[IRSim] Adding IR Instruction Mapper
This introduces the IRInstructionMapper, and the associated wrapper for
instructions, IRInstructionData, that maps IR level Instructions to
unsigned integers.
Mapping is done mainly by using the "isSameOperationAs" comparison
between two instructions. If they return true, the opcode, result type,
and operand types of the instruction are used to hash the instruction
with an unsigned integer. The mapper accepts instruction ranges, and
adds each resulting integer to a list, and each wrapped instruction to
a separate list.
At present, branches, phi nodes are not mapping and exception handling
is illegal. Debug instructions are not considered.
The different mapping schemes are tested in
unittests/Analysis/IRSimilarityIdentifierTest.cpp
Recommit of: b04c1a9d3127730c05e8a22a0e931a12a39528df
Differential Revision: https://reviews.llvm.org/D86968
2020-09-17 19:28:09 +02:00
|
|
|
//===- IRSimilarityIdentifier.cpp - Find similarity in a module -----------===//
|
|
|
|
//
|
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// \file
|
|
|
|
// Implementation file for the IRSimilarityIdentifier for identifying
|
|
|
|
// similarities in IR including the IRInstructionMapper.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "llvm/Analysis/IRSimilarityIdentifier.h"
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
|
|
#include "llvm/IR/Intrinsics.h"
|
|
|
|
#include "llvm/IR/User.h"
|
2020-09-17 23:29:43 +02:00
|
|
|
#include "llvm/InitializePasses.h"
|
2020-09-17 22:12:08 +02:00
|
|
|
#include "llvm/Support/SuffixTree.h"
|
[IRSim] Adding IR Instruction Mapper
This introduces the IRInstructionMapper, and the associated wrapper for
instructions, IRInstructionData, that maps IR level Instructions to
unsigned integers.
Mapping is done mainly by using the "isSameOperationAs" comparison
between two instructions. If they return true, the opcode, result type,
and operand types of the instruction are used to hash the instruction
with an unsigned integer. The mapper accepts instruction ranges, and
adds each resulting integer to a list, and each wrapped instruction to
a separate list.
At present, branches, phi nodes are not mapping and exception handling
is illegal. Debug instructions are not considered.
The different mapping schemes are tested in
unittests/Analysis/IRSimilarityIdentifierTest.cpp
Recommit of: b04c1a9d3127730c05e8a22a0e931a12a39528df
Differential Revision: https://reviews.llvm.org/D86968
2020-09-17 19:28:09 +02:00
|
|
|
|
|
|
|
using namespace llvm;
|
|
|
|
using namespace IRSimilarity;
|
|
|
|
|
2020-09-15 23:16:48 +02:00
|
|
|
IRInstructionData::IRInstructionData(Instruction &I, bool Legality,
|
|
|
|
IRInstructionDataList &IDList)
|
|
|
|
: Inst(&I), Legal(Legality), IDL(&IDList) {
|
[IRSim] Adding IR Instruction Mapper
This introduces the IRInstructionMapper, and the associated wrapper for
instructions, IRInstructionData, that maps IR level Instructions to
unsigned integers.
Mapping is done mainly by using the "isSameOperationAs" comparison
between two instructions. If they return true, the opcode, result type,
and operand types of the instruction are used to hash the instruction
with an unsigned integer. The mapper accepts instruction ranges, and
adds each resulting integer to a list, and each wrapped instruction to
a separate list.
At present, branches, phi nodes are not mapping and exception handling
is illegal. Debug instructions are not considered.
The different mapping schemes are tested in
unittests/Analysis/IRSimilarityIdentifierTest.cpp
Recommit of: b04c1a9d3127730c05e8a22a0e931a12a39528df
Differential Revision: https://reviews.llvm.org/D86968
2020-09-17 19:28:09 +02:00
|
|
|
// Here we collect the operands to be used to determine whether two
|
|
|
|
// instructions are similar to one another.
|
|
|
|
for (Use &OI : I.operands())
|
|
|
|
OperVals.push_back(OI.get());
|
|
|
|
}
|
|
|
|
|
|
|
|
bool IRSimilarity::isClose(const IRInstructionData &A,
|
|
|
|
const IRInstructionData &B) {
|
|
|
|
return A.Legal && A.Inst->isSameOperationAs(B.Inst);
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: This is the same as the MachineOutliner, and should be consolidated
|
|
|
|
// into the same interface.
|
|
|
|
void IRInstructionMapper::convertToUnsignedVec(
|
|
|
|
BasicBlock &BB, std::vector<IRInstructionData *> &InstrList,
|
|
|
|
std::vector<unsigned> &IntegerMapping) {
|
|
|
|
BasicBlock::iterator It = BB.begin();
|
|
|
|
|
|
|
|
std::vector<unsigned> IntegerMappingForBB;
|
|
|
|
std::vector<IRInstructionData *> InstrListForBB;
|
|
|
|
|
|
|
|
HaveLegalRange = false;
|
|
|
|
CanCombineWithPrevInstr = false;
|
|
|
|
AddedIllegalLastTime = true;
|
|
|
|
|
|
|
|
for (BasicBlock::iterator Et = BB.end(); It != Et; ++It) {
|
|
|
|
switch (InstClassifier.visit(*It)) {
|
|
|
|
case InstrType::Legal:
|
|
|
|
mapToLegalUnsigned(It, IntegerMappingForBB, InstrListForBB);
|
|
|
|
break;
|
|
|
|
case InstrType::Illegal:
|
|
|
|
mapToIllegalUnsigned(It, IntegerMappingForBB, InstrListForBB);
|
|
|
|
break;
|
|
|
|
case InstrType::Invisible:
|
|
|
|
AddedIllegalLastTime = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (HaveLegalRange) {
|
|
|
|
mapToIllegalUnsigned(It, IntegerMappingForBB, InstrListForBB, true);
|
2020-09-15 23:16:48 +02:00
|
|
|
for_each(InstrListForBB,
|
|
|
|
[this](IRInstructionData *ID) { this->IDL->push_back(*ID); });
|
[IRSim] Adding IR Instruction Mapper
This introduces the IRInstructionMapper, and the associated wrapper for
instructions, IRInstructionData, that maps IR level Instructions to
unsigned integers.
Mapping is done mainly by using the "isSameOperationAs" comparison
between two instructions. If they return true, the opcode, result type,
and operand types of the instruction are used to hash the instruction
with an unsigned integer. The mapper accepts instruction ranges, and
adds each resulting integer to a list, and each wrapped instruction to
a separate list.
At present, branches, phi nodes are not mapping and exception handling
is illegal. Debug instructions are not considered.
The different mapping schemes are tested in
unittests/Analysis/IRSimilarityIdentifierTest.cpp
Recommit of: b04c1a9d3127730c05e8a22a0e931a12a39528df
Differential Revision: https://reviews.llvm.org/D86968
2020-09-17 19:28:09 +02:00
|
|
|
InstrList.insert(InstrList.end(), InstrListForBB.begin(),
|
|
|
|
InstrListForBB.end());
|
|
|
|
IntegerMapping.insert(IntegerMapping.end(), IntegerMappingForBB.begin(),
|
|
|
|
IntegerMappingForBB.end());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: This is the same as the MachineOutliner, and should be consolidated
|
|
|
|
// into the same interface.
|
|
|
|
unsigned IRInstructionMapper::mapToLegalUnsigned(
|
|
|
|
BasicBlock::iterator &It, std::vector<unsigned> &IntegerMappingForBB,
|
|
|
|
std::vector<IRInstructionData *> &InstrListForBB) {
|
|
|
|
// We added something legal, so we should unset the AddedLegalLastTime
|
|
|
|
// flag.
|
|
|
|
AddedIllegalLastTime = false;
|
|
|
|
|
|
|
|
// If we have at least two adjacent legal instructions (which may have
|
|
|
|
// invisible instructions in between), remember that.
|
|
|
|
if (CanCombineWithPrevInstr)
|
|
|
|
HaveLegalRange = true;
|
|
|
|
CanCombineWithPrevInstr = true;
|
|
|
|
|
|
|
|
// Get the integer for this instruction or give it the current
|
|
|
|
// LegalInstrNumber.
|
2020-09-15 23:16:48 +02:00
|
|
|
IRInstructionData *ID = allocateIRInstructionData(*It, true, *IDL);
|
[IRSim] Adding IR Instruction Mapper
This introduces the IRInstructionMapper, and the associated wrapper for
instructions, IRInstructionData, that maps IR level Instructions to
unsigned integers.
Mapping is done mainly by using the "isSameOperationAs" comparison
between two instructions. If they return true, the opcode, result type,
and operand types of the instruction are used to hash the instruction
with an unsigned integer. The mapper accepts instruction ranges, and
adds each resulting integer to a list, and each wrapped instruction to
a separate list.
At present, branches, phi nodes are not mapping and exception handling
is illegal. Debug instructions are not considered.
The different mapping schemes are tested in
unittests/Analysis/IRSimilarityIdentifierTest.cpp
Recommit of: b04c1a9d3127730c05e8a22a0e931a12a39528df
Differential Revision: https://reviews.llvm.org/D86968
2020-09-17 19:28:09 +02:00
|
|
|
InstrListForBB.push_back(ID);
|
|
|
|
|
|
|
|
// Add to the instruction list
|
|
|
|
bool WasInserted;
|
|
|
|
DenseMap<IRInstructionData *, unsigned, IRInstructionDataTraits>::iterator
|
|
|
|
ResultIt;
|
|
|
|
std::tie(ResultIt, WasInserted) =
|
|
|
|
InstructionIntegerMap.insert(std::make_pair(ID, LegalInstrNumber));
|
|
|
|
unsigned INumber = ResultIt->second;
|
|
|
|
|
|
|
|
// There was an insertion.
|
|
|
|
if (WasInserted)
|
|
|
|
LegalInstrNumber++;
|
|
|
|
|
|
|
|
IntegerMappingForBB.push_back(INumber);
|
|
|
|
|
|
|
|
// Make sure we don't overflow or use any integers reserved by the DenseMap.
|
|
|
|
assert(LegalInstrNumber < IllegalInstrNumber &&
|
|
|
|
"Instruction mapping overflow!");
|
|
|
|
|
|
|
|
assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
|
|
|
|
"Tried to assign DenseMap tombstone or empty key to instruction.");
|
|
|
|
assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
|
|
|
|
"Tried to assign DenseMap tombstone or empty key to instruction.");
|
|
|
|
|
|
|
|
return INumber;
|
|
|
|
}
|
|
|
|
|
|
|
|
IRInstructionData *
|
2020-09-15 23:16:48 +02:00
|
|
|
IRInstructionMapper::allocateIRInstructionData(Instruction &I, bool Legality,
|
|
|
|
IRInstructionDataList &IDL) {
|
|
|
|
return new (InstDataAllocator->Allocate()) IRInstructionData(I, Legality, IDL);
|
|
|
|
}
|
|
|
|
|
|
|
|
IRInstructionDataList *
|
|
|
|
IRInstructionMapper::allocateIRInstructionDataList() {
|
|
|
|
return new (IDLAllocator->Allocate()) IRInstructionDataList();
|
[IRSim] Adding IR Instruction Mapper
This introduces the IRInstructionMapper, and the associated wrapper for
instructions, IRInstructionData, that maps IR level Instructions to
unsigned integers.
Mapping is done mainly by using the "isSameOperationAs" comparison
between two instructions. If they return true, the opcode, result type,
and operand types of the instruction are used to hash the instruction
with an unsigned integer. The mapper accepts instruction ranges, and
adds each resulting integer to a list, and each wrapped instruction to
a separate list.
At present, branches, phi nodes are not mapping and exception handling
is illegal. Debug instructions are not considered.
The different mapping schemes are tested in
unittests/Analysis/IRSimilarityIdentifierTest.cpp
Recommit of: b04c1a9d3127730c05e8a22a0e931a12a39528df
Differential Revision: https://reviews.llvm.org/D86968
2020-09-17 19:28:09 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: This is the same as the MachineOutliner, and should be consolidated
|
|
|
|
// into the same interface.
|
|
|
|
unsigned IRInstructionMapper::mapToIllegalUnsigned(
|
|
|
|
BasicBlock::iterator &It, std::vector<unsigned> &IntegerMappingForBB,
|
|
|
|
std::vector<IRInstructionData *> &InstrListForBB, bool End) {
|
|
|
|
// Can't combine an illegal instruction. Set the flag.
|
|
|
|
CanCombineWithPrevInstr = false;
|
|
|
|
|
|
|
|
// Only add one illegal number per range of legal numbers.
|
|
|
|
if (AddedIllegalLastTime)
|
|
|
|
return IllegalInstrNumber;
|
|
|
|
|
|
|
|
IRInstructionData *ID = nullptr;
|
|
|
|
if (!End)
|
2020-09-15 23:16:48 +02:00
|
|
|
ID = allocateIRInstructionData(*It, false, *IDL);
|
[IRSim] Adding IR Instruction Mapper
This introduces the IRInstructionMapper, and the associated wrapper for
instructions, IRInstructionData, that maps IR level Instructions to
unsigned integers.
Mapping is done mainly by using the "isSameOperationAs" comparison
between two instructions. If they return true, the opcode, result type,
and operand types of the instruction are used to hash the instruction
with an unsigned integer. The mapper accepts instruction ranges, and
adds each resulting integer to a list, and each wrapped instruction to
a separate list.
At present, branches, phi nodes are not mapping and exception handling
is illegal. Debug instructions are not considered.
The different mapping schemes are tested in
unittests/Analysis/IRSimilarityIdentifierTest.cpp
Recommit of: b04c1a9d3127730c05e8a22a0e931a12a39528df
Differential Revision: https://reviews.llvm.org/D86968
2020-09-17 19:28:09 +02:00
|
|
|
InstrListForBB.push_back(ID);
|
|
|
|
|
|
|
|
// Remember that we added an illegal number last time.
|
|
|
|
AddedIllegalLastTime = true;
|
|
|
|
unsigned INumber = IllegalInstrNumber;
|
|
|
|
IntegerMappingForBB.push_back(IllegalInstrNumber--);
|
|
|
|
|
|
|
|
assert(LegalInstrNumber < IllegalInstrNumber &&
|
|
|
|
"Instruction mapping overflow!");
|
|
|
|
|
|
|
|
assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
|
|
|
|
"IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
|
|
|
|
|
|
|
|
assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
|
|
|
|
"IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
|
|
|
|
|
|
|
|
return INumber;
|
|
|
|
}
|
2020-09-16 00:30:31 +02:00
|
|
|
|
|
|
|
IRSimilarityCandidate::IRSimilarityCandidate(unsigned StartIdx, unsigned Len,
|
|
|
|
IRInstructionData *FirstInstIt,
|
|
|
|
IRInstructionData *LastInstIt)
|
|
|
|
: StartIdx(StartIdx), Len(Len) {
|
|
|
|
|
|
|
|
assert(FirstInstIt != nullptr && "Instruction is nullptr!");
|
|
|
|
assert(LastInstIt != nullptr && "Instruction is nullptr!");
|
|
|
|
assert(StartIdx + Len > StartIdx &&
|
|
|
|
"Overflow for IRSimilarityCandidate range?");
|
2020-09-24 07:26:21 +02:00
|
|
|
assert(Len - 1 == static_cast<unsigned>(std::distance(
|
|
|
|
iterator(FirstInstIt), iterator(LastInstIt))) &&
|
2020-09-16 00:30:31 +02:00
|
|
|
"Length of the first and last IRInstructionData do not match the "
|
|
|
|
"given length");
|
|
|
|
|
|
|
|
// We iterate over the given instructions, and map each unique value
|
|
|
|
// to a unique number in the IRSimilarityCandidate ValueToNumber and
|
|
|
|
// NumberToValue maps. A constant get its own value globally, the individual
|
|
|
|
// uses of the constants are not considered to be unique.
|
|
|
|
//
|
|
|
|
// IR: Mapping Added:
|
|
|
|
// %add1 = add i32 %a, c1 %add1 -> 3, %a -> 1, c1 -> 2
|
|
|
|
// %add2 = add i32 %a, %1 %add2 -> 4
|
|
|
|
// %add3 = add i32 c2, c1 %add3 -> 6, c2 -> 5
|
|
|
|
//
|
|
|
|
// when replace with global values, starting from 1, would be
|
|
|
|
//
|
|
|
|
// 3 = add i32 1, 2
|
|
|
|
// 4 = add i32 1, 3
|
|
|
|
// 6 = add i32 5, 2
|
|
|
|
unsigned LocalValNumber = 1;
|
|
|
|
IRInstructionDataList::iterator ID = iterator(*FirstInstIt);
|
|
|
|
for (unsigned Loc = StartIdx; Loc < StartIdx + Len; Loc++, ID++) {
|
|
|
|
// Map the operand values to an unsigned integer if it does not already
|
|
|
|
// have an unsigned integer assigned to it.
|
|
|
|
for (Value *Arg : ID->OperVals)
|
|
|
|
if (ValueToNumber.find(Arg) == ValueToNumber.end()) {
|
|
|
|
ValueToNumber.try_emplace(Arg, LocalValNumber);
|
|
|
|
NumberToValue.try_emplace(LocalValNumber, Arg);
|
|
|
|
LocalValNumber++;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Mapping the instructions to an unsigned integer if it is not already
|
|
|
|
// exist in the mapping.
|
|
|
|
if (ValueToNumber.find(ID->Inst) == ValueToNumber.end()) {
|
|
|
|
ValueToNumber.try_emplace(ID->Inst, LocalValNumber);
|
|
|
|
NumberToValue.try_emplace(LocalValNumber, ID->Inst);
|
|
|
|
LocalValNumber++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Setting the first and last instruction data pointers for the candidate. If
|
|
|
|
// we got through the entire for loop without hitting an assert, we know
|
|
|
|
// that both of these instructions are not nullptrs.
|
|
|
|
FirstInst = FirstInstIt;
|
|
|
|
LastInst = LastInstIt;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool IRSimilarityCandidate::isSimilar(const IRSimilarityCandidate &A,
|
|
|
|
const IRSimilarityCandidate &B) {
|
|
|
|
if (A.getLength() != B.getLength())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
auto InstrDataForBoth =
|
|
|
|
zip(make_range(A.begin(), A.end()), make_range(B.begin(), B.end()));
|
|
|
|
|
|
|
|
return all_of(InstrDataForBoth,
|
|
|
|
[](std::tuple<IRInstructionData &, IRInstructionData &> R) {
|
|
|
|
IRInstructionData &A = std::get<0>(R);
|
|
|
|
IRInstructionData &B = std::get<1>(R);
|
|
|
|
if (!A.Legal || !B.Legal)
|
|
|
|
return false;
|
|
|
|
return isClose(A, B);
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
2020-09-23 18:04:39 +02:00
|
|
|
/// Determine if operand number \p TargetArgVal is in the current mapping set
|
|
|
|
/// for operand number \p SourceArgVal.
|
|
|
|
///
|
|
|
|
/// \param [in, out] CurrentSrcTgtNumberMapping current mapping of global
|
|
|
|
/// value numbers from source IRSimilarityCandidate to target
|
|
|
|
/// IRSimilarityCandidate.
|
|
|
|
/// \param [in] SourceArgVal The global value number for an operand in the
|
|
|
|
/// in the original candidate.
|
|
|
|
/// \param [in] TargetArgVal The global value number for the corresponding
|
|
|
|
/// operand in the other candidate.
|
|
|
|
/// \returns True if there exists a mapping and false if not.
|
|
|
|
bool checkNumberingAndReplace(
|
|
|
|
DenseMap<unsigned, DenseSet<unsigned>> &CurrentSrcTgtNumberMapping,
|
|
|
|
unsigned SourceArgVal, unsigned TargetArgVal) {
|
|
|
|
// We are given two unsigned integers representing the global values of
|
|
|
|
// the operands in different IRSimilarityCandidates and a current mapping
|
|
|
|
// between the two.
|
|
|
|
//
|
|
|
|
// Source Operand GVN: 1
|
|
|
|
// Target Operand GVN: 2
|
|
|
|
// CurrentMapping: {1: {1, 2}}
|
|
|
|
//
|
|
|
|
// Since we have mapping, and the target operand is contained in the set, we
|
|
|
|
// update it to:
|
|
|
|
// CurrentMapping: {1: {2}}
|
|
|
|
// and can return true. But, if the mapping was
|
|
|
|
// CurrentMapping: {1: {3}}
|
|
|
|
// we would return false.
|
|
|
|
|
|
|
|
bool WasInserted;
|
|
|
|
DenseMap<unsigned, DenseSet<unsigned>>::iterator Val;
|
|
|
|
|
|
|
|
std::tie(Val, WasInserted) = CurrentSrcTgtNumberMapping.insert(
|
|
|
|
std::make_pair(SourceArgVal, DenseSet<unsigned>({TargetArgVal})));
|
|
|
|
|
|
|
|
// If we created a new mapping, then we are done.
|
|
|
|
if (WasInserted)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
// If there is more than one option in the mapping set, and the target value
|
|
|
|
// is included in the mapping set replace that set with one that only includes
|
|
|
|
// the target value, as it is the only valid mapping via the non commutative
|
|
|
|
// instruction.
|
|
|
|
|
|
|
|
DenseSet<unsigned> &TargetSet = Val->second;
|
|
|
|
if (TargetSet.size() > 1 && TargetSet.find(TargetArgVal) != TargetSet.end()) {
|
|
|
|
TargetSet.clear();
|
|
|
|
TargetSet.insert(TargetArgVal);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return true if we can find the value in the set.
|
|
|
|
return TargetSet.find(TargetArgVal) != TargetSet.end();
|
|
|
|
}
|
|
|
|
|
|
|
|
bool IRSimilarityCandidate::compareOperandMapping(OperandMapping A,
|
|
|
|
OperandMapping B) {
|
|
|
|
// Iterators to keep track of where we are in the operands for each
|
|
|
|
// Instruction.
|
|
|
|
ArrayRef<Value *>::iterator VItA = A.OperVals.begin();
|
|
|
|
ArrayRef<Value *>::iterator VItB = B.OperVals.begin();
|
|
|
|
unsigned OperandLength = A.OperVals.size();
|
|
|
|
|
|
|
|
// For each operand, get the value numbering and ensure it is consistent.
|
|
|
|
for (unsigned Idx = 0; Idx < OperandLength; Idx++, VItA++, VItB++) {
|
|
|
|
unsigned OperValA = A.IRSC.ValueToNumber.find(*VItA)->second;
|
|
|
|
unsigned OperValB = B.IRSC.ValueToNumber.find(*VItB)->second;
|
|
|
|
|
|
|
|
// Attempt to add a set with only the target value. If there is no mapping
|
|
|
|
// we can create it here.
|
|
|
|
//
|
|
|
|
// For an instruction like a subtraction:
|
|
|
|
// IRSimilarityCandidateA: IRSimilarityCandidateB:
|
|
|
|
// %resultA = sub %a, %b %resultB = sub %d, %e
|
|
|
|
//
|
|
|
|
// We map %a -> %d and %b -> %e.
|
|
|
|
//
|
|
|
|
// And check to see whether their mapping is consistent in
|
|
|
|
// checkNumberingAndReplace.
|
|
|
|
|
|
|
|
if (!checkNumberingAndReplace(A.ValueNumberMapping, OperValA, OperValB))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (!checkNumberingAndReplace(B.ValueNumberMapping, OperValB, OperValA))
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool IRSimilarityCandidate::compareStructure(const IRSimilarityCandidate &A,
|
|
|
|
const IRSimilarityCandidate &B) {
|
|
|
|
if (A.getLength() != B.getLength())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (A.ValueToNumber.size() != B.ValueToNumber.size())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
iterator ItA = A.begin();
|
|
|
|
iterator ItB = B.begin();
|
|
|
|
|
|
|
|
// These sets create a create a mapping between the values in one candidate
|
|
|
|
// to values in the other candidate. If we create a set with one element,
|
|
|
|
// and that same element maps to the original element in the candidate
|
|
|
|
// we have a good mapping.
|
|
|
|
DenseMap<unsigned, DenseSet<unsigned>> ValueNumberMappingA;
|
|
|
|
DenseMap<unsigned, DenseSet<unsigned>> ValueNumberMappingB;
|
|
|
|
DenseMap<unsigned, DenseSet<unsigned>>::iterator ValueMappingIt;
|
|
|
|
|
|
|
|
bool WasInserted;
|
|
|
|
|
|
|
|
// Iterate over the instructions contained in each candidate
|
|
|
|
unsigned SectionLength = A.getStartIdx() + A.getLength();
|
|
|
|
for (unsigned Loc = A.getStartIdx(); Loc < SectionLength;
|
|
|
|
ItA++, ItB++, Loc++) {
|
|
|
|
// Make sure the instructions are similar to one another.
|
|
|
|
if (!isClose(*ItA, *ItB))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
Instruction *IA = ItA->Inst;
|
|
|
|
Instruction *IB = ItB->Inst;
|
|
|
|
|
|
|
|
if (!ItA->Legal || !ItB->Legal)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Get the operand sets for the instructions.
|
|
|
|
ArrayRef<Value *> OperValsA = ItA->OperVals;
|
|
|
|
ArrayRef<Value *> OperValsB = ItB->OperVals;
|
|
|
|
|
|
|
|
unsigned InstValA = A.ValueToNumber.find(IA)->second;
|
|
|
|
unsigned InstValB = B.ValueToNumber.find(IB)->second;
|
|
|
|
|
|
|
|
// Ensure that the mappings for the instructions exists.
|
|
|
|
std::tie(ValueMappingIt, WasInserted) = ValueNumberMappingA.insert(
|
|
|
|
std::make_pair(InstValA, DenseSet<unsigned>({InstValB})));
|
|
|
|
if (!WasInserted && ValueMappingIt->second.find(InstValB) ==
|
|
|
|
ValueMappingIt->second.end())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
std::tie(ValueMappingIt, WasInserted) = ValueNumberMappingB.insert(
|
|
|
|
std::make_pair(InstValB, DenseSet<unsigned>({InstValA})));
|
|
|
|
if (!WasInserted && ValueMappingIt->second.find(InstValA) ==
|
|
|
|
ValueMappingIt->second.end())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// TODO: Handle commutative instructions by mapping one operand to many
|
|
|
|
// operands instead only mapping a single operand to a single operand.
|
|
|
|
if (!compareOperandMapping({A, OperValsA, ValueNumberMappingA},
|
|
|
|
{B, OperValsB, ValueNumberMappingB}))
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2020-09-16 00:30:31 +02:00
|
|
|
bool IRSimilarityCandidate::overlap(const IRSimilarityCandidate &A,
|
|
|
|
const IRSimilarityCandidate &B) {
|
|
|
|
auto DoesOverlap = [](const IRSimilarityCandidate &X,
|
|
|
|
const IRSimilarityCandidate &Y) {
|
|
|
|
// Check:
|
|
|
|
// XXXXXX X starts before Y ends
|
|
|
|
// YYYYYYY Y starts after X starts
|
|
|
|
return X.StartIdx <= Y.getEndIdx() && Y.StartIdx >= X.StartIdx;
|
|
|
|
};
|
|
|
|
|
|
|
|
return DoesOverlap(A, B) || DoesOverlap(B, A);
|
|
|
|
}
|
2020-09-17 22:12:08 +02:00
|
|
|
|
|
|
|
void IRSimilarityIdentifier::populateMapper(
|
|
|
|
Module &M, std::vector<IRInstructionData *> &InstrList,
|
|
|
|
std::vector<unsigned> &IntegerMapping) {
|
|
|
|
|
|
|
|
std::vector<IRInstructionData *> InstrListForModule;
|
|
|
|
std::vector<unsigned> IntegerMappingForModule;
|
|
|
|
// Iterate over the functions in the module to map each Instruction in each
|
|
|
|
// BasicBlock to an unsigned integer.
|
|
|
|
for (Function &F : M) {
|
|
|
|
|
|
|
|
if (F.empty())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
for (BasicBlock &BB : F) {
|
|
|
|
|
|
|
|
if (BB.sizeWithoutDebug() < 2)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// BB has potential to have similarity since it has a size greater than 2
|
|
|
|
// and can therefore match other regions greater than 2. Map it to a list
|
|
|
|
// of unsigned integers.
|
|
|
|
Mapper.convertToUnsignedVec(BB, InstrListForModule,
|
|
|
|
IntegerMappingForModule);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Insert the InstrListForModule at the end of the overall InstrList so that
|
|
|
|
// we can have a long InstrList for the entire set of Modules being analyzed.
|
|
|
|
InstrList.insert(InstrList.end(), InstrListForModule.begin(),
|
|
|
|
InstrListForModule.end());
|
|
|
|
// Do the same as above, but for IntegerMapping.
|
|
|
|
IntegerMapping.insert(IntegerMapping.end(), IntegerMappingForModule.begin(),
|
|
|
|
IntegerMappingForModule.end());
|
|
|
|
}
|
|
|
|
|
|
|
|
void IRSimilarityIdentifier::populateMapper(
|
|
|
|
ArrayRef<std::unique_ptr<Module>> &Modules,
|
|
|
|
std::vector<IRInstructionData *> &InstrList,
|
|
|
|
std::vector<unsigned> &IntegerMapping) {
|
|
|
|
|
|
|
|
// Iterate over, and map the instructions in each module.
|
|
|
|
for (const std::unique_ptr<Module> &M : Modules)
|
|
|
|
populateMapper(*M, InstrList, IntegerMapping);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// From a repeated subsequence, find all the different instances of the
|
|
|
|
/// subsequence from the \p InstrList, and create an IRSimilarityCandidate from
|
|
|
|
/// the IRInstructionData in subsequence.
|
|
|
|
///
|
|
|
|
/// \param [in] Mapper - The instruction mapper for sanity checks.
|
|
|
|
/// \param [in] InstrList - The vector that holds the instruction data.
|
|
|
|
/// \param [in] IntegerMapping - The vector that holds the mapped integers.
|
|
|
|
/// \param [out] CandsForRepSubstring - The vector to store the generated
|
|
|
|
/// IRSimilarityCandidates.
|
|
|
|
static void createCandidatesFromSuffixTree(
|
|
|
|
IRInstructionMapper Mapper, std::vector<IRInstructionData *> &InstrList,
|
|
|
|
std::vector<unsigned> &IntegerMapping, SuffixTree::RepeatedSubstring &RS,
|
|
|
|
std::vector<IRSimilarityCandidate> &CandsForRepSubstring) {
|
|
|
|
|
|
|
|
unsigned StringLen = RS.Length;
|
|
|
|
|
|
|
|
// Create an IRSimilarityCandidate for instance of this subsequence \p RS.
|
|
|
|
for (const unsigned &StartIdx : RS.StartIndices) {
|
|
|
|
unsigned EndIdx = StartIdx + StringLen - 1;
|
|
|
|
|
|
|
|
// Check that this subsequence does not contain an illegal instruction.
|
|
|
|
bool ContainsIllegal = false;
|
|
|
|
for (unsigned CurrIdx = StartIdx; CurrIdx <= EndIdx; CurrIdx++) {
|
|
|
|
unsigned Key = IntegerMapping[CurrIdx];
|
|
|
|
if (Key > Mapper.IllegalInstrNumber) {
|
|
|
|
ContainsIllegal = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we have an illegal instruction, we should not create an
|
|
|
|
// IRSimilarityCandidate for this region.
|
|
|
|
if (ContainsIllegal)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// We are getting iterators to the instructions in this region of code
|
|
|
|
// by advancing the start and end indices from the start of the
|
|
|
|
// InstrList.
|
|
|
|
std::vector<IRInstructionData *>::iterator StartIt = InstrList.begin();
|
|
|
|
std::advance(StartIt, StartIdx);
|
|
|
|
std::vector<IRInstructionData *>::iterator EndIt = InstrList.begin();
|
|
|
|
std::advance(EndIt, EndIdx);
|
|
|
|
|
|
|
|
CandsForRepSubstring.emplace_back(StartIdx, StringLen, *StartIt, *EndIt);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// From the list of IRSimilarityCandidates, perform a comparison between each
|
|
|
|
/// IRSimilarityCandidate to determine if there are overlapping
|
|
|
|
/// IRInstructionData, or if they do not have the same structure.
|
|
|
|
///
|
|
|
|
/// \param [in] CandsForRepSubstring - The vector containing the
|
|
|
|
/// IRSimilarityCandidates.
|
|
|
|
/// \param [out] StructuralGroups - the mapping of unsigned integers to vector
|
|
|
|
/// of IRSimilarityCandidates where each of the IRSimilarityCandidates in the
|
|
|
|
/// vector are structurally similar to one another.
|
|
|
|
static void findCandidateStructures(
|
|
|
|
std::vector<IRSimilarityCandidate> &CandsForRepSubstring,
|
|
|
|
DenseMap<unsigned, SimilarityGroup> &StructuralGroups) {
|
|
|
|
std::vector<IRSimilarityCandidate>::iterator CandIt, CandEndIt, InnerCandIt,
|
|
|
|
InnerCandEndIt;
|
|
|
|
|
|
|
|
// IRSimilarityCandidates each have a structure for operand use. It is
|
|
|
|
// possible that two instances of the same subsequences have different
|
|
|
|
// structure. Each type of structure found is assigned a number. This
|
|
|
|
// DenseMap maps an IRSimilarityCandidate to which type of similarity
|
|
|
|
// discovered it fits within.
|
|
|
|
DenseMap<IRSimilarityCandidate *, unsigned> CandToGroup;
|
|
|
|
|
|
|
|
// Find the compatibility from each candidate to the others to determine
|
|
|
|
// which candidates overlap and which have the same structure by mapping
|
|
|
|
// each structure to a different group.
|
|
|
|
bool SameStructure;
|
|
|
|
bool Inserted;
|
|
|
|
unsigned CurrentGroupNum = 0;
|
|
|
|
unsigned OuterGroupNum;
|
|
|
|
DenseMap<IRSimilarityCandidate *, unsigned>::iterator CandToGroupIt;
|
|
|
|
DenseMap<IRSimilarityCandidate *, unsigned>::iterator CandToGroupItInner;
|
|
|
|
DenseMap<unsigned, SimilarityGroup>::iterator CurrentGroupPair;
|
|
|
|
|
|
|
|
// Iterate over the candidates to determine its structural and overlapping
|
|
|
|
// compatibility with other instructions
|
|
|
|
for (CandIt = CandsForRepSubstring.begin(),
|
|
|
|
CandEndIt = CandsForRepSubstring.end();
|
|
|
|
CandIt != CandEndIt; CandIt++) {
|
|
|
|
|
|
|
|
// Determine if it has an assigned structural group already.
|
|
|
|
CandToGroupIt = CandToGroup.find(&*CandIt);
|
|
|
|
if (CandToGroupIt == CandToGroup.end()) {
|
|
|
|
// If not, we assign it one, and add it to our mapping.
|
|
|
|
std::tie(CandToGroupIt, Inserted) =
|
|
|
|
CandToGroup.insert(std::make_pair(&*CandIt, CurrentGroupNum++));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Get the structural group number from the iterator.
|
|
|
|
OuterGroupNum = CandToGroupIt->second;
|
|
|
|
|
|
|
|
// Check if we already have a list of IRSimilarityCandidates for the current
|
|
|
|
// structural group. Create one if one does not exist.
|
|
|
|
CurrentGroupPair = StructuralGroups.find(OuterGroupNum);
|
|
|
|
if (CurrentGroupPair == StructuralGroups.end())
|
|
|
|
std::tie(CurrentGroupPair, Inserted) = StructuralGroups.insert(
|
|
|
|
std::make_pair(OuterGroupNum, SimilarityGroup({*CandIt})));
|
|
|
|
|
|
|
|
// Iterate over the IRSimilarityCandidates following the current
|
|
|
|
// IRSimilarityCandidate in the list to determine whether the two
|
|
|
|
// IRSimilarityCandidates are compatible. This is so we do not repeat pairs
|
|
|
|
// of IRSimilarityCandidates.
|
|
|
|
for (InnerCandIt = std::next(CandIt),
|
|
|
|
InnerCandEndIt = CandsForRepSubstring.end();
|
|
|
|
InnerCandIt != InnerCandEndIt; InnerCandIt++) {
|
|
|
|
|
|
|
|
// We check if the inner item has a group already, if it does, we skip it.
|
|
|
|
CandToGroupItInner = CandToGroup.find(&*InnerCandIt);
|
|
|
|
if (CandToGroupItInner != CandToGroup.end())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Otherwise we determine if they have the same structure and add it to
|
|
|
|
// vector if they match.
|
|
|
|
SameStructure =
|
|
|
|
IRSimilarityCandidate::compareStructure(*CandIt, *InnerCandIt);
|
|
|
|
if (!SameStructure)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
CandToGroup.insert(std::make_pair(&*InnerCandIt, OuterGroupNum));
|
|
|
|
CurrentGroupPair->second.push_back(*InnerCandIt);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void IRSimilarityIdentifier::findCandidates(
|
|
|
|
std::vector<IRInstructionData *> &InstrList,
|
|
|
|
std::vector<unsigned> &IntegerMapping) {
|
|
|
|
SuffixTree ST(IntegerMapping);
|
|
|
|
|
|
|
|
std::vector<IRSimilarityCandidate> CandsForRepSubstring;
|
|
|
|
std::vector<SimilarityGroup> NewCandidateGroups;
|
|
|
|
|
|
|
|
DenseMap<unsigned, SimilarityGroup> StructuralGroups;
|
|
|
|
|
|
|
|
// Iterate over the subsequences found by the Suffix Tree to create
|
|
|
|
// IRSimilarityCandidates for each repeated subsequence and determine which
|
|
|
|
// instances are structurally similar to one another.
|
|
|
|
for (auto It = ST.begin(), Et = ST.end(); It != Et; ++It) {
|
|
|
|
createCandidatesFromSuffixTree(Mapper, InstrList, IntegerMapping, *It,
|
|
|
|
CandsForRepSubstring);
|
|
|
|
|
|
|
|
if (CandsForRepSubstring.size() < 2)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
findCandidateStructures(CandsForRepSubstring, StructuralGroups);
|
|
|
|
for (std::pair<unsigned, SimilarityGroup> &Group : StructuralGroups)
|
|
|
|
// We only add the group if it contains more than one
|
|
|
|
// IRSimilarityCandidate. If there is only one, that means there is no
|
|
|
|
// other repeated subsequence with the same structure.
|
|
|
|
if (Group.second.size() > 1)
|
|
|
|
SimilarityCandidates->push_back(Group.second);
|
|
|
|
|
|
|
|
CandsForRepSubstring.clear();
|
|
|
|
StructuralGroups.clear();
|
|
|
|
NewCandidateGroups.clear();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
SimilarityGroupList &IRSimilarityIdentifier::findSimilarity(
|
|
|
|
ArrayRef<std::unique_ptr<Module>> Modules) {
|
|
|
|
resetSimilarityCandidates();
|
|
|
|
|
|
|
|
std::vector<IRInstructionData *> InstrList;
|
|
|
|
std::vector<unsigned> IntegerMapping;
|
|
|
|
|
|
|
|
populateMapper(Modules, InstrList, IntegerMapping);
|
|
|
|
findCandidates(InstrList, IntegerMapping);
|
|
|
|
|
|
|
|
return SimilarityCandidates.getValue();
|
|
|
|
}
|
|
|
|
|
|
|
|
SimilarityGroupList &IRSimilarityIdentifier::findSimilarity(Module &M) {
|
|
|
|
resetSimilarityCandidates();
|
|
|
|
|
|
|
|
std::vector<IRInstructionData *> InstrList;
|
|
|
|
std::vector<unsigned> IntegerMapping;
|
|
|
|
|
|
|
|
populateMapper(M, InstrList, IntegerMapping);
|
|
|
|
findCandidates(InstrList, IntegerMapping);
|
|
|
|
|
|
|
|
return SimilarityCandidates.getValue();
|
|
|
|
}
|
2020-09-17 23:29:43 +02:00
|
|
|
|
|
|
|
INITIALIZE_PASS(IRSimilarityIdentifierWrapperPass, "ir-similarity-identifier",
|
|
|
|
"ir-similarity-identifier", false, true)
|
|
|
|
|
|
|
|
IRSimilarityIdentifierWrapperPass::IRSimilarityIdentifierWrapperPass()
|
|
|
|
: ModulePass(ID) {
|
|
|
|
initializeIRSimilarityIdentifierWrapperPassPass(
|
|
|
|
*PassRegistry::getPassRegistry());
|
|
|
|
}
|
|
|
|
|
|
|
|
bool IRSimilarityIdentifierWrapperPass::doInitialization(Module &M) {
|
|
|
|
IRSI.reset(new IRSimilarityIdentifier(M));
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool IRSimilarityIdentifierWrapperPass::doFinalization(Module &M) {
|
|
|
|
IRSI.reset();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool IRSimilarityIdentifierWrapperPass::runOnModule(Module &M) {
|
|
|
|
// All the real work is done in the constructor for the pass.
|
|
|
|
IRSI.reset(new IRSimilarityIdentifier(M));
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
AnalysisKey IRSimilarityAnalysis::Key;
|
|
|
|
IRSimilarityIdentifier IRSimilarityAnalysis::run(Module &M,
|
|
|
|
ModuleAnalysisManager &) {
|
|
|
|
|
|
|
|
return IRSimilarityIdentifier(M);
|
|
|
|
}
|
|
|
|
|
|
|
|
PreservedAnalyses
|
|
|
|
IRSimilarityAnalysisPrinterPass::run(Module &M, ModuleAnalysisManager &AM) {
|
|
|
|
IRSimilarityIdentifier &IRSI = AM.getResult<IRSimilarityAnalysis>(M);
|
|
|
|
Optional<SimilarityGroupList> &SimilarityCandidatesOpt = IRSI.getSimilarity();
|
|
|
|
|
|
|
|
for (std::vector<IRSimilarityCandidate> &CandVec : *SimilarityCandidatesOpt) {
|
|
|
|
OS << CandVec.size() << " candidates of length "
|
|
|
|
<< CandVec.begin()->getLength() << ". Found in: \n";
|
|
|
|
for (IRSimilarityCandidate &Cand : CandVec) {
|
|
|
|
OS << " Function: " << Cand.front()->Inst->getFunction()->getName().str()
|
|
|
|
<< ", Basic Block: ";
|
|
|
|
if (Cand.front()->Inst->getParent()->getName().str() == "")
|
|
|
|
OS << "(unnamed)\n";
|
|
|
|
else
|
|
|
|
OS << Cand.front()->Inst->getParent()->getName().str() << "\n";
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return PreservedAnalyses::all();
|
|
|
|
}
|
|
|
|
|
|
|
|
char IRSimilarityIdentifierWrapperPass::ID = 0;
|