1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 20:12:56 +02:00
llvm-mirror/lib/Target/X86/InstSelectSimple.cpp

361 lines
10 KiB
C++
Raw Normal View History

//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
//
// This file defines a simple peephole instruction selector for the x86 platform
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrInfo.h"
#include "llvm/Function.h"
#include "llvm/iTerminators.h"
#include "llvm/iOther.h"
#include "llvm/Type.h"
#include "llvm/Constants.h"
#include "llvm/Pass.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/InstVisitor.h"
#include <map>
namespace {
struct ISel : public FunctionPass, InstVisitor<ISel> {
TargetMachine &TM;
MachineFunction *F; // The function we are compiling into
MachineBasicBlock *BB; // The current MBB we are compiling
unsigned CurReg;
std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
ISel(TargetMachine &tm)
: TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {}
/// runOnFunction - Top level implementation of instruction selection for
/// the entire function.
///
bool runOnFunction(Function &Fn) {
F = &MachineFunction::construct(&Fn, TM);
visit(Fn);
RegMap.clear();
F = 0;
return false; // We never modify the LLVM itself.
}
/// visitBasicBlock - This method is called when we are visiting a new basic
2002-10-29 21:48:56 +01:00
/// block. This simply creates a new MachineBasicBlock to emit code into
/// and adds it to the current MachineFunction. Subsequent visit* for
/// instructions will be invoked for all instructions in the basic block.
///
void visitBasicBlock(BasicBlock &LLVM_BB) {
BB = new MachineBasicBlock(&LLVM_BB);
// FIXME: Use the auto-insert form when it's available
F->getBasicBlockList().push_back(BB);
}
// Visitation methods for various instructions. These methods simply emit
// fixed X86 code for each instruction.
//
void visitReturnInst(ReturnInst &RI);
void visitAdd(BinaryOperator &B);
void visitShiftInst(ShiftInst &I);
void visitInstruction(Instruction &I) {
std::cerr << "Cannot instruction select: " << I;
abort();
}
/// copyConstantToRegister - Output the instructions required to put the
/// specified constant into the specified register.
///
void copyConstantToRegister(Constant *C, unsigned Reg);
/// getReg - This method turns an LLVM value into a register number. This
/// is guaranteed to produce the same register number for a particular value
/// every time it is queried.
///
unsigned getReg(Value &V) { return getReg(&V); } // Allow references
unsigned getReg(Value *V) {
unsigned &Reg = RegMap[V];
if (Reg == 0)
Reg = CurReg++;
2002-10-27 22:23:43 +01:00
// If this operand is a constant, emit the code to copy the constant into
// the register here...
//
if (Constant *C = dyn_cast<Constant>(V))
copyConstantToRegister(C, Reg);
return Reg;
}
};
}
/// copyConstantToRegister - Output the instructions required to put the
/// specified constant into the specified register.
///
void ISel::copyConstantToRegister(Constant *C, unsigned R) {
assert (!isa<ConstantExpr>(C) && "Constant expressions not yet handled!\n");
switch (C->getType()->getPrimitiveID()) {
case Type::SByteTyID:
BuildMI(BB, X86::MOVir8, 1, R).addSImm(cast<ConstantSInt>(C)->getValue());
break;
case Type::UByteTyID:
BuildMI(BB, X86::MOVir8, 1, R).addZImm(cast<ConstantUInt>(C)->getValue());
break;
case Type::ShortTyID:
BuildMI(BB, X86::MOVir16, 1, R).addSImm(cast<ConstantSInt>(C)->getValue());
break;
case Type::UShortTyID:
BuildMI(BB, X86::MOVir16, 1, R).addZImm(cast<ConstantUInt>(C)->getValue());
break;
case Type::IntTyID:
BuildMI(BB, X86::MOVir32, 1, R).addSImm(cast<ConstantSInt>(C)->getValue());
break;
case Type::UIntTyID:
BuildMI(BB, X86::MOVir32, 1, R).addZImm(cast<ConstantUInt>(C)->getValue());
break;
default: assert(0 && "Type not handled yet!");
}
}
/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
/// we have the following possibilities:
///
/// ret void: No return value, simply emit a 'ret' instruction
/// ret sbyte, ubyte : Extend value into EAX and return
/// ret short, ushort: Extend value into EAX and return
/// ret int, uint : Move value into EAX and return
/// ret pointer : Move value into EAX and return
/// ret long, ulong : Move value into EAX/EDX (?) and return
/// ret float/double : ? Top of FP stack? XMM0?
///
void ISel::visitReturnInst(ReturnInst &I) {
if (I.getNumOperands() != 0) { // Not 'ret void'?
// Move result into a hard register... then emit a ret
visitInstruction(I); // abort
}
// Emit a simple 'ret' instruction... appending it to the end of the basic
// block
BuildMI(BB, X86::RET, 0);
}
/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
/// for constant immediate shift values, and for constant immediate
/// shift values equal to 1. Even the general case is sort of special,
/// because the shift amount has to be in CL, not just any old register.
///
void
ISel::visitShiftInst (ShiftInst & I)
{
unsigned Op0r = getReg (I.getOperand (0));
unsigned DestReg = getReg (I);
unsigned operandSize = I.getOperand (0)->getType ()->getPrimitiveSize ();
bool isRightShift = (I.getOpcode () == Instruction::Shr);
bool isOperandUnsigned = I.getType ()->isUnsigned ();
bool isConstantShiftAmount = (isa <ConstantUInt> (I.getOperand (1)));
if (ConstantUInt *CUI = dyn_cast <ConstantUInt> (I.getOperand (1)))
{
// The shift amount is constant. Get its value.
uint64_t shAmt = CUI->getValue ();
// Emit: <insn> reg, shamt (shift-by-immediate opcode "ir" form.)
if (isRightShift)
{
if (isOperandUnsigned)
{
// This is a shift right logical (SHR).
switch (operandSize)
{
case 1:
BuildMI (BB, X86::SHRir8, 2,
DestReg).addReg (Op0r).addZImm (shAmt);
break;
case 2:
BuildMI (BB, X86::SHRir16, 2,
DestReg).addReg (Op0r).addZImm (shAmt);
break;
case 4:
BuildMI (BB, X86::SHRir32, 2,
DestReg).addReg (Op0r).addZImm (shAmt);
break;
case 8:
default:
visitInstruction (I);
break;
}
}
else
{
// This is a shift right arithmetic (SAR).
switch (operandSize)
{
case 1:
BuildMI (BB, X86::SARir8, 2,
DestReg).addReg (Op0r).addZImm (shAmt);
break;
case 2:
BuildMI (BB, X86::SARir16, 2,
DestReg).addReg (Op0r).addZImm (shAmt);
break;
case 4:
BuildMI (BB, X86::SARir32, 2,
DestReg).addReg (Op0r).addZImm (shAmt);
break;
case 8:
default:
visitInstruction (I);
break;
}
}
}
else
{
// This is a left shift (SHL).
switch (operandSize)
{
case 1:
BuildMI (BB, X86::SHLir8, 2,
DestReg).addReg (Op0r).addZImm (shAmt);
break;
case 2:
BuildMI (BB, X86::SHLir16, 2,
DestReg).addReg (Op0r).addZImm (shAmt);
break;
case 4:
BuildMI (BB, X86::SHLir32, 2,
DestReg).addReg (Op0r).addZImm (shAmt);
break;
case 8:
default:
visitInstruction (I);
break;
}
}
}
else
{
// The shift amount is non-constant.
//
// In fact, you can only shift with a variable shift amount if
// that amount is already in the CL register, so we have to put it
// there first.
//
// Get it from the register it's in.
unsigned Op1r = getReg (I.getOperand (1));
// Emit: move cl, shiftAmount (put the shift amount in CL.)
BuildMI (BB, X86::MOVrr8, 2, X86::CL).addReg (Op1r);
// Emit: <insn> reg, cl (shift-by-CL opcode; "rr" form.)
if (isRightShift)
{
if (isOperandUnsigned)
{
// This is a shift right logical (SHR).
switch (operandSize)
{
case 1:
BuildMI (BB, X86::SHRrr8, 2,
DestReg).addReg (Op0r).addReg (X86::CL);
break;
case 2:
BuildMI (BB, X86::SHRrr16, 2,
DestReg).addReg (Op0r).addReg (X86::CL);
break;
case 4:
BuildMI (BB, X86::SHRrr32, 2,
DestReg).addReg (Op0r).addReg (X86::CL);
break;
case 8:
default:
visitInstruction (I);
break;
}
}
else
{
// This is a shift right arithmetic (SAR).
switch (operandSize)
{
case 1:
BuildMI (BB, X86::SARrr8, 2,
DestReg).addReg (Op0r).addReg (X86::CL);
break;
case 2:
BuildMI (BB, X86::SARrr16, 2,
DestReg).addReg (Op0r).addReg (X86::CL);
break;
case 4:
BuildMI (BB, X86::SARrr32, 2,
DestReg).addReg (Op0r).addReg (X86::CL);
break;
case 8:
default:
visitInstruction (I);
break;
}
}
}
else
{
// This is a left shift (SHL).
switch (operandSize)
{
case 1:
BuildMI (BB, X86::SHLrr8, 2,
DestReg).addReg (Op0r).addReg (X86::CL);
break;
case 2:
BuildMI (BB, X86::SHLrr16, 2,
DestReg).addReg (Op0r).addReg (X86::CL);
break;
case 4:
BuildMI (BB, X86::SHLrr32, 2,
DestReg).addReg (Op0r).addReg (X86::CL);
break;
case 8:
default:
visitInstruction (I);
break;
}
}
}
}
/// 'add' instruction - Simply turn this into an x86 reg,reg add instruction.
void ISel::visitAdd(BinaryOperator &B) {
unsigned Op0r = getReg(B.getOperand(0)), Op1r = getReg(B.getOperand(1));
unsigned DestReg = getReg(B);
switch (B.getType()->getPrimitiveSize()) {
case 1: // UByte, SByte
BuildMI(BB, X86::ADDrr8, 2, DestReg).addReg(Op0r).addReg(Op1r);
break;
case 2: // UShort, Short
BuildMI(BB, X86::ADDrr16, 2, DestReg).addReg(Op0r).addReg(Op1r);
break;
case 4: // UInt, Int
BuildMI(BB, X86::ADDrr32, 2, DestReg).addReg(Op0r).addReg(Op1r);
break;
case 8: // ULong, Long
// Here we have a pair of operands each occupying a pair of registers.
// We need to do an ADDrr32 of the least-significant pair immediately
// followed by an ADCrr32 (Add with Carry) of the most-significant pair.
// I don't know how we are representing these multi-register arguments.
default:
visitInstruction(B); // abort
}
}
/// createSimpleX86InstructionSelector - This pass converts an LLVM function
/// into a machine code representation is a very simple peep-hole fashion. The
/// generated code sucks but the implementation is nice and simple.
///
Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
return new ISel(TM);
}