2020-05-16 02:13:18 +02:00
|
|
|
=======================================================
|
|
|
|
How to Update Debug Info: A Guide for LLVM Pass Authors
|
|
|
|
=======================================================
|
|
|
|
|
|
|
|
.. contents::
|
|
|
|
:local:
|
|
|
|
|
|
|
|
Introduction
|
|
|
|
============
|
|
|
|
|
|
|
|
Certain kinds of code transformations can inadvertently result in a loss of
|
|
|
|
debug info, or worse, make debug info misrepresent the state of a program.
|
|
|
|
|
|
|
|
This document specifies how to correctly update debug info in various kinds of
|
|
|
|
code transformations, and offers suggestions for how to create targeted debug
|
|
|
|
info tests for arbitrary transformations.
|
|
|
|
|
|
|
|
For more on the philosophy behind LLVM debugging information, see
|
|
|
|
:doc:`SourceLevelDebugging`.
|
|
|
|
|
[docs] Specify rules for updating debug locations
Summary:
Restructure HowToUpdateDebugInfo.rst to specify rules for when
transformations should preserve, merge, or drop debug locations.
The goal is to have clear, well-justified rules that come with a few
examples and counter-examples, so that pass authors can pick the best
strategy for managing debug locations depending on the specific task at
hand.
I've tried to set down sensible rules here that mostly align with what
we already do in llvm today, and that take a diverse set of use cases
into account (interactive debugging, crash triage, SamplePGO).
Please *do* try to pick these rules apart and suggest clarifications or
improvements :).
Side note: Prior to 24660ea1, this document was structured as a long
list of very specific code transformations -- the idea being that we
would fill in what to do in each specific case. I chose to reorganize
the document as a list of actions to take because it drastically cuts
down on the amount of redundant exposition/explanation needed. I hope
that's fine...
Reviewers: jmorse, aprantl, dblaikie
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81198
2020-06-04 23:33:17 +02:00
|
|
|
Rules for updating debug locations
|
|
|
|
==================================
|
2020-05-16 02:13:18 +02:00
|
|
|
|
[docs] Specify rules for updating debug locations
Summary:
Restructure HowToUpdateDebugInfo.rst to specify rules for when
transformations should preserve, merge, or drop debug locations.
The goal is to have clear, well-justified rules that come with a few
examples and counter-examples, so that pass authors can pick the best
strategy for managing debug locations depending on the specific task at
hand.
I've tried to set down sensible rules here that mostly align with what
we already do in llvm today, and that take a diverse set of use cases
into account (interactive debugging, crash triage, SamplePGO).
Please *do* try to pick these rules apart and suggest clarifications or
improvements :).
Side note: Prior to 24660ea1, this document was structured as a long
list of very specific code transformations -- the idea being that we
would fill in what to do in each specific case. I chose to reorganize
the document as a list of actions to take because it drastically cuts
down on the amount of redundant exposition/explanation needed. I hope
that's fine...
Reviewers: jmorse, aprantl, dblaikie
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81198
2020-06-04 23:33:17 +02:00
|
|
|
.. _WhenToPreserveLocation:
|
|
|
|
|
|
|
|
When to preserve an instruction location
|
|
|
|
----------------------------------------
|
|
|
|
|
|
|
|
A transformation should preserve the debug location of an instruction if the
|
|
|
|
instruction either remains in its basic block, or if its basic block is folded
|
|
|
|
into a predecessor that branches unconditionally. The APIs to use are
|
|
|
|
``IRBuilder``, or ``Instruction::setDebugLoc``.
|
|
|
|
|
|
|
|
The purpose of this rule is to ensure that common block-local optimizations
|
|
|
|
preserve the ability to set breakpoints on source locations corresponding to
|
|
|
|
the instructions they touch. Debugging, crash logs, and SamplePGO accuracy
|
|
|
|
would be severely impacted if that ability were lost.
|
|
|
|
|
|
|
|
Examples of transformations that should follow this rule include:
|
|
|
|
|
|
|
|
* Instruction scheduling. Block-local instruction reordering should not drop
|
|
|
|
source locations, even though this may lead to jumpy single-stepping
|
|
|
|
behavior.
|
|
|
|
|
|
|
|
* Simple jump threading. For example, if block ``B1`` unconditionally jumps to
|
|
|
|
``B2``, *and* is its unique predecessor, instructions from ``B2`` can be
|
|
|
|
hoisted into ``B1``. Source locations from ``B2`` should be preserved.
|
|
|
|
|
|
|
|
* Peephole optimizations that replace or expand an instruction, like ``(add X
|
|
|
|
X) => (shl X 1)``. The location of the ``shl`` instruction should be the same
|
|
|
|
as the location of the ``add`` instruction.
|
|
|
|
|
|
|
|
* Tail duplication. For example, if blocks ``B1`` and ``B2`` both
|
|
|
|
unconditionally branch to ``B3`` and ``B3`` can be folded into its
|
|
|
|
predecessors, source locations from ``B3`` should be preserved.
|
|
|
|
|
|
|
|
Examples of transformations for which this rule *does not* apply include:
|
|
|
|
|
|
|
|
* LICM. E.g., if an instruction is moved from the loop body to the preheader,
|
|
|
|
the rule for :ref:`dropping locations<WhenToDropLocation>` applies.
|
|
|
|
|
|
|
|
.. _WhenToMergeLocation:
|
|
|
|
|
|
|
|
When to merge instruction locations
|
|
|
|
-----------------------------------
|
|
|
|
|
|
|
|
A transformation should merge instruction locations if it replaces multiple
|
|
|
|
instructions with a single merged instruction, *and* that merged instruction
|
|
|
|
does not correspond to any of the original instructions' locations. The API to
|
|
|
|
use is ``Instruction::applyMergedLocation``.
|
|
|
|
|
|
|
|
The purpose of this rule is to ensure that a) the single merged instruction
|
|
|
|
has a location with an accurate scope attached, and b) to prevent misleading
|
|
|
|
single-stepping (or breakpoint) behavior. Often, merged instructions are memory
|
|
|
|
accesses which can trap: having an accurate scope attached greatly assists in
|
|
|
|
crash triage by identifying the (possibly inlined) function where the bad
|
|
|
|
memory access occurred. This rule is also meant to assist SamplePGO by banning
|
|
|
|
scenarios in which a sample of a block containing a merged instruction is
|
|
|
|
misattributed to a block containing one of the instructions-to-be-merged.
|
|
|
|
|
|
|
|
Examples of transformations that should follow this rule include:
|
|
|
|
|
|
|
|
* Merging identical loads/stores which occur on both sides of a CFG diamond
|
|
|
|
(see the ``MergedLoadStoreMotion`` pass).
|
|
|
|
|
|
|
|
* Merging identical loop-invariant stores (see the LICM utility
|
|
|
|
``llvm::promoteLoopAccessesToScalars``).
|
|
|
|
|
|
|
|
* Peephole optimizations which combine multiple instructions together, like
|
|
|
|
``(add (mul A B) C) => llvm.fma.f32(A, B, C)``. Note that the location of
|
|
|
|
the ``fma`` does not exactly correspond to the locations of either the
|
|
|
|
``mul`` or the ``add`` instructions.
|
|
|
|
|
|
|
|
Examples of transformations for which this rule *does not* apply include:
|
|
|
|
|
|
|
|
* Block-local peepholes which delete redundant instructions, like
|
|
|
|
``(sext (zext i8 %x to i16) to i32) => (zext i8 %x to i32)``. The inner
|
|
|
|
``zext`` is modified but remains in its block, so the rule for
|
|
|
|
:ref:`preserving locations<WhenToPreserveLocation>` should apply.
|
|
|
|
|
|
|
|
* Converting an if-then-else CFG diamond into a ``select``. Preserving the
|
|
|
|
debug locations of speculated instructions can make it seem like a condition
|
|
|
|
is true when it's not (or vice versa), which leads to a confusing
|
|
|
|
single-stepping experience. The rule for
|
|
|
|
:ref:`dropping locations<WhenToDropLocation>` should apply here.
|
|
|
|
|
|
|
|
* Hoisting identical instructions which appear in several successor blocks into
|
|
|
|
a predecessor block (see ``BranchFolder::HoistCommonCodeInSuccs``). In this
|
|
|
|
case there is no single merged instruction. The rule for
|
|
|
|
:ref:`dropping locations<WhenToDropLocation>` applies.
|
|
|
|
|
|
|
|
.. _WhenToDropLocation:
|
|
|
|
|
|
|
|
When to drop an instruction location
|
|
|
|
------------------------------------
|
|
|
|
|
|
|
|
A transformation should drop debug locations if the rules for
|
|
|
|
:ref:`preserving<WhenToPreserveLocation>` and
|
|
|
|
:ref:`merging<WhenToMergeLocation>` debug locations do not apply. The API to
|
|
|
|
use is ``Instruction::setDebugLoc()``.
|
|
|
|
|
|
|
|
The purpose of this rule is to prevent erratic or misleading single-stepping
|
|
|
|
behavior in situations in which an instruction has no clear, unambiguous
|
|
|
|
relationship to a source location.
|
|
|
|
|
|
|
|
To handle an instruction without a location, the DWARF generator
|
|
|
|
defaults to allowing the last-set location after a label to cascade forward, or
|
|
|
|
to setting a line 0 location with viable scope information if no previous
|
|
|
|
location is available.
|
|
|
|
|
|
|
|
See the discussion in the section about
|
|
|
|
:ref:`merging locations<WhenToMergeLocation>` for examples of when the rule for
|
|
|
|
dropping locations applies.
|
|
|
|
|
|
|
|
Rules for updating debug values
|
|
|
|
===============================
|
|
|
|
|
|
|
|
Deleting an IR-level Instruction
|
|
|
|
--------------------------------
|
2020-05-16 02:13:18 +02:00
|
|
|
|
|
|
|
When an ``Instruction`` is deleted, its debug uses change to ``undef``. This is
|
2020-06-24 20:51:16 +02:00
|
|
|
a loss of debug info: the value of one or more source variables becomes
|
2020-05-16 02:13:18 +02:00
|
|
|
unavailable, starting with the ``llvm.dbg.value(undef, ...)``. When there is no
|
|
|
|
way to reconstitute the value of the lost instruction, this is the best
|
|
|
|
possible outcome. However, it's often possible to do better:
|
|
|
|
|
|
|
|
* If the dying instruction can be RAUW'd, do so. The
|
|
|
|
``Value::replaceAllUsesWith`` API transparently updates debug uses of the
|
|
|
|
dying instruction to point to the replacement value.
|
|
|
|
|
2020-06-04 23:32:46 +02:00
|
|
|
* If the dying instruction cannot be RAUW'd, call ``llvm::salvageDebugInfo`` on
|
|
|
|
it. This makes a best-effort attempt to rewrite debug uses of the dying
|
|
|
|
instruction by describing its effect as a ``DIExpression``.
|
2020-05-16 02:13:18 +02:00
|
|
|
|
|
|
|
* If one of the **operands** of a dying instruction would become trivially
|
|
|
|
dead, use ``llvm::replaceAllDbgUsesWith`` to rewrite the debug uses of that
|
|
|
|
operand. Consider the following example function:
|
|
|
|
|
|
|
|
.. code-block:: llvm
|
|
|
|
|
|
|
|
define i16 @foo(i16 %a) {
|
|
|
|
%b = sext i16 %a to i32
|
|
|
|
%c = and i32 %b, 15
|
|
|
|
call void @llvm.dbg.value(metadata i32 %c, ...)
|
|
|
|
%d = trunc i32 %c to i16
|
|
|
|
ret i16 %d
|
|
|
|
}
|
|
|
|
|
|
|
|
Now, here's what happens after the unnecessary truncation instruction ``%d`` is
|
|
|
|
replaced with a simplified instruction:
|
|
|
|
|
|
|
|
.. code-block:: llvm
|
|
|
|
|
|
|
|
define i16 @foo(i16 %a) {
|
|
|
|
call void @llvm.dbg.value(metadata i32 undef, ...)
|
|
|
|
%simplified = and i16 %a, 15
|
|
|
|
ret i16 %simplified
|
|
|
|
}
|
|
|
|
|
|
|
|
Note that after deleting ``%d``, all uses of its operand ``%c`` become
|
|
|
|
trivially dead. The debug use which used to point to ``%c`` is now ``undef``,
|
|
|
|
and debug info is needlessly lost.
|
|
|
|
|
|
|
|
To solve this problem, do:
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
llvm::replaceAllDbgUsesWith(%c, theSimplifiedAndInstruction, ...)
|
|
|
|
|
|
|
|
This results in better debug info because the debug use of ``%c`` is preserved:
|
|
|
|
|
|
|
|
.. code-block:: llvm
|
|
|
|
|
|
|
|
define i16 @foo(i16 %a) {
|
|
|
|
%simplified = and i16 %a, 15
|
|
|
|
call void @llvm.dbg.value(metadata i16 %simplified, ...)
|
|
|
|
ret i16 %simplified
|
|
|
|
}
|
|
|
|
|
|
|
|
You may have noticed that ``%simplified`` is narrower than ``%c``: this is not
|
|
|
|
a problem, because ``llvm::replaceAllDbgUsesWith`` takes care of inserting the
|
|
|
|
necessary conversion operations into the DIExpressions of updated debug uses.
|
|
|
|
|
2020-06-04 23:32:46 +02:00
|
|
|
Deleting a MIR-level MachineInstr
|
|
|
|
---------------------------------
|
2020-05-16 02:13:18 +02:00
|
|
|
|
|
|
|
TODO
|
|
|
|
|
2020-06-04 23:32:46 +02:00
|
|
|
How to automatically convert tests into debug info tests
|
|
|
|
========================================================
|
2020-05-16 02:13:18 +02:00
|
|
|
|
2020-06-04 23:32:46 +02:00
|
|
|
.. _IRDebugify:
|
2020-05-16 02:13:18 +02:00
|
|
|
|
|
|
|
Mutation testing for IR-level transformations
|
|
|
|
---------------------------------------------
|
|
|
|
|
|
|
|
An IR test case for a transformation can, in many cases, be automatically
|
|
|
|
mutated to test debug info handling within that transformation. This is a
|
|
|
|
simple way to test for proper debug info handling.
|
|
|
|
|
|
|
|
The ``debugify`` utility
|
|
|
|
^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
The ``debugify`` testing utility is just a pair of passes: ``debugify`` and
|
|
|
|
``check-debugify``.
|
|
|
|
|
|
|
|
The first applies synthetic debug information to every instruction of the
|
|
|
|
module, and the second checks that this DI is still available after an
|
|
|
|
optimization has occurred, reporting any errors/warnings while doing so.
|
|
|
|
|
|
|
|
The instructions are assigned sequentially increasing line locations, and are
|
|
|
|
immediately used by debug value intrinsics everywhere possible.
|
|
|
|
|
|
|
|
For example, here is a module before:
|
|
|
|
|
|
|
|
.. code-block:: llvm
|
|
|
|
|
|
|
|
define void @f(i32* %x) {
|
|
|
|
entry:
|
|
|
|
%x.addr = alloca i32*, align 8
|
|
|
|
store i32* %x, i32** %x.addr, align 8
|
|
|
|
%0 = load i32*, i32** %x.addr, align 8
|
|
|
|
store i32 10, i32* %0, align 4
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
|
|
|
|
and after running ``opt -debugify``:
|
|
|
|
|
|
|
|
.. code-block:: llvm
|
|
|
|
|
|
|
|
define void @f(i32* %x) !dbg !6 {
|
|
|
|
entry:
|
|
|
|
%x.addr = alloca i32*, align 8, !dbg !12
|
|
|
|
call void @llvm.dbg.value(metadata i32** %x.addr, metadata !9, metadata !DIExpression()), !dbg !12
|
|
|
|
store i32* %x, i32** %x.addr, align 8, !dbg !13
|
|
|
|
%0 = load i32*, i32** %x.addr, align 8, !dbg !14
|
|
|
|
call void @llvm.dbg.value(metadata i32* %0, metadata !11, metadata !DIExpression()), !dbg !14
|
|
|
|
store i32 10, i32* %0, align 4, !dbg !15
|
|
|
|
ret void, !dbg !16
|
|
|
|
}
|
|
|
|
|
|
|
|
!llvm.dbg.cu = !{!0}
|
|
|
|
!llvm.debugify = !{!3, !4}
|
|
|
|
!llvm.module.flags = !{!5}
|
|
|
|
|
|
|
|
!0 = distinct !DICompileUnit(language: DW_LANG_C, file: !1, producer: "debugify", isOptimized: true, runtimeVersion: 0, emissionKind: FullDebug, enums: !2)
|
|
|
|
!1 = !DIFile(filename: "debugify-sample.ll", directory: "/")
|
|
|
|
!2 = !{}
|
|
|
|
!3 = !{i32 5}
|
|
|
|
!4 = !{i32 2}
|
|
|
|
!5 = !{i32 2, !"Debug Info Version", i32 3}
|
|
|
|
!6 = distinct !DISubprogram(name: "f", linkageName: "f", scope: null, file: !1, line: 1, type: !7, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: true, unit: !0, retainedNodes: !8)
|
|
|
|
!7 = !DISubroutineType(types: !2)
|
|
|
|
!8 = !{!9, !11}
|
|
|
|
!9 = !DILocalVariable(name: "1", scope: !6, file: !1, line: 1, type: !10)
|
|
|
|
!10 = !DIBasicType(name: "ty64", size: 64, encoding: DW_ATE_unsigned)
|
|
|
|
!11 = !DILocalVariable(name: "2", scope: !6, file: !1, line: 3, type: !10)
|
|
|
|
!12 = !DILocation(line: 1, column: 1, scope: !6)
|
|
|
|
!13 = !DILocation(line: 2, column: 1, scope: !6)
|
|
|
|
!14 = !DILocation(line: 3, column: 1, scope: !6)
|
|
|
|
!15 = !DILocation(line: 4, column: 1, scope: !6)
|
|
|
|
!16 = !DILocation(line: 5, column: 1, scope: !6)
|
|
|
|
|
|
|
|
Using ``debugify``
|
|
|
|
^^^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
A simple way to use ``debugify`` is as follows:
|
|
|
|
|
|
|
|
.. code-block:: bash
|
|
|
|
|
|
|
|
$ opt -debugify -pass-to-test -check-debugify sample.ll
|
|
|
|
|
|
|
|
This will inject synthetic DI to ``sample.ll`` run the ``pass-to-test`` and
|
|
|
|
then check for missing DI. The ``-check-debugify`` step can of course be
|
|
|
|
omitted in favor of more customizable FileCheck directives.
|
|
|
|
|
|
|
|
Some other ways to run debugify are available:
|
|
|
|
|
|
|
|
.. code-block:: bash
|
|
|
|
|
|
|
|
# Same as the above example.
|
|
|
|
$ opt -enable-debugify -pass-to-test sample.ll
|
|
|
|
|
|
|
|
# Suppresses verbose debugify output.
|
|
|
|
$ opt -enable-debugify -debugify-quiet -pass-to-test sample.ll
|
|
|
|
|
|
|
|
# Prepend -debugify before and append -check-debugify -strip after
|
|
|
|
# each pass on the pipeline (similar to -verify-each).
|
|
|
|
$ opt -debugify-each -O2 sample.ll
|
|
|
|
|
|
|
|
In order for ``check-debugify`` to work, the DI must be coming from
|
|
|
|
``debugify``. Thus, modules with existing DI will be skipped.
|
|
|
|
|
|
|
|
``debugify`` can be used to test a backend, e.g:
|
|
|
|
|
|
|
|
.. code-block:: bash
|
|
|
|
|
|
|
|
$ opt -debugify < sample.ll | llc -o -
|
|
|
|
|
|
|
|
There is also a MIR-level debugify pass that can be run before each backend
|
|
|
|
pass, see:
|
2020-06-04 23:32:46 +02:00
|
|
|
:ref:`Mutation testing for MIR-level transformations<MIRDebugify>`.
|
2020-05-16 02:13:18 +02:00
|
|
|
|
|
|
|
``debugify`` in regression tests
|
|
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
The output of the ``debugify`` pass must be stable enough to use in regression
|
|
|
|
tests. Changes to this pass are not allowed to break existing tests.
|
|
|
|
|
|
|
|
.. note::
|
|
|
|
|
|
|
|
Regression tests must be robust. Avoid hardcoding line/variable numbers in
|
|
|
|
check lines. In cases where this can't be avoided (say, if a test wouldn't
|
|
|
|
be precise enough), moving the test to its own file is preferred.
|
|
|
|
|
2020-06-04 23:32:46 +02:00
|
|
|
.. _MIRDebugify:
|
2020-05-16 02:13:18 +02:00
|
|
|
|
|
|
|
Mutation testing for MIR-level transformations
|
|
|
|
----------------------------------------------
|
|
|
|
|
2020-06-04 23:32:46 +02:00
|
|
|
A variant of the ``debugify`` utility described in
|
|
|
|
:ref:`Mutation testing for IR-level transformations<IRDebugify>` can be used
|
|
|
|
for MIR-level transformations as well: much like the IR-level pass,
|
|
|
|
``mir-debugify`` inserts sequentially increasing line locations to each
|
|
|
|
``MachineInstr`` in a ``Module`` (although there is no equivalent MIR-level
|
|
|
|
``check-debugify`` pass).
|
2020-05-16 02:13:18 +02:00
|
|
|
|
|
|
|
For example, here is a snippet before:
|
|
|
|
|
|
|
|
.. code-block:: llvm
|
|
|
|
|
|
|
|
name: test
|
|
|
|
body: |
|
|
|
|
bb.1 (%ir-block.0):
|
|
|
|
%0:_(s32) = IMPLICIT_DEF
|
|
|
|
%1:_(s32) = IMPLICIT_DEF
|
|
|
|
%2:_(s32) = G_CONSTANT i32 2
|
|
|
|
%3:_(s32) = G_ADD %0, %2
|
|
|
|
%4:_(s32) = G_SUB %3, %1
|
|
|
|
|
|
|
|
and after running ``llc -run-pass=mir-debugify``:
|
|
|
|
|
|
|
|
.. code-block:: llvm
|
|
|
|
|
|
|
|
name: test
|
|
|
|
body: |
|
|
|
|
bb.0 (%ir-block.0):
|
|
|
|
%0:_(s32) = IMPLICIT_DEF debug-location !12
|
|
|
|
DBG_VALUE %0(s32), $noreg, !9, !DIExpression(), debug-location !12
|
|
|
|
%1:_(s32) = IMPLICIT_DEF debug-location !13
|
|
|
|
DBG_VALUE %1(s32), $noreg, !11, !DIExpression(), debug-location !13
|
|
|
|
%2:_(s32) = G_CONSTANT i32 2, debug-location !14
|
|
|
|
DBG_VALUE %2(s32), $noreg, !9, !DIExpression(), debug-location !14
|
|
|
|
%3:_(s32) = G_ADD %0, %2, debug-location !DILocation(line: 4, column: 1, scope: !6)
|
|
|
|
DBG_VALUE %3(s32), $noreg, !9, !DIExpression(), debug-location !DILocation(line: 4, column: 1, scope: !6)
|
|
|
|
%4:_(s32) = G_SUB %3, %1, debug-location !DILocation(line: 5, column: 1, scope: !6)
|
|
|
|
DBG_VALUE %4(s32), $noreg, !9, !DIExpression(), debug-location !DILocation(line: 5, column: 1, scope: !6)
|
|
|
|
|
|
|
|
By default, ``mir-debugify`` inserts ``DBG_VALUE`` instructions **everywhere**
|
|
|
|
it is legal to do so. In particular, every (non-PHI) machine instruction that
|
2020-06-04 23:32:46 +02:00
|
|
|
defines a register must be followed by a ``DBG_VALUE`` use of that def. If
|
2020-05-16 02:13:18 +02:00
|
|
|
an instruction does not define a register, but can be followed by a debug inst,
|
|
|
|
MIRDebugify inserts a ``DBG_VALUE`` that references a constant. Insertion of
|
|
|
|
``DBG_VALUE``'s can be disabled by setting ``-debugify-level=locations``.
|
|
|
|
|
|
|
|
To run MIRDebugify once, simply insert ``mir-debugify`` into your ``llc``
|
|
|
|
invocation, like:
|
|
|
|
|
|
|
|
.. code-block:: bash
|
|
|
|
|
|
|
|
# Before some other pass.
|
|
|
|
$ llc -run-pass=mir-debugify,other-pass ...
|
|
|
|
|
|
|
|
# After some other pass.
|
|
|
|
$ llc -run-pass=other-pass,mir-debugify ...
|
|
|
|
|
|
|
|
To run MIRDebugify before each pass in a pipeline, use
|
|
|
|
``-debugify-and-strip-all-safe``. This can be combined with ``-start-before``
|
|
|
|
and ``-start-after``. For example:
|
|
|
|
|
|
|
|
.. code-block:: bash
|
|
|
|
|
|
|
|
$ llc -debugify-and-strip-all-safe -run-pass=... <other llc args>
|
|
|
|
$ llc -debugify-and-strip-all-safe -O1 <other llc args>
|
|
|
|
|
|
|
|
To strip out all debug info from a test, use ``mir-strip-debug``, like:
|
|
|
|
|
|
|
|
.. code-block:: bash
|
|
|
|
|
|
|
|
$ llc -run-pass=mir-debugify,other-pass,mir-strip-debug
|
|
|
|
|
|
|
|
It can be useful to combine ``mir-debugify`` and ``mir-strip-debug`` to
|
|
|
|
identify backend transformations which break in the presence of debug info.
|
|
|
|
For example, to run the AArch64 backend tests with all normal passes
|
|
|
|
"sandwiched" in between MIRDebugify and MIRStripDebugify mutation passes, run:
|
|
|
|
|
|
|
|
.. code-block:: bash
|
|
|
|
|
|
|
|
$ llvm-lit test/CodeGen/AArch64 -Dllc="llc -debugify-and-strip-all-safe"
|
|
|
|
|
2020-06-04 23:32:46 +02:00
|
|
|
Using LostDebugLocObserver
|
|
|
|
--------------------------
|
2020-05-16 02:13:18 +02:00
|
|
|
|
|
|
|
TODO
|