), Context);
MS = TheTarget->createMCObjectStreamer(TripleName, *MC, *MAB, *OutFile, MCE,
*MSTI, false);
if (!MS)
return error("no object streamer for target " + TripleName, Context);
// Finally create the AsmPrinter we'll use to emit the DIEs.
TM.reset(TheTarget->createTargetMachine(TripleName, "", "", TargetOptions()));
if (!TM)
return error("no target machine for target " + TripleName, Context);
Asm.reset(TheTarget->createAsmPrinter(*TM, std::unique_ptr<MCStreamer>(MS)));
if (!Asm)
return error("no asm printer for target " + TripleName, Context);
return true;
}
bool DwarfStreamer::finish() {
MS->Finish();
return true;
}
/// \brief Set the current output section to debug_info and change
/// the MC Dwarf version to \p DwarfVersion.
void DwarfStreamer::switchToDebugInfoSection(unsigned DwarfVersion) {
MS->SwitchSection(MOFI->getDwarfInfoSection());
MC->setDwarfVersion(DwarfVersion);
}
/// \brief Emit the compilation unit header for \p Unit in the
/// debug_info section.
///
/// A Dwarf scetion header is encoded as:
/// uint32_t Unit length (omiting this field)
/// uint16_t Version
/// uint32_t Abbreviation table offset
/// uint8_t Address size
///
/// Leading to a total of 11 bytes.
void DwarfStreamer::emitCompileUnitHeader(CompileUnit &Unit) {
unsigned Version = Unit.getOrigUnit().getVersion();
switchToDebugInfoSection(Version);
// Emit size of content not including length itself. The size has
// already been computed in CompileUnit::computeOffsets(). Substract
// 4 to that size to account for the length field.
Asm->EmitInt32(Unit.getNextUnitOffset() - Unit.getStartOffset() - 4);
Asm->EmitInt16(Version);
// We share one abbreviations table across all units so it's always at the
// start of the section.
Asm->EmitInt32(0);
Asm->EmitInt8(Unit.getOrigUnit().getAddressByteSize());
}
/// \brief Emit the \p Abbrevs array as the shared abbreviation table
/// for the linked Dwarf file.
void DwarfStreamer::emitAbbrevs(const std::vector<DIEAbbrev *> &Abbrevs) {
MS->SwitchSection(MOFI->getDwarfAbbrevSection());
Asm->emitDwarfAbbrevs(Abbrevs);
}
/// \brief Recursively emit the DIE tree rooted at \p Die.
void DwarfStreamer::emitDIE(DIE &Die) {
MS->SwitchSection(MOFI->getDwarfInfoSection());
Asm->emitDwarfDIE(Die);
}
/// \brief Emit the debug_str section stored in \p Pool.
void DwarfStreamer::emitStrings(const NonRelocatableStringpool &Pool) {
Asm->OutStreamer.SwitchSection(MOFI->getDwarfStrSection());
for (auto *Entry = Pool.getFirstEntry(); Entry;
Entry = Pool.getNextEntry(Entry))
Asm->OutStreamer.EmitBytes(
StringRef(Entry->getKey().data(), Entry->getKey().size() + 1));
}
/// \brief The core of the Dwarf linking logic.
///
/// The link of the dwarf information from the object files will be
/// driven by the selection of 'root DIEs', which are DIEs that
/// describe variables or functions that are present in the linked
/// binary (and thus have entries in the debug map). All the debug
/// information that will be linked (the DIEs, but also the line
/// tables, ranges, ...) is derived from that set of root DIEs.
///
/// The root DIEs are identified because they contain relocations that
/// correspond to a debug map entry at specific places (the low_pc for
/// a function, the location for a variable). These relocations are
/// called ValidRelocs in the DwarfLinker and are gathered as a very
/// first step when we start processing a DebugMapObject.
class DwarfLinker {
public:
DwarfLinker(StringRef OutputFilename, const LinkOptions &Options)
: OutputFilename(OutputFilename), Options(Options),
BinHolder(Options.Verbose) {}
~DwarfLinker() {
for (auto *Abbrev : Abbreviations)
delete Abbrev;
}
/// \brief Link the contents of the DebugMap.
bool link(const DebugMap &);
private:
/// \brief Called at the start of a debug object link.
void startDebugObject(DWARFContext &);
/// \brief Called at the end of a debug object link.
void endDebugObject();
/// \defgroup FindValidRelocations Translate debug map into a list
/// of relevant relocations
///
/// @{
struct ValidReloc {
uint32_t Offset;
uint32_t Size;
uint64_t Addend;
const DebugMapObject::DebugMapEntry *Mapping;
ValidReloc(uint32_t Offset, uint32_t Size, uint64_t Addend,
const DebugMapObject::DebugMapEntry *Mapping)
: Offset(Offset), Size(Size), Addend(Addend), Mapping(Mapping) {}
bool operator<(const ValidReloc &RHS) const { return Offset < RHS.Offset; }
};
/// \brief The valid relocations for the current DebugMapObject.
/// This vector is sorted by relocation offset.
std::vector<ValidReloc> ValidRelocs;
/// \brief Index into ValidRelocs of the next relocation to
/// consider. As we walk the DIEs in acsending file offset and as
/// ValidRelocs is sorted by file offset, keeping this index
/// uptodate is all we have to do to have a cheap lookup during the
/// root DIE selection.
unsigned NextValidReloc;
bool findValidRelocsInDebugInfo(const object::ObjectFile &Obj,
const DebugMapObject &DMO);
bool findValidRelocs(const object::SectionRef &Section,
const object::ObjectFile &Obj,
const DebugMapObject &DMO);
void findValidRelocsMachO(const object::SectionRef &Section,
const object::MachOObjectFile &Obj,
const DebugMapObject &DMO);
/// @}
/// \defgroup FindRootDIEs Find DIEs corresponding to debug map entries.
///
/// @{
/// \brief Recursively walk the \p DIE tree and look for DIEs to
/// keep. Store that information in \p CU's DIEInfo.
void lookForDIEsToKeep(const DWARFDebugInfoEntryMinimal &DIE,
const DebugMapObject &DMO, CompileUnit &CU,
unsigned Flags);
/// \brief Flags passed to DwarfLinker::lookForDIEsToKeep
enum TravesalFlags {
TF_Keep = 1 << 0, ///< Mark the traversed DIEs as kept.
TF_InFunctionScope = 1 << 1, ///< Current scope is a fucntion scope.
TF_DependencyWalk = 1 << 2, ///< Walking the dependencies of a kept DIE.
TF_ParentWalk = 1 << 3, ///< Walking up the parents of a kept DIE.
};
/// \brief Mark the passed DIE as well as all the ones it depends on
/// as kept.
void keepDIEAndDenpendencies(const DWARFDebugInfoEntryMinimal &DIE,
CompileUnit::DIEInfo &MyInfo,
const DebugMapObject &DMO, CompileUnit &CU,
unsigned Flags);
unsigned shouldKeepDIE(const DWARFDebugInfoEntryMinimal &DIE,
CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo,
unsigned Flags);
unsigned shouldKeepVariableDIE(const DWARFDebugInfoEntryMinimal &DIE,
CompileUnit &Unit,
CompileUnit::DIEInfo &MyInfo, unsigned Flags);
unsigned shouldKeepSubprogramDIE(const DWARFDebugInfoEntryMinimal &DIE,
CompileUnit &Unit,
CompileUnit::DIEInfo &MyInfo,
unsigned Flags);
bool hasValidRelocation(uint32_t StartOffset, uint32_t EndOffset,
CompileUnit::DIEInfo &Info);
/// @}
/// \defgroup Linking Methods used to link the debug information
///
/// @{
/// \brief Recursively clone \p InputDIE into an tree of DIE objects
/// where useless (as decided by lookForDIEsToKeep()) bits have been
/// stripped out and addresses have been rewritten according to the
/// debug map.
///
/// \param OutOffset is the offset the cloned DIE in the output
/// compile unit.
///
/// \returns the root of the cloned tree.
DIE *cloneDIE(const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &U,
uint32_t OutOffset);
typedef DWARFAbbreviationDeclaration::AttributeSpec AttributeSpec;
/// \brief Helper for cloneDIE.
unsigned cloneAttribute(DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE,
CompileUnit &U, const DWARFFormValue &Val,
const AttributeSpec AttrSpec, unsigned AttrSize);
/// \brief Helper for cloneDIE.
unsigned cloneStringAttribute(DIE &Die, AttributeSpec AttrSpec,
const DWARFFormValue &Val, const DWARFUnit &U);
/// \brief Helper for cloneDIE.
unsigned cloneDieReferenceAttribute(DIE &Die, AttributeSpec AttrSpec,
unsigned AttrSize);
/// \brief Helper for cloneDIE.
unsigned cloneBlockAttribute(DIE &Die, AttributeSpec AttrSpec,
const DWARFFormValue &Val, unsigned AttrSize);
/// \brief Helper for cloneDIE.
unsigned cloneScalarAttribute(DIE &Die,
const DWARFDebugInfoEntryMinimal &InputDIE,
const DWARFUnit &U, AttributeSpec AttrSpec,
const DWARFFormValue &Val, unsigned AttrSize);
/// \brief Assign an abbreviation number to \p Abbrev
void AssignAbbrev(DIEAbbrev &Abbrev);
/// \brief FoldingSet that uniques the abbreviations.
FoldingSet<DIEAbbrev> AbbreviationsSet;
/// \brief Storage for the unique Abbreviations.
/// This is passed to AsmPrinter::emitDwarfAbbrevs(), thus it cannot
/// be changed to a vecot of unique_ptrs.
std::vector<DIEAbbrev *> Abbreviations;
/// \brief DIELoc objects that need to be destructed (but not freed!).
std::vector<DIELoc *> DIELocs;
/// \brief DIEBlock objects that need to be destructed (but not freed!).
std::vector<DIEBlock *> DIEBlocks;
/// \brief Allocator used for all the DIEValue objects.
BumpPtrAllocator DIEAlloc;
/// @}
/// \defgroup Helpers Various helper methods.
///
/// @{
const DWARFDebugInfoEntryMinimal *
resolveDIEReference(DWARFFormValue &RefValue, const DWARFUnit &Unit,
const DWARFDebugInfoEntryMinimal &DIE,
CompileUnit *&ReferencedCU);
CompileUnit *getUnitForOffset(unsigned Offset);
void reportWarning(const Twine &Warning, const DWARFUnit *Unit = nullptr,
const DWARFDebugInfoEntryMinimal *DIE = nullptr);
bool createStreamer(Triple TheTriple, StringRef OutputFilename);
/// @}
private:
std::string OutputFilename;
LinkOptions Options;
BinaryHolder BinHolder;
std::unique_ptr<DwarfStreamer> Streamer;
/// The units of the current debug map object.
std::vector<CompileUnit> Units;
/// The debug map object curently under consideration.
DebugMapObject *CurrentDebugObject;
/// \brief The Dwarf string pool
NonRelocatableStringpool StringPool;
};
/// \brief Similar to DWARFUnitSection::getUnitForOffset(), but
/// returning our CompileUnit object instead.
CompileUnit *DwarfLinker::getUnitForOffset(unsigned Offset) {
auto CU =
std::upper_bound(Units.begin(), Units.end(), Offset,
[](uint32_t LHS, const CompileUnit &RHS) {
return LHS < RHS.getOrigUnit().getNextUnitOffset();
});
return CU != Units.end() ? &*CU : nullptr;
}
/// \brief Resolve the DIE attribute reference that has been
/// extracted in \p RefValue. The resulting DIE migh be in another
/// CompileUnit which is stored into \p ReferencedCU.
/// \returns null if resolving fails for any reason.
const DWARFDebugInfoEntryMinimal *DwarfLinker::resolveDIEReference(
DWARFFormValue &RefValue, const DWARFUnit &Unit,
const DWARFDebugInfoEntryMinimal &DIE, CompileUnit *&RefCU) {
assert(RefValue.isFormClass(DWARFFormValue::FC_Reference));
uint64_t RefOffset = *RefValue.getAsReference(&Unit);
if ((RefCU = getUnitForOffset(RefOffset)))
if (const auto *RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset))
return RefDie;
reportWarning("could not find referenced DIE", &Unit, &DIE);
return nullptr;
}
/// \brief Report a warning to the user, optionaly including
/// information about a specific \p DIE related to the warning.
void DwarfLinker::reportWarning(const Twine &Warning, const DWARFUnit *Unit,
const DWARFDebugInfoEntryMinimal *DIE) {
StringRef Context = "<debug map>";
if (CurrentDebugObject)
Context = CurrentDebugObject->getObjectFilename();
warn(Warning, Context);
if (!Options.Verbose || !DIE)
return;
errs() << " in DIE:\n";
DIE->dump(errs(), const_cast<DWARFUnit *>(Unit), 0 /* RecurseDepth */,
6 /* Indent */);
}
bool DwarfLinker::createStreamer(Triple TheTriple, StringRef OutputFilename) {
if (Options.NoOutput)
return true;
Streamer = llvm::make_unique<DwarfStreamer>();
return Streamer->init(TheTriple, OutputFilename);
}
/// \brief Recursive helper to gather the child->parent relationships in the
/// original compile unit.
static void gatherDIEParents(const DWARFDebugInfoEntryMinimal *DIE,
unsigned ParentIdx, CompileUnit &CU) {
unsigned MyIdx = CU.getOrigUnit().getDIEIndex(DIE);
CU.getInfo(MyIdx).ParentIdx = ParentIdx;
if (DIE->hasChildren())
for (auto *Child = DIE->getFirstChild(); Child && !Child->isNULL();
Child = Child->getSibling())
gatherDIEParents(Child, MyIdx, CU);
}
static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) {
switch (Tag) {
default:
return false;
case dwarf::DW_TAG_subprogram:
case dwarf::DW_TAG_lexical_block:
case dwarf::DW_TAG_subroutine_type:
case dwarf::DW_TAG_structure_type:
case dwarf::DW_TAG_class_type:
case dwarf::DW_TAG_union_type:
return true;
}
llvm_unreachable("Invalid Tag");
}
void DwarfLinker::startDebugObject(DWARFContext &Dwarf) {
Units.reserve(Dwarf.getNumCompileUnits());
NextValidReloc = 0;
}
void DwarfLinker::endDebugObject() {
Units.clear();
ValidRelocs.clear();
for (auto *Block : DIEBlocks)
Block->~DIEBlock();
for (auto *Loc : DIELocs)
Loc->~DIELoc();
DIEBlocks.clear();
DIELocs.clear();
DIEAlloc.Reset();
}
/// \brief Iterate over the relocations of the given \p Section and
/// store the ones that correspond to debug map entries into the
/// ValidRelocs array.
void DwarfLinker::findValidRelocsMachO(const object::SectionRef &Section,
const object::MachOObjectFile &Obj,
const DebugMapObject &DMO) {
StringRef Contents;
Section.getContents(Contents);
DataExtractor Data(Contents, Obj.isLittleEndian(), 0);
for (const object::RelocationRef &Reloc : Section.relocations()) {
object::DataRefImpl RelocDataRef = Reloc.getRawDataRefImpl();
MachO::any_relocation_info MachOReloc = Obj.getRelocation(RelocDataRef);
unsigned RelocSize = 1 << Obj.getAnyRelocationLength(MachOReloc);
uint64_t Offset64;
if ((RelocSize != 4 && RelocSize != 8) || Reloc.getOffset(Offset64)) {
reportWarning(" unsupported relocation in debug_info section.");
continue;
}
uint32_t Offset = Offset64;
// Mach-o uses REL relocations, the addend is at the relocation offset.
uint64_t Addend = Data.getUnsigned(&Offset, RelocSize);
auto Sym = Reloc.getSymbol();
if (Sym != Obj.symbol_end()) {
StringRef SymbolName;
if (Sym->getName(SymbolName)) {
reportWarning("error getting relocation symbol name.");
continue;
}
if (const auto *Mapping = DMO.lookupSymbol(SymbolName))
ValidRelocs.emplace_back(Offset64, RelocSize, Addend, Mapping);
} else if (const auto *Mapping = DMO.lookupObjectAddress(Addend)) {
// Do not store the addend. The addend was the address of the
// symbol in the object file, the address in the binary that is
// stored in the debug map doesn't need to be offseted.
ValidRelocs.emplace_back(Offset64, RelocSize, 0, Mapping);
}
}
}
/// \brief Dispatch the valid relocation finding logic to the
/// appropriate handler depending on the object file format.
bool DwarfLinker::findValidRelocs(const object::SectionRef &Section,
const object::ObjectFile &Obj,
const DebugMapObject &DMO) {
// Dispatch to the right handler depending on the file type.
if (auto *MachOObj = dyn_cast<object::MachOObjectFile>(&Obj))
findValidRelocsMachO(Section, *MachOObj, DMO);
else
reportWarning(Twine("unsupported object file type: ") + Obj.getFileName());
if (ValidRelocs.empty())
return false;
// Sort the relocations by offset. We will walk the DIEs linearly in
// the file, this allows us to just keep an index in the relocation
// array that we advance during our walk, rather than resorting to
// some associative container. See DwarfLinker::NextValidReloc.
std::sort(ValidRelocs.begin(), ValidRelocs.end());
return true;
}
/// \brief Look for relocations in the debug_info section that match
/// entries in the debug map. These relocations will drive the Dwarf
/// link by indicating which DIEs refer to symbols present in the
/// linked binary.
/// \returns wether there are any valid relocations in the debug info.
bool DwarfLinker::findValidRelocsInDebugInfo(const object::ObjectFile &Obj,
const DebugMapObject &DMO) {
// Find the debug_info section.
for (const object::SectionRef &Section : Obj.sections()) {
StringRef SectionName;
Section.getName(SectionName);
SectionName = SectionName.substr(SectionName.find_first_not_of("._"));
if (SectionName != "debug_info")
continue;
return findValidRelocs(Section, Obj, DMO);
}
return false;
}
/// \brief Checks that there is a relocation against an actual debug
/// map entry between \p StartOffset and \p NextOffset.
///
/// This function must be called with offsets in strictly ascending
/// order because it never looks back at relocations it already 'went past'.
/// \returns true and sets Info.InDebugMap if it is the case.
bool DwarfLinker::hasValidRelocation(uint32_t StartOffset, uint32_t EndOffset,
CompileUnit::DIEInfo &Info) {
assert(NextValidReloc == 0 ||
StartOffset > ValidRelocs[NextValidReloc - 1].Offset);
if (NextValidReloc >= ValidRelocs.size())
return false;
uint64_t RelocOffset = ValidRelocs[NextValidReloc].Offset;
// We might need to skip some relocs that we didn't consider. For
// example the high_pc of a discarded DIE might contain a reloc that
// is in the list because it actually corresponds to the start of a
// function that is in the debug map.
while (RelocOffset < StartOffset && NextValidReloc < ValidRelocs.size() - 1)
RelocOffset = ValidRelocs[++NextValidReloc].Offset;
if (RelocOffset < StartOffset || RelocOffset >= EndOffset)
return false;
const auto &ValidReloc = ValidRelocs[NextValidReloc++];
if (Options.Verbose)
outs() << "Found valid debug map entry: " << ValidReloc.Mapping->getKey()
<< " " << format("\t%016" PRIx64 " => %016" PRIx64,
ValidReloc.Mapping->getValue().ObjectAddress,
ValidReloc.Mapping->getValue().BinaryAddress);
Info.Address =
ValidReloc.Mapping->getValue().BinaryAddress + ValidReloc.Addend;
Info.InDebugMap = true;
return true;
}
/// \brief Get the starting and ending (exclusive) offset for the
/// attribute with index \p Idx descibed by \p Abbrev. \p Offset is
/// supposed to point to the position of the first attribute described
/// by \p Abbrev.
/// \return [StartOffset, EndOffset) as a pair.
static std::pair<uint32_t, uint32_t>
getAttributeOffsets(const DWARFAbbreviationDeclaration *Abbrev, unsigned Idx,
unsigned Offset, const DWARFUnit &Unit) {
DataExtractor Data = Unit.getDebugInfoExtractor();
for (unsigned i = 0; i < Idx; ++i)
DWARFFormValue::skipValue(Abbrev->getFormByIndex(i), Data, &Offset, &Unit);
uint32_t End = Offset;
DWARFFormValue::skipValue(Abbrev->getFormByIndex(Idx), Data, &End, &Unit);
return std::make_pair(Offset, End);
}
/// \brief Check if a variable describing DIE should be kept.
/// \returns updated TraversalFlags.
unsigned DwarfLinker::shouldKeepVariableDIE(
const DWARFDebugInfoEntryMinimal &DIE, CompileUnit &Unit,
CompileUnit::DIEInfo &MyInfo, unsigned Flags) {
const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
// Global variables with constant value can always be kept.
if (!(Flags & TF_InFunctionScope) &&
Abbrev->findAttributeIndex(dwarf::DW_AT_const_value) != -1U) {
MyInfo.InDebugMap = true;
return Flags | TF_Keep;
}
uint32_t LocationIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_location);
if (LocationIdx == -1U)
return Flags;
uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
const DWARFUnit &OrigUnit = Unit.getOrigUnit();
uint32_t LocationOffset, LocationEndOffset;
std::tie(LocationOffset, LocationEndOffset) =
getAttributeOffsets(Abbrev, LocationIdx, Offset, OrigUnit);
// See if there is a relocation to a valid debug map entry inside
// this variable's location. The order is important here. We want to
// always check in the variable has a valid relocation, so that the
// DIEInfo is filled. However, we don't want a static variable in a
// function to force us to keep the enclosing function.
if (!hasValidRelocation(LocationOffset, LocationEndOffset, MyInfo) ||
(Flags & TF_InFunctionScope))
return Flags;
if (Options.Verbose)
DIE.dump(outs(), const_cast<DWARFUnit *>(&OrigUnit), 0, 8 /* Indent */);
return Flags | TF_Keep;
}
/// \brief Check if a function describing DIE should be kept.
/// \returns updated TraversalFlags.
unsigned DwarfLinker::shouldKeepSubprogramDIE(
const DWARFDebugInfoEntryMinimal &DIE, CompileUnit &Unit,
CompileUnit::DIEInfo &MyInfo, unsigned Flags) {
const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
Flags |= TF_InFunctionScope;
uint32_t LowPcIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_low_pc);
if (LowPcIdx == -1U)
return Flags;
uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
const DWARFUnit &OrigUnit = Unit.getOrigUnit();
uint32_t LowPcOffset, LowPcEndOffset;
std::tie(LowPcOffset, LowPcEndOffset) =
getAttributeOffsets(Abbrev, LowPcIdx, Offset, OrigUnit);
uint64_t LowPc =
DIE.getAttributeValueAsAddress(&OrigUnit, dwarf::DW_AT_low_pc, -1ULL);
assert(LowPc != -1ULL && "low_pc attribute is not an address.");
if (LowPc == -1ULL ||
!hasValidRelocation(LowPcOffset, LowPcEndOffset, MyInfo))
return Flags;
if (Options.Verbose)
DIE.dump(outs(), const_cast<DWARFUnit *>(&OrigUnit), 0, 8 /* Indent */);
return Flags | TF_Keep;
}
/// \brief Check if a DIE should be kept.
/// \returns updated TraversalFlags.
unsigned DwarfLinker::shouldKeepDIE(const DWARFDebugInfoEntryMinimal &DIE,
CompileUnit &Unit,
CompileUnit::DIEInfo &MyInfo,
unsigned Flags) {
switch (DIE.getTag()) {
case dwarf::DW_TAG_constant:
case dwarf::DW_TAG_variable:
return shouldKeepVariableDIE(DIE, Unit, MyInfo, Flags);
case dwarf::DW_TAG_subprogram:
return shouldKeepSubprogramDIE(DIE, Unit, MyInfo, Flags);
case dwarf::DW_TAG_module:
case dwarf::DW_TAG_imported_module:
case dwarf::DW_TAG_imported_declaration:
case dwarf::DW_TAG_imported_unit:
// We always want to keep these.
return Flags | TF_Keep;
}
return Flags;
}
/// \brief Mark the passed DIE as well as all the ones it depends on
/// as kept.
///
/// This function is called by lookForDIEsToKeep on DIEs that are
/// newly discovered to be needed in the link. It recursively calls
/// back to lookForDIEsToKeep while adding TF_DependencyWalk to the
/// TraversalFlags to inform it that it's not doing the primary DIE
/// tree walk.
void DwarfLinker::keepDIEAndDenpendencies(const DWARFDebugInfoEntryMinimal &DIE,
CompileUnit::DIEInfo &MyInfo,
const DebugMapObject &DMO,
CompileUnit &CU, unsigned Flags) {
const DWARFUnit &Unit = CU.getOrigUnit();
MyInfo.Keep = true;
// First mark all the parent chain as kept.
unsigned AncestorIdx = MyInfo.ParentIdx;
while (!CU.getInfo(AncestorIdx).Keep) {
lookForDIEsToKeep(*Unit.getDIEAtIndex(AncestorIdx), DMO, CU,
TF_ParentWalk | TF_Keep | TF_DependencyWalk);
AncestorIdx = CU.getInfo(AncestorIdx).ParentIdx;
}
// Then we need to mark all the DIEs referenced by this DIE's
// attributes as kept.
DataExtractor Data = Unit.getDebugInfoExtractor();
const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
// Mark all DIEs referenced through atttributes as kept.
for (const auto &AttrSpec : Abbrev->attributes()) {
DWARFFormValue Val(AttrSpec.Form);
if (!Val.isFormClass(DWARFFormValue::FC_Reference)) {
DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset, &Unit);
continue;
}
Val.extractValue(Data, &Offset, &Unit);
CompileUnit *ReferencedCU;
if (const auto *RefDIE = resolveDIEReference(Val, Unit, DIE, ReferencedCU))
lookForDIEsToKeep(*RefDIE, DMO, *ReferencedCU,
TF_Keep | TF_DependencyWalk);
}
}
/// \brief Recursively walk the \p DIE tree and look for DIEs to
/// keep. Store that information in \p CU's DIEInfo.
///
/// This function is the entry point of the DIE selection
/// algorithm. It is expected to walk the DIE tree in file order and
/// (though the mediation of its helper) call hasValidRelocation() on
/// each DIE that might be a 'root DIE' (See DwarfLinker class
/// comment).
/// While walking the dependencies of root DIEs, this function is
/// also called, but during these dependency walks the file order is
/// not respected. The TF_DependencyWalk flag tells us which kind of
/// traversal we are currently doing.
void DwarfLinker::lookForDIEsToKeep(const DWARFDebugInfoEntryMinimal &DIE,
const DebugMapObject &DMO, CompileUnit &CU,
unsigned Flags) {
unsigned Idx = CU.getOrigUnit().getDIEIndex(&DIE);
CompileUnit::DIEInfo &MyInfo = CU.getInfo(Idx);
bool AlreadyKept = MyInfo.Keep;
// If the Keep flag is set, we are marking a required DIE's
// dependencies. If our target is already marked as kept, we're all
// set.
if ((Flags & TF_DependencyWalk) && AlreadyKept)
return;
// We must not call shouldKeepDIE while called from keepDIEAndDenpendencies,
// because it would screw up the relocation finding logic.
if (!(Flags & TF_DependencyWalk))
Flags = shouldKeepDIE(DIE, CU, MyInfo, Flags);
// If it is a newly kept DIE mark it as well as all its dependencies as kept.
if (!AlreadyKept && (Flags & TF_Keep))
keepDIEAndDenpendencies(DIE, MyInfo, DMO, CU, Flags);
// The TF_ParentWalk flag tells us that we are currently walking up
// the parent chain of a required DIE, and we don't want to mark all
// the children of the parents as kept (consider for example a
// DW_TAG_namespace node in the parent chain). There are however a
// set of DIE types for which we want to ignore that directive and still
// walk their children.
if (dieNeedsChildrenToBeMeaningful(DIE.getTag()))
Flags &= ~TF_ParentWalk;
if (!DIE.hasChildren() || (Flags & TF_ParentWalk))
return;
for (auto *Child = DIE.getFirstChild(); Child && !Child->isNULL();
Child = Child->getSibling())
lookForDIEsToKeep(*Child, DMO, CU, Flags);
}
/// \brief Assign an abbreviation numer to \p Abbrev.
///
/// Our DIEs get freed after every DebugMapObject has been processed,
/// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to
/// the instances hold by the DIEs. When we encounter an abbreviation
/// that we don't know, we create a permanent copy of it.
void DwarfLinker::AssignAbbrev(DIEAbbrev &Abbrev) {
// Check the set for priors.
FoldingSetNodeID ID;
Abbrev.Profile(ID);
void *InsertToken;
DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken);
// If it's newly added.
if (InSet) {
// Assign existing abbreviation number.
Abbrev.setNumber(InSet->getNumber());
} else {
// Add to abbreviation list.
Abbreviations.push_back(
new DIEAbbrev(Abbrev.getTag(), Abbrev.hasChildren()));
for (const auto &Attr : Abbrev.getData())
Abbreviations.back()->AddAttribute(Attr.getAttribute(), Attr.getForm());
AbbreviationsSet.InsertNode(Abbreviations.back(), InsertToken);
// Assign the unique abbreviation number.
Abbrev.setNumber(Abbreviations.size());
Abbreviations.back()->setNumber(Abbreviations.size());
}
}
/// \brief Clone a string attribute described by \p AttrSpec and add
/// it to \p Die.
/// \returns the size of the new attribute.
unsigned DwarfLinker::cloneStringAttribute(DIE &Die, AttributeSpec AttrSpec,
const DWARFFormValue &Val,
const DWARFUnit &U) {
// Switch everything to out of line strings.
const char *String = *Val.getAsCString(&U);
unsigned Offset = StringPool.getStringOffset(String);
Die.addValue(dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_strp,
new (DIEAlloc) DIEInteger(Offset));
return 4;
}
/// \brief Clone an attribute referencing another DIE and add
/// it to \p Die.
/// \returns the size of the new attribute.
unsigned DwarfLinker::cloneDieReferenceAttribute(DIE &Die,
AttributeSpec AttrSpec,
unsigned AttrSize) {
// FIXME: Handle DIE references.
Die.addValue(dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form),
new (DIEAlloc) DIEInteger(0));
return AttrSize;
}
/// \brief Clone an attribute of block form (locations, constants) and add
/// it to \p Die.
/// \returns the size of the new attribute.
unsigned DwarfLinker::cloneBlockAttribute(DIE &Die, AttributeSpec AttrSpec,
const DWARFFormValue &Val,
unsigned AttrSize) {
DIE *Attr;
DIEValue *Value;
DIELoc *Loc = nullptr;
DIEBlock *Block = nullptr;
// Just copy the block data over.
if (AttrSpec.Attr == dwarf::DW_FORM_exprloc) {
Loc = new (DIEAlloc) DIELoc();
DIELocs.push_back(Loc);
} else {
Block = new (DIEAlloc) DIEBlock();
DIEBlocks.push_back(Block);
}
Attr = Loc ? static_cast<DIE *>(Loc) : static_cast<DIE *>(Block);
Value = Loc ? static_cast<DIEValue *>(Loc) : static_cast<DIEValue *>(Block);
ArrayRef<uint8_t> Bytes = *Val.getAsBlock();
for (auto Byte : Bytes)
Attr->addValue(static_cast<dwarf::Attribute>(0), dwarf::DW_FORM_data1,
new (DIEAlloc) DIEInteger(Byte));
// FIXME: If DIEBlock and DIELoc just reuses the Size field of
// the DIE class, this if could be replaced by
// Attr->setSize(Bytes.size()).
if (Streamer) {
if (Loc)
Loc->ComputeSize(&Streamer->getAsmPrinter());
else
Block->ComputeSize(&Streamer->getAsmPrinter());
}
Die.addValue(dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form),
Value);
return AttrSize;
}
/// \brief Clone a scalar attribute and add it to \p Die.
/// \returns the size of the new attribute.
unsigned DwarfLinker::cloneScalarAttribute(
DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE, const DWARFUnit &U,
AttributeSpec AttrSpec, const DWARFFormValue &Val, unsigned AttrSize) {
uint64_t Value;
if (AttrSpec.Form == dwarf::DW_FORM_sec_offset)
Value = *Val.getAsSectionOffset();
else if (AttrSpec.Form == dwarf::DW_FORM_sdata)
Value = *Val.getAsSignedConstant();
else if (AttrSpec.Form == dwarf::DW_FORM_addr)
Value = *Val.getAsAddress(&U);
else if (auto OptionalValue = Val.getAsUnsignedConstant())
Value = *OptionalValue;
else {
reportWarning("Unsupported scalar attribute form. Dropping attribute.", &U,
&InputDIE);
return 0;
}
Die.addValue(dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form),
new (DIEAlloc) DIEInteger(Value));
return AttrSize;
}
/// \brief Clone \p InputDIE's attribute described by \p AttrSpec with
/// value \p Val, and add it to \p Die.
/// \returns the size of the cloned attribute.
unsigned DwarfLinker::cloneAttribute(DIE &Die,
const DWARFDebugInfoEntryMinimal &InputDIE,
CompileUnit &Unit,
const DWARFFormValue &Val,
const AttributeSpec AttrSpec,
unsigned AttrSize) {
const DWARFUnit &U = Unit.getOrigUnit();
switch (AttrSpec.Form) {
case dwarf::DW_FORM_strp:
case dwarf::DW_FORM_string:
return cloneStringAttribute(Die, AttrSpec, Val, U);
case dwarf::DW_FORM_ref_addr:
case dwarf::DW_FORM_ref1:
case dwarf::DW_FORM_ref2:
case dwarf::DW_FORM_ref4:
case dwarf::DW_FORM_ref8:
return cloneDieReferenceAttribute(Die, AttrSpec, AttrSize);
case dwarf::DW_FORM_block:
case dwarf::DW_FORM_block1:
case dwarf::DW_FORM_block2:
case dwarf::DW_FORM_block4:
case dwarf::DW_FORM_exprloc:
return cloneBlockAttribute(Die, AttrSpec, Val, AttrSize);
case dwarf::DW_FORM_addr:
case dwarf::DW_FORM_data1:
case dwarf::DW_FORM_data2:
case dwarf::DW_FORM_data4:
case dwarf::DW_FORM_data8:
case dwarf::DW_FORM_udata:
case dwarf::DW_FORM_sdata:
case dwarf::DW_FORM_sec_offset:
case dwarf::DW_FORM_flag:
case dwarf::DW_FORM_flag_present:
return cloneScalarAttribute(Die, InputDIE, U, AttrSpec, Val, AttrSize);
default:
reportWarning("Unsupported attribute form in cloneAttribute. Dropping.", &U,
&InputDIE);
}
return 0;
}
/// \brief Recursively clone \p InputDIE's subtrees that have been
/// selected to appear in the linked output.
///
/// \param OutOffset is the Offset where the newly created DIE will
/// lie in the linked compile unit.
///
/// \returns the cloned DIE object or null if nothing was selected.
DIE *DwarfLinker::cloneDIE(const DWARFDebugInfoEntryMinimal &InputDIE,
CompileUnit &Unit, uint32_t OutOffset) {
DWARFUnit &U = Unit.getOrigUnit();
unsigned Idx = U.getDIEIndex(&InputDIE);
// Should the DIE appear in the output?
if (!Unit.getInfo(Idx).Keep)
return nullptr;
uint32_t Offset = InputDIE.getOffset();
DIE *Die = new DIE(static_cast<dwarf::Tag>(InputDIE.getTag()));
Die->setOffset(OutOffset);
// Extract and clone every attribute.
DataExtractor Data = U.getDebugInfoExtractor();
const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr();
Offset += getULEB128Size(Abbrev->getCode());
for (const auto &AttrSpec : Abbrev->attributes()) {
DWARFFormValue Val(AttrSpec.Form);
uint32_t AttrSize = Offset;
Val.extractValue(Data, &Offset, &U);
AttrSize = Offset - AttrSize;
OutOffset += cloneAttribute(*Die, InputDIE, Unit, Val, AttrSpec, AttrSize);
}
DIEAbbrev &NewAbbrev = Die->getAbbrev();
// If a scope DIE is kept, we must have kept at least one child. If
// it's not the case, we'll just be emitting one wasteful end of
// children marker, but things won't break.
if (InputDIE.hasChildren())
NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes);
// Assign a permanent abbrev number
AssignAbbrev(Die->getAbbrev());
// Add the size of the abbreviation number to the output offset.
OutOffset += getULEB128Size(Die->getAbbrevNumber());
if (!Abbrev->hasChildren()) {
// Update our size.
Die->setSize(OutOffset - Die->getOffset());
return Die;
}
// Recursively clone children.
for (auto *Child = InputDIE.getFirstChild(); Child && !Child->isNULL();
Child = Child->getSibling()) {
if (DIE *Clone = cloneDIE(*Child, Unit, OutOffset)) {
Die->addChild(std::unique_ptr<DIE>(Clone));
OutOffset = Clone->getOffset() + Clone->getSize();
}
}
// Account for the end of children marker.
OutOffset += sizeof(int8_t);
// Update our size.
Die->setSize(OutOffset - Die->getOffset());
return Die;
}
bool DwarfLinker::link(const DebugMap &Map) {
if (Map.begin() == Map.end()) {
errs() << "Empty debug map.\n";
return false;
}
if (!createStreamer(Map.getTriple(), OutputFilename))
return false;
// Size of the DIEs (and headers) generated for the linked output.
uint64_t OutputDebugInfoSize = 0;
for (const auto &Obj : Map.objects()) {
CurrentDebugObject = Obj.get();
if (Options.Verbose)
outs() << "DEBUG MAP OBJECT: " << Obj->getObjectFilename() << "\n";
auto ErrOrObj = BinHolder.GetObjectFile(Obj->getObjectFilename());
if (std::error_code EC = ErrOrObj.getError()) {
reportWarning(Twine(Obj->getObjectFilename()) + ": " + EC.message());
continue;
}
// Look for relocations that correspond to debug map entries.
if (!findValidRelocsInDebugInfo(*ErrOrObj, *Obj)) {
if (Options.Verbose)
outs() << "No valid relocations found. Skipping.\n";
continue;
}
// Setup access to the debug info.
DWARFContextInMemory DwarfContext(*ErrOrObj);
startDebugObject(DwarfContext);
// In a first phase, just read in the debug info and store the DIE
// parent links that we will use during the next phase.
for (const auto &CU : DwarfContext.compile_units()) {
auto *CUDie = CU->getCompileUnitDIE(false);
if (Options.Verbose) {
outs() << "Input compilation unit:";
CUDie->dump(outs(), CU.get(), 0);
}
Units.emplace_back(*CU);
gatherDIEParents(CUDie, 0, Units.back());
}
// Then mark all the DIEs that need to be present in the linked
// output and collect some information about them. Note that this
// loop can not be merged with the previous one becaue cross-cu
// references require the ParentIdx to be setup for every CU in
// the object file before calling this.
for (auto &CurrentUnit : Units)
lookForDIEsToKeep(*CurrentUnit.getOrigUnit().getCompileUnitDIE(), *Obj,
CurrentUnit, 0);
// Construct the output DIE tree by cloning the DIEs we chose to
// keep above. If there are no valid relocs, then there's nothing
// to clone/emit.
if (!ValidRelocs.empty())
for (auto &CurrentUnit : Units) {
const auto *InputDIE = CurrentUnit.getOrigUnit().getCompileUnitDIE();
DIE *OutputDIE =
cloneDIE(*InputDIE, CurrentUnit, 11 /* Unit Header size */);
CurrentUnit.setOutputUnitDIE(OutputDIE);
OutputDebugInfoSize = CurrentUnit.computeOffsets(OutputDebugInfoSize);
}
// Emit all the compile unit's debug information.
if (!ValidRelocs.empty() && !Options.NoOutput)
for (auto &CurrentUnit : Units) {
Streamer->emitCompileUnitHeader(CurrentUnit);
if (!CurrentUnit.getOutputUnitDIE())
continue;
Streamer->emitDIE(*CurrentUnit.getOutputUnitDIE());
}
// Clean-up before starting working on the next object.
endDebugObject();
}
// Emit everything that's global.
if (!Options.NoOutput) {
Streamer->emitAbbrevs(Abbreviations);
Streamer->emitStrings(StringPool);
}
return Options.NoOutput ? true : Streamer->finish();
}
}
bool linkDwarf(StringRef OutputFilename, const DebugMap &DM,
const LinkOptions &Options) {
DwarfLinker Linker(OutputFilename, Options);
return Linker.link(DM);
}
}
}