1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-26 06:22:56 +02:00
llvm-mirror/lib/Target/X86/Disassembler/X86Disassembler.cpp

1084 lines
45 KiB
C++
Raw Normal View History

//===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is part of the X86 Disassembler.
// It contains code to translate the data produced by the decoder into
// MCInsts.
//
//
// The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
// 64-bit X86 instruction sets. The main decode sequence for an assembly
// instruction in this disassembler is:
//
// 1. Read the prefix bytes and determine the attributes of the instruction.
// These attributes, recorded in enum attributeBits
// (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM
// provides a mapping from bitmasks to contexts, which are represented by
// enum InstructionContext (ibid.).
//
// 2. Read the opcode, and determine what kind of opcode it is. The
// disassembler distinguishes four kinds of opcodes, which are enumerated in
// OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
// (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
// (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context.
//
// 3. Depending on the opcode type, look in one of four ClassDecision structures
// (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which
// OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get
// a ModRMDecision (ibid.).
//
// 4. Some instructions, such as escape opcodes or extended opcodes, or even
// instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
// ModR/M byte to complete decode. The ModRMDecision's type is an entry from
// ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
// ModR/M byte is required and how to interpret it.
//
// 5. After resolving the ModRMDecision, the disassembler has a unique ID
// of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in
// INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
// meanings of its operands.
//
// 6. For each operand, its encoding is an entry from OperandEncoding
// (X86DisassemblerDecoderCommon.h) and its type is an entry from
// OperandType (ibid.). The encoding indicates how to read it from the
// instruction; the type indicates how to interpret the value once it has
// been read. For example, a register operand could be stored in the R/M
// field of the ModR/M byte, the REG field of the ModR/M byte, or added to
// the main opcode. This is orthogonal from its meaning (an GPR or an XMM
// register, for instance). Given this information, the operands can be
// extracted and interpreted.
//
// 7. As the last step, the disassembler translates the instruction information
// and operands into a format understandable by the client - in this case, an
// MCInst for use by the MC infrastructure.
//
// The disassembler is broken broadly into two parts: the table emitter that
// emits the instruction decode tables discussed above during compilation, and
// the disassembler itself. The table emitter is documented in more detail in
// utils/TableGen/X86DisassemblerEmitter.h.
//
// X86Disassembler.cpp contains the code responsible for step 7, and for
// invoking the decoder to execute steps 1-6.
// X86DisassemblerDecoderCommon.h contains the definitions needed by both the
// table emitter and the disassembler.
// X86DisassemblerDecoder.h contains the public interface of the decoder,
// factored out into C for possible use by other projects.
// X86DisassemblerDecoder.c contains the source code of the decoder, which is
// responsible for steps 1-6.
//
//===----------------------------------------------------------------------===//
#include "X86DisassemblerDecoder.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace llvm::X86Disassembler;
#define DEBUG_TYPE "x86-disassembler"
void llvm::X86Disassembler::Debug(const char *file, unsigned line,
const char *s) {
dbgs() << file << ":" << line << ": " << s;
}
StringRef llvm::X86Disassembler::GetInstrName(unsigned Opcode,
const void *mii) {
const MCInstrInfo *MII = static_cast<const MCInstrInfo *>(mii);
return MII->getName(Opcode);
}
#define debug(s) DEBUG(Debug(__FILE__, __LINE__, s));
namespace llvm {
// Fill-ins to make the compiler happy. These constants are never actually
// assigned; they are just filler to make an automatically-generated switch
// statement work.
namespace X86 {
enum {
BX_SI = 500,
BX_DI = 501,
BP_SI = 502,
BP_DI = 503,
sib = 504,
sib64 = 505
};
}
}
static bool translateInstruction(MCInst &target,
InternalInstruction &source,
const MCDisassembler *Dis);
namespace {
/// Generic disassembler for all X86 platforms. All each platform class should
/// have to do is subclass the constructor, and provide a different
/// disassemblerMode value.
class X86GenericDisassembler : public MCDisassembler {
std::unique_ptr<const MCInstrInfo> MII;
public:
X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
std::unique_ptr<const MCInstrInfo> MII);
public:
DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream &vStream,
raw_ostream &cStream) const override;
private:
DisassemblerMode fMode;
};
}
X86GenericDisassembler::X86GenericDisassembler(
const MCSubtargetInfo &STI,
MCContext &Ctx,
std::unique_ptr<const MCInstrInfo> MII)
: MCDisassembler(STI, Ctx), MII(std::move(MII)) {
const FeatureBitset &FB = STI.getFeatureBits();
if (FB[X86::Mode16Bit]) {
fMode = MODE_16BIT;
return;
} else if (FB[X86::Mode32Bit]) {
fMode = MODE_32BIT;
return;
} else if (FB[X86::Mode64Bit]) {
fMode = MODE_64BIT;
return;
}
llvm_unreachable("Invalid CPU mode");
}
namespace {
struct Region {
ArrayRef<uint8_t> Bytes;
uint64_t Base;
Region(ArrayRef<uint8_t> Bytes, uint64_t Base) : Bytes(Bytes), Base(Base) {}
};
} // end anonymous namespace
/// A callback function that wraps the readByte method from Region.
///
/// @param Arg - The generic callback parameter. In this case, this should
/// be a pointer to a Region.
/// @param Byte - A pointer to the byte to be read.
/// @param Address - The address to be read.
static int regionReader(const void *Arg, uint8_t *Byte, uint64_t Address) {
auto *R = static_cast<const Region *>(Arg);
ArrayRef<uint8_t> Bytes = R->Bytes;
unsigned Index = Address - R->Base;
if (Bytes.size() <= Index)
return -1;
*Byte = Bytes[Index];
return 0;
}
/// logger - a callback function that wraps the operator<< method from
/// raw_ostream.
///
/// @param arg - The generic callback parameter. This should be a pointe
/// to a raw_ostream.
/// @param log - A string to be logged. logger() adds a newline.
static void logger(void* arg, const char* log) {
if (!arg)
return;
raw_ostream &vStream = *(static_cast<raw_ostream*>(arg));
vStream << log << "\n";
}
//
// Public interface for the disassembler
//
MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream &VStream, raw_ostream &CStream) const {
CommentStream = &CStream;
InternalInstruction InternalInstr;
dlog_t LoggerFn = logger;
if (&VStream == &nulls())
LoggerFn = nullptr; // Disable logging completely if it's going to nulls().
Region R(Bytes, Address);
int Ret = decodeInstruction(&InternalInstr, regionReader, (const void *)&R,
LoggerFn, (void *)&VStream,
(const void *)MII.get(), Address, fMode);
if (Ret) {
Size = InternalInstr.readerCursor - Address;
return Fail;
} else {
Size = InternalInstr.length;
return (!translateInstruction(Instr, InternalInstr, this)) ? Success : Fail;
}
}
//
// Private code that translates from struct InternalInstructions to MCInsts.
//
/// translateRegister - Translates an internal register to the appropriate LLVM
/// register, and appends it as an operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param reg - The Reg to append.
static void translateRegister(MCInst &mcInst, Reg reg) {
#define ENTRY(x) X86::x,
uint8_t llvmRegnums[] = {
ALL_REGS
0
};
#undef ENTRY
uint8_t llvmRegnum = llvmRegnums[reg];
mcInst.addOperand(MCOperand::createReg(llvmRegnum));
}
/// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the
/// immediate Value in the MCInst.
///
/// @param Value - The immediate Value, has had any PC adjustment made by
/// the caller.
/// @param isBranch - If the instruction is a branch instruction
/// @param Address - The starting address of the instruction
/// @param Offset - The byte offset to this immediate in the instruction
/// @param Width - The byte width of this immediate in the instruction
///
/// If the getOpInfo() function was set when setupForSymbolicDisassembly() was
/// called then that function is called to get any symbolic information for the
/// immediate in the instruction using the Address, Offset and Width. If that
/// returns non-zero then the symbolic information it returns is used to create
/// an MCExpr and that is added as an operand to the MCInst. If getOpInfo()
/// returns zero and isBranch is true then a symbol look up for immediate Value
/// is done and if a symbol is found an MCExpr is created with that, else
/// an MCExpr with the immediate Value is created. This function returns true
/// if it adds an operand to the MCInst and false otherwise.
static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
uint64_t Address, uint64_t Offset,
uint64_t Width, MCInst &MI,
const MCDisassembler *Dis) {
Add MCSymbolizer for symbolic/annotated disassembly. This is a basic first step towards symbolization of disassembled instructions. This used to be done using externally provided (C API) callbacks. This patch introduces: - the MCSymbolizer class, that mimics the same functions that were used in the X86 and ARM disassemblers to symbolize immediate operands and to annotate loads based off PC (for things like c string literals). - the MCExternalSymbolizer class, which implements the old C API. - the MCRelocationInfo class, which provides a way for targets to translate relocations (either object::RelocationRef, or disassembler C API VariantKinds) to MCExprs. - the MCObjectSymbolizer class, which does symbolization using what it finds in an object::ObjectFile. This makes simple symbolization (with no fancy relocation stuff) work for all object formats! - x86-64 Mach-O and ELF MCRelocationInfos. - A basic ARM Mach-O MCRelocationInfo, that provides just enough to support the C API VariantKinds. Most of what works in otool (the only user of the old symbolization API that I know of) for x86-64 symbolic disassembly (-tvV) works, namely: - symbol references: call _foo; jmp 15 <_foo+50> - relocations: call _foo-_bar; call _foo-4 - __cf?string: leaq 193(%rip), %rax ## literal pool for "hello" Stub support is the main missing part (because libObject doesn't know, among other things, about mach-o indirect symbols). As for the MCSymbolizer API, instead of relying on the disassemblers to call the tryAdding* methods, maybe this could be done automagically using InstrInfo? For instance, even though PC-relative LEAs are used to get the address of string literals in a typical Mach-O file, a MOV would be used in an ELF file. And right now, the explicit symbolization only recognizes PC-relative LEAs. InstrInfo should have already have most of what is needed to know what to symbolize, so this can definitely be improved. I'd also like to remove object::RelocationRef::getValueString (it seems only used by relocation printing in objdump), as simply printing the created MCExpr is definitely enough (and cleaner than string concats). llvm-svn: 182625
2013-05-24 02:39:57 +02:00
return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch,
Offset, Width);
}
/// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being
/// referenced by a load instruction with the base register that is the rip.
/// These can often be addresses in a literal pool. The Address of the
/// instruction and its immediate Value are used to determine the address
/// being referenced in the literal pool entry. The SymbolLookUp call back will
/// return a pointer to a literal 'C' string if the referenced address is an
/// address into a section with 'C' string literals.
static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value,
const void *Decoder) {
const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
Add MCSymbolizer for symbolic/annotated disassembly. This is a basic first step towards symbolization of disassembled instructions. This used to be done using externally provided (C API) callbacks. This patch introduces: - the MCSymbolizer class, that mimics the same functions that were used in the X86 and ARM disassemblers to symbolize immediate operands and to annotate loads based off PC (for things like c string literals). - the MCExternalSymbolizer class, which implements the old C API. - the MCRelocationInfo class, which provides a way for targets to translate relocations (either object::RelocationRef, or disassembler C API VariantKinds) to MCExprs. - the MCObjectSymbolizer class, which does symbolization using what it finds in an object::ObjectFile. This makes simple symbolization (with no fancy relocation stuff) work for all object formats! - x86-64 Mach-O and ELF MCRelocationInfos. - A basic ARM Mach-O MCRelocationInfo, that provides just enough to support the C API VariantKinds. Most of what works in otool (the only user of the old symbolization API that I know of) for x86-64 symbolic disassembly (-tvV) works, namely: - symbol references: call _foo; jmp 15 <_foo+50> - relocations: call _foo-_bar; call _foo-4 - __cf?string: leaq 193(%rip), %rax ## literal pool for "hello" Stub support is the main missing part (because libObject doesn't know, among other things, about mach-o indirect symbols). As for the MCSymbolizer API, instead of relying on the disassemblers to call the tryAdding* methods, maybe this could be done automagically using InstrInfo? For instance, even though PC-relative LEAs are used to get the address of string literals in a typical Mach-O file, a MOV would be used in an ELF file. And right now, the explicit symbolization only recognizes PC-relative LEAs. InstrInfo should have already have most of what is needed to know what to symbolize, so this can definitely be improved. I'd also like to remove object::RelocationRef::getValueString (it seems only used by relocation printing in objdump), as simply printing the created MCExpr is definitely enough (and cleaner than string concats). llvm-svn: 182625
2013-05-24 02:39:57 +02:00
Dis->tryAddingPcLoadReferenceComment(Value, Address);
}
static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
0, // SEG_OVERRIDE_NONE
X86::CS,
X86::SS,
X86::DS,
X86::ES,
X86::FS,
X86::GS
};
/// translateSrcIndex - Appends a source index operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param insn - The internal instruction.
static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
unsigned baseRegNo;
if (insn.mode == MODE_64BIT)
baseRegNo = insn.prefixPresent[0x67] ? X86::ESI : X86::RSI;
else if (insn.mode == MODE_32BIT)
baseRegNo = insn.prefixPresent[0x67] ? X86::SI : X86::ESI;
else {
assert(insn.mode == MODE_16BIT);
baseRegNo = insn.prefixPresent[0x67] ? X86::ESI : X86::SI;
}
MCOperand baseReg = MCOperand::createReg(baseRegNo);
mcInst.addOperand(baseReg);
MCOperand segmentReg;
segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
mcInst.addOperand(segmentReg);
return false;
}
/// translateDstIndex - Appends a destination index operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param insn - The internal instruction.
static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
unsigned baseRegNo;
if (insn.mode == MODE_64BIT)
baseRegNo = insn.prefixPresent[0x67] ? X86::EDI : X86::RDI;
else if (insn.mode == MODE_32BIT)
baseRegNo = insn.prefixPresent[0x67] ? X86::DI : X86::EDI;
else {
assert(insn.mode == MODE_16BIT);
baseRegNo = insn.prefixPresent[0x67] ? X86::EDI : X86::DI;
}
MCOperand baseReg = MCOperand::createReg(baseRegNo);
mcInst.addOperand(baseReg);
return false;
}
/// translateImmediate - Appends an immediate operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param immediate - The immediate value to append.
/// @param operand - The operand, as stored in the descriptor table.
/// @param insn - The internal instruction.
static void translateImmediate(MCInst &mcInst, uint64_t immediate,
const OperandSpecifier &operand,
InternalInstruction &insn,
const MCDisassembler *Dis) {
// Sign-extend the immediate if necessary.
OperandType type = (OperandType)operand.type;
bool isBranch = false;
uint64_t pcrel = 0;
if (type == TYPE_RELv) {
isBranch = true;
pcrel = insn.startLocation +
insn.immediateOffset + insn.immediateSize;
switch (insn.displacementSize) {
default:
break;
case 1:
if(immediate & 0x80)
immediate |= ~(0xffull);
break;
case 2:
if(immediate & 0x8000)
immediate |= ~(0xffffull);
break;
case 4:
if(immediate & 0x80000000)
immediate |= ~(0xffffffffull);
break;
case 8:
break;
}
}
// By default sign-extend all X86 immediates based on their encoding.
else if (type == TYPE_IMM8 || type == TYPE_IMM16 || type == TYPE_IMM32 ||
type == TYPE_IMM64 || type == TYPE_IMMv) {
switch (operand.encoding) {
default:
break;
case ENCODING_IB:
if(immediate & 0x80)
immediate |= ~(0xffull);
break;
case ENCODING_IW:
if(immediate & 0x8000)
immediate |= ~(0xffffull);
break;
case ENCODING_ID:
if(immediate & 0x80000000)
immediate |= ~(0xffffffffull);
break;
case ENCODING_IO:
break;
}
} else if (type == TYPE_IMM3) {
// Check for immediates that printSSECC can't handle.
if (immediate >= 8) {
unsigned NewOpc;
switch (mcInst.getOpcode()) {
default: llvm_unreachable("unexpected opcode");
case X86::CMPPDrmi: NewOpc = X86::CMPPDrmi_alt; break;
case X86::CMPPDrri: NewOpc = X86::CMPPDrri_alt; break;
case X86::CMPPSrmi: NewOpc = X86::CMPPSrmi_alt; break;
case X86::CMPPSrri: NewOpc = X86::CMPPSrri_alt; break;
case X86::CMPSDrm: NewOpc = X86::CMPSDrm_alt; break;
case X86::CMPSDrr: NewOpc = X86::CMPSDrr_alt; break;
case X86::CMPSSrm: NewOpc = X86::CMPSSrm_alt; break;
case X86::CMPSSrr: NewOpc = X86::CMPSSrr_alt; break;
case X86::VPCOMBri: NewOpc = X86::VPCOMBri_alt; break;
case X86::VPCOMBmi: NewOpc = X86::VPCOMBmi_alt; break;
case X86::VPCOMWri: NewOpc = X86::VPCOMWri_alt; break;
case X86::VPCOMWmi: NewOpc = X86::VPCOMWmi_alt; break;
case X86::VPCOMDri: NewOpc = X86::VPCOMDri_alt; break;
case X86::VPCOMDmi: NewOpc = X86::VPCOMDmi_alt; break;
case X86::VPCOMQri: NewOpc = X86::VPCOMQri_alt; break;
case X86::VPCOMQmi: NewOpc = X86::VPCOMQmi_alt; break;
case X86::VPCOMUBri: NewOpc = X86::VPCOMUBri_alt; break;
case X86::VPCOMUBmi: NewOpc = X86::VPCOMUBmi_alt; break;
case X86::VPCOMUWri: NewOpc = X86::VPCOMUWri_alt; break;
case X86::VPCOMUWmi: NewOpc = X86::VPCOMUWmi_alt; break;
case X86::VPCOMUDri: NewOpc = X86::VPCOMUDri_alt; break;
case X86::VPCOMUDmi: NewOpc = X86::VPCOMUDmi_alt; break;
case X86::VPCOMUQri: NewOpc = X86::VPCOMUQri_alt; break;
case X86::VPCOMUQmi: NewOpc = X86::VPCOMUQmi_alt; break;
}
// Switch opcode to the one that doesn't get special printing.
mcInst.setOpcode(NewOpc);
}
} else if (type == TYPE_IMM5) {
// Check for immediates that printAVXCC can't handle.
if (immediate >= 32) {
unsigned NewOpc;
switch (mcInst.getOpcode()) {
default: llvm_unreachable("unexpected opcode");
case X86::VCMPPDrmi: NewOpc = X86::VCMPPDrmi_alt; break;
case X86::VCMPPDrri: NewOpc = X86::VCMPPDrri_alt; break;
case X86::VCMPPSrmi: NewOpc = X86::VCMPPSrmi_alt; break;
case X86::VCMPPSrri: NewOpc = X86::VCMPPSrri_alt; break;
case X86::VCMPSDrm: NewOpc = X86::VCMPSDrm_alt; break;
case X86::VCMPSDrr: NewOpc = X86::VCMPSDrr_alt; break;
case X86::VCMPSSrm: NewOpc = X86::VCMPSSrm_alt; break;
case X86::VCMPSSrr: NewOpc = X86::VCMPSSrr_alt; break;
case X86::VCMPPDYrmi: NewOpc = X86::VCMPPDYrmi_alt; break;
case X86::VCMPPDYrri: NewOpc = X86::VCMPPDYrri_alt; break;
case X86::VCMPPSYrmi: NewOpc = X86::VCMPPSYrmi_alt; break;
case X86::VCMPPSYrri: NewOpc = X86::VCMPPSYrri_alt; break;
case X86::VCMPPDZrmi: NewOpc = X86::VCMPPDZrmi_alt; break;
case X86::VCMPPDZrri: NewOpc = X86::VCMPPDZrri_alt; break;
case X86::VCMPPDZrrib: NewOpc = X86::VCMPPDZrrib_alt; break;
case X86::VCMPPSZrmi: NewOpc = X86::VCMPPSZrmi_alt; break;
case X86::VCMPPSZrri: NewOpc = X86::VCMPPSZrri_alt; break;
case X86::VCMPPSZrrib: NewOpc = X86::VCMPPSZrrib_alt; break;
case X86::VCMPPDZ128rmi: NewOpc = X86::VCMPPDZ128rmi_alt; break;
case X86::VCMPPDZ128rri: NewOpc = X86::VCMPPDZ128rri_alt; break;
case X86::VCMPPSZ128rmi: NewOpc = X86::VCMPPSZ128rmi_alt; break;
case X86::VCMPPSZ128rri: NewOpc = X86::VCMPPSZ128rri_alt; break;
case X86::VCMPPDZ256rmi: NewOpc = X86::VCMPPDZ256rmi_alt; break;
case X86::VCMPPDZ256rri: NewOpc = X86::VCMPPDZ256rri_alt; break;
case X86::VCMPPSZ256rmi: NewOpc = X86::VCMPPSZ256rmi_alt; break;
case X86::VCMPPSZ256rri: NewOpc = X86::VCMPPSZ256rri_alt; break;
case X86::VCMPSDZrm_Int: NewOpc = X86::VCMPSDZrmi_alt; break;
case X86::VCMPSDZrr_Int: NewOpc = X86::VCMPSDZrri_alt; break;
case X86::VCMPSDZrrb_Int: NewOpc = X86::VCMPSDZrrb_alt; break;
case X86::VCMPSSZrm_Int: NewOpc = X86::VCMPSSZrmi_alt; break;
case X86::VCMPSSZrr_Int: NewOpc = X86::VCMPSSZrri_alt; break;
case X86::VCMPSSZrrb_Int: NewOpc = X86::VCMPSSZrrb_alt; break;
}
// Switch opcode to the one that doesn't get special printing.
mcInst.setOpcode(NewOpc);
}
} else if (type == TYPE_AVX512ICC) {
if (immediate >= 8 || ((immediate & 0x3) == 3)) {
unsigned NewOpc;
switch (mcInst.getOpcode()) {
default: llvm_unreachable("unexpected opcode");
case X86::VPCMPBZ128rmi: NewOpc = X86::VPCMPBZ128rmi_alt; break;
case X86::VPCMPBZ128rmik: NewOpc = X86::VPCMPBZ128rmik_alt; break;
case X86::VPCMPBZ128rri: NewOpc = X86::VPCMPBZ128rri_alt; break;
case X86::VPCMPBZ128rrik: NewOpc = X86::VPCMPBZ128rrik_alt; break;
case X86::VPCMPBZ256rmi: NewOpc = X86::VPCMPBZ256rmi_alt; break;
case X86::VPCMPBZ256rmik: NewOpc = X86::VPCMPBZ256rmik_alt; break;
case X86::VPCMPBZ256rri: NewOpc = X86::VPCMPBZ256rri_alt; break;
case X86::VPCMPBZ256rrik: NewOpc = X86::VPCMPBZ256rrik_alt; break;
case X86::VPCMPBZrmi: NewOpc = X86::VPCMPBZrmi_alt; break;
case X86::VPCMPBZrmik: NewOpc = X86::VPCMPBZrmik_alt; break;
case X86::VPCMPBZrri: NewOpc = X86::VPCMPBZrri_alt; break;
case X86::VPCMPBZrrik: NewOpc = X86::VPCMPBZrrik_alt; break;
case X86::VPCMPDZ128rmi: NewOpc = X86::VPCMPDZ128rmi_alt; break;
case X86::VPCMPDZ128rmib: NewOpc = X86::VPCMPDZ128rmib_alt; break;
case X86::VPCMPDZ128rmibk: NewOpc = X86::VPCMPDZ128rmibk_alt; break;
case X86::VPCMPDZ128rmik: NewOpc = X86::VPCMPDZ128rmik_alt; break;
case X86::VPCMPDZ128rri: NewOpc = X86::VPCMPDZ128rri_alt; break;
case X86::VPCMPDZ128rrik: NewOpc = X86::VPCMPDZ128rrik_alt; break;
case X86::VPCMPDZ256rmi: NewOpc = X86::VPCMPDZ256rmi_alt; break;
case X86::VPCMPDZ256rmib: NewOpc = X86::VPCMPDZ256rmib_alt; break;
case X86::VPCMPDZ256rmibk: NewOpc = X86::VPCMPDZ256rmibk_alt; break;
case X86::VPCMPDZ256rmik: NewOpc = X86::VPCMPDZ256rmik_alt; break;
case X86::VPCMPDZ256rri: NewOpc = X86::VPCMPDZ256rri_alt; break;
case X86::VPCMPDZ256rrik: NewOpc = X86::VPCMPDZ256rrik_alt; break;
case X86::VPCMPDZrmi: NewOpc = X86::VPCMPDZrmi_alt; break;
case X86::VPCMPDZrmib: NewOpc = X86::VPCMPDZrmib_alt; break;
case X86::VPCMPDZrmibk: NewOpc = X86::VPCMPDZrmibk_alt; break;
case X86::VPCMPDZrmik: NewOpc = X86::VPCMPDZrmik_alt; break;
case X86::VPCMPDZrri: NewOpc = X86::VPCMPDZrri_alt; break;
case X86::VPCMPDZrrik: NewOpc = X86::VPCMPDZrrik_alt; break;
case X86::VPCMPQZ128rmi: NewOpc = X86::VPCMPQZ128rmi_alt; break;
case X86::VPCMPQZ128rmib: NewOpc = X86::VPCMPQZ128rmib_alt; break;
case X86::VPCMPQZ128rmibk: NewOpc = X86::VPCMPQZ128rmibk_alt; break;
case X86::VPCMPQZ128rmik: NewOpc = X86::VPCMPQZ128rmik_alt; break;
case X86::VPCMPQZ128rri: NewOpc = X86::VPCMPQZ128rri_alt; break;
case X86::VPCMPQZ128rrik: NewOpc = X86::VPCMPQZ128rrik_alt; break;
case X86::VPCMPQZ256rmi: NewOpc = X86::VPCMPQZ256rmi_alt; break;
case X86::VPCMPQZ256rmib: NewOpc = X86::VPCMPQZ256rmib_alt; break;
case X86::VPCMPQZ256rmibk: NewOpc = X86::VPCMPQZ256rmibk_alt; break;
case X86::VPCMPQZ256rmik: NewOpc = X86::VPCMPQZ256rmik_alt; break;
case X86::VPCMPQZ256rri: NewOpc = X86::VPCMPQZ256rri_alt; break;
case X86::VPCMPQZ256rrik: NewOpc = X86::VPCMPQZ256rrik_alt; break;
case X86::VPCMPQZrmi: NewOpc = X86::VPCMPQZrmi_alt; break;
case X86::VPCMPQZrmib: NewOpc = X86::VPCMPQZrmib_alt; break;
case X86::VPCMPQZrmibk: NewOpc = X86::VPCMPQZrmibk_alt; break;
case X86::VPCMPQZrmik: NewOpc = X86::VPCMPQZrmik_alt; break;
case X86::VPCMPQZrri: NewOpc = X86::VPCMPQZrri_alt; break;
case X86::VPCMPQZrrik: NewOpc = X86::VPCMPQZrrik_alt; break;
case X86::VPCMPUBZ128rmi: NewOpc = X86::VPCMPUBZ128rmi_alt; break;
case X86::VPCMPUBZ128rmik: NewOpc = X86::VPCMPUBZ128rmik_alt; break;
case X86::VPCMPUBZ128rri: NewOpc = X86::VPCMPUBZ128rri_alt; break;
case X86::VPCMPUBZ128rrik: NewOpc = X86::VPCMPUBZ128rrik_alt; break;
case X86::VPCMPUBZ256rmi: NewOpc = X86::VPCMPUBZ256rmi_alt; break;
case X86::VPCMPUBZ256rmik: NewOpc = X86::VPCMPUBZ256rmik_alt; break;
case X86::VPCMPUBZ256rri: NewOpc = X86::VPCMPUBZ256rri_alt; break;
case X86::VPCMPUBZ256rrik: NewOpc = X86::VPCMPUBZ256rrik_alt; break;
case X86::VPCMPUBZrmi: NewOpc = X86::VPCMPUBZrmi_alt; break;
case X86::VPCMPUBZrmik: NewOpc = X86::VPCMPUBZrmik_alt; break;
case X86::VPCMPUBZrri: NewOpc = X86::VPCMPUBZrri_alt; break;
case X86::VPCMPUBZrrik: NewOpc = X86::VPCMPUBZrrik_alt; break;
case X86::VPCMPUDZ128rmi: NewOpc = X86::VPCMPUDZ128rmi_alt; break;
case X86::VPCMPUDZ128rmib: NewOpc = X86::VPCMPUDZ128rmib_alt; break;
case X86::VPCMPUDZ128rmibk: NewOpc = X86::VPCMPUDZ128rmibk_alt; break;
case X86::VPCMPUDZ128rmik: NewOpc = X86::VPCMPUDZ128rmik_alt; break;
case X86::VPCMPUDZ128rri: NewOpc = X86::VPCMPUDZ128rri_alt; break;
case X86::VPCMPUDZ128rrik: NewOpc = X86::VPCMPUDZ128rrik_alt; break;
case X86::VPCMPUDZ256rmi: NewOpc = X86::VPCMPUDZ256rmi_alt; break;
case X86::VPCMPUDZ256rmib: NewOpc = X86::VPCMPUDZ256rmib_alt; break;
case X86::VPCMPUDZ256rmibk: NewOpc = X86::VPCMPUDZ256rmibk_alt; break;
case X86::VPCMPUDZ256rmik: NewOpc = X86::VPCMPUDZ256rmik_alt; break;
case X86::VPCMPUDZ256rri: NewOpc = X86::VPCMPUDZ256rri_alt; break;
case X86::VPCMPUDZ256rrik: NewOpc = X86::VPCMPUDZ256rrik_alt; break;
case X86::VPCMPUDZrmi: NewOpc = X86::VPCMPUDZrmi_alt; break;
case X86::VPCMPUDZrmib: NewOpc = X86::VPCMPUDZrmib_alt; break;
case X86::VPCMPUDZrmibk: NewOpc = X86::VPCMPUDZrmibk_alt; break;
case X86::VPCMPUDZrmik: NewOpc = X86::VPCMPUDZrmik_alt; break;
case X86::VPCMPUDZrri: NewOpc = X86::VPCMPUDZrri_alt; break;
case X86::VPCMPUDZrrik: NewOpc = X86::VPCMPUDZrrik_alt; break;
case X86::VPCMPUQZ128rmi: NewOpc = X86::VPCMPUQZ128rmi_alt; break;
case X86::VPCMPUQZ128rmib: NewOpc = X86::VPCMPUQZ128rmib_alt; break;
case X86::VPCMPUQZ128rmibk: NewOpc = X86::VPCMPUQZ128rmibk_alt; break;
case X86::VPCMPUQZ128rmik: NewOpc = X86::VPCMPUQZ128rmik_alt; break;
case X86::VPCMPUQZ128rri: NewOpc = X86::VPCMPUQZ128rri_alt; break;
case X86::VPCMPUQZ128rrik: NewOpc = X86::VPCMPUQZ128rrik_alt; break;
case X86::VPCMPUQZ256rmi: NewOpc = X86::VPCMPUQZ256rmi_alt; break;
case X86::VPCMPUQZ256rmib: NewOpc = X86::VPCMPUQZ256rmib_alt; break;
case X86::VPCMPUQZ256rmibk: NewOpc = X86::VPCMPUQZ256rmibk_alt; break;
case X86::VPCMPUQZ256rmik: NewOpc = X86::VPCMPUQZ256rmik_alt; break;
case X86::VPCMPUQZ256rri: NewOpc = X86::VPCMPUQZ256rri_alt; break;
case X86::VPCMPUQZ256rrik: NewOpc = X86::VPCMPUQZ256rrik_alt; break;
case X86::VPCMPUQZrmi: NewOpc = X86::VPCMPUQZrmi_alt; break;
case X86::VPCMPUQZrmib: NewOpc = X86::VPCMPUQZrmib_alt; break;
case X86::VPCMPUQZrmibk: NewOpc = X86::VPCMPUQZrmibk_alt; break;
case X86::VPCMPUQZrmik: NewOpc = X86::VPCMPUQZrmik_alt; break;
case X86::VPCMPUQZrri: NewOpc = X86::VPCMPUQZrri_alt; break;
case X86::VPCMPUQZrrik: NewOpc = X86::VPCMPUQZrrik_alt; break;
case X86::VPCMPUWZ128rmi: NewOpc = X86::VPCMPUWZ128rmi_alt; break;
case X86::VPCMPUWZ128rmik: NewOpc = X86::VPCMPUWZ128rmik_alt; break;
case X86::VPCMPUWZ128rri: NewOpc = X86::VPCMPUWZ128rri_alt; break;
case X86::VPCMPUWZ128rrik: NewOpc = X86::VPCMPUWZ128rrik_alt; break;
case X86::VPCMPUWZ256rmi: NewOpc = X86::VPCMPUWZ256rmi_alt; break;
case X86::VPCMPUWZ256rmik: NewOpc = X86::VPCMPUWZ256rmik_alt; break;
case X86::VPCMPUWZ256rri: NewOpc = X86::VPCMPUWZ256rri_alt; break;
case X86::VPCMPUWZ256rrik: NewOpc = X86::VPCMPUWZ256rrik_alt; break;
case X86::VPCMPUWZrmi: NewOpc = X86::VPCMPUWZrmi_alt; break;
case X86::VPCMPUWZrmik: NewOpc = X86::VPCMPUWZrmik_alt; break;
case X86::VPCMPUWZrri: NewOpc = X86::VPCMPUWZrri_alt; break;
case X86::VPCMPUWZrrik: NewOpc = X86::VPCMPUWZrrik_alt; break;
case X86::VPCMPWZ128rmi: NewOpc = X86::VPCMPWZ128rmi_alt; break;
case X86::VPCMPWZ128rmik: NewOpc = X86::VPCMPWZ128rmik_alt; break;
case X86::VPCMPWZ128rri: NewOpc = X86::VPCMPWZ128rri_alt; break;
case X86::VPCMPWZ128rrik: NewOpc = X86::VPCMPWZ128rrik_alt; break;
case X86::VPCMPWZ256rmi: NewOpc = X86::VPCMPWZ256rmi_alt; break;
case X86::VPCMPWZ256rmik: NewOpc = X86::VPCMPWZ256rmik_alt; break;
case X86::VPCMPWZ256rri: NewOpc = X86::VPCMPWZ256rri_alt; break;
case X86::VPCMPWZ256rrik: NewOpc = X86::VPCMPWZ256rrik_alt; break;
case X86::VPCMPWZrmi: NewOpc = X86::VPCMPWZrmi_alt; break;
case X86::VPCMPWZrmik: NewOpc = X86::VPCMPWZrmik_alt; break;
case X86::VPCMPWZrri: NewOpc = X86::VPCMPWZrri_alt; break;
case X86::VPCMPWZrrik: NewOpc = X86::VPCMPWZrrik_alt; break;
}
// Switch opcode to the one that doesn't get special printing.
mcInst.setOpcode(NewOpc);
}
}
switch (type) {
case TYPE_XMM32:
case TYPE_XMM64:
case TYPE_XMM128:
mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
return;
case TYPE_XMM256:
mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
return;
case TYPE_XMM512:
mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
return;
case TYPE_BNDR:
mcInst.addOperand(MCOperand::createReg(X86::BND0 + (immediate >> 4)));
case TYPE_REL8:
isBranch = true;
pcrel = insn.startLocation + insn.immediateOffset + insn.immediateSize;
if (immediate & 0x80)
immediate |= ~(0xffull);
break;
case TYPE_REL16:
isBranch = true;
pcrel = insn.startLocation + insn.immediateOffset + insn.immediateSize;
if (immediate & 0x8000)
immediate |= ~(0xffffull);
break;
case TYPE_REL32:
case TYPE_REL64:
isBranch = true;
pcrel = insn.startLocation + insn.immediateOffset + insn.immediateSize;
if(immediate & 0x80000000)
immediate |= ~(0xffffffffull);
break;
default:
// operand is 64 bits wide. Do nothing.
break;
}
if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation,
insn.immediateOffset, insn.immediateSize,
mcInst, Dis))
mcInst.addOperand(MCOperand::createImm(immediate));
if (type == TYPE_MOFFS8 || type == TYPE_MOFFS16 ||
type == TYPE_MOFFS32 || type == TYPE_MOFFS64) {
MCOperand segmentReg;
segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
mcInst.addOperand(segmentReg);
}
}
/// translateRMRegister - Translates a register stored in the R/M field of the
/// ModR/M byte to its LLVM equivalent and appends it to an MCInst.
/// @param mcInst - The MCInst to append to.
/// @param insn - The internal instruction to extract the R/M field
/// from.
/// @return - 0 on success; -1 otherwise
static bool translateRMRegister(MCInst &mcInst,
InternalInstruction &insn) {
if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
debug("A R/M register operand may not have a SIB byte");
return true;
}
switch (insn.eaBase) {
default:
debug("Unexpected EA base register");
return true;
case EA_BASE_NONE:
debug("EA_BASE_NONE for ModR/M base");
return true;
#define ENTRY(x) case EA_BASE_##x:
ALL_EA_BASES
#undef ENTRY
debug("A R/M register operand may not have a base; "
"the operand must be a register.");
return true;
#define ENTRY(x) \
case EA_REG_##x: \
mcInst.addOperand(MCOperand::createReg(X86::x)); break;
ALL_REGS
#undef ENTRY
}
return false;
}
/// translateRMMemory - Translates a memory operand stored in the Mod and R/M
/// fields of an internal instruction (and possibly its SIB byte) to a memory
/// operand in LLVM's format, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param insn - The instruction to extract Mod, R/M, and SIB fields
/// from.
/// @return - 0 on success; nonzero otherwise
static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
const MCDisassembler *Dis) {
// Addresses in an MCInst are represented as five operands:
// 1. basereg (register) The R/M base, or (if there is a SIB) the
// SIB base
// 2. scaleamount (immediate) 1, or (if there is a SIB) the specified
// scale amount
// 3. indexreg (register) x86_registerNONE, or (if there is a SIB)
// the index (which is multiplied by the
// scale amount)
// 4. displacement (immediate) 0, or the displacement if there is one
// 5. segmentreg (register) x86_registerNONE for now, but could be set
// if we have segment overrides
MCOperand baseReg;
MCOperand scaleAmount;
MCOperand indexReg;
MCOperand displacement;
MCOperand segmentReg;
uint64_t pcrel = 0;
if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
if (insn.sibBase != SIB_BASE_NONE) {
switch (insn.sibBase) {
default:
debug("Unexpected sibBase");
return true;
#define ENTRY(x) \
case SIB_BASE_##x: \
baseReg = MCOperand::createReg(X86::x); break;
ALL_SIB_BASES
#undef ENTRY
}
} else {
baseReg = MCOperand::createReg(0);
}
// Check whether we are handling VSIB addressing mode for GATHER.
// If sibIndex was set to SIB_INDEX_NONE, index offset is 4 and
// we should use SIB_INDEX_XMM4|YMM4 for VSIB.
// I don't see a way to get the correct IndexReg in readSIB:
// We can tell whether it is VSIB or SIB after instruction ID is decoded,
// but instruction ID may not be decoded yet when calling readSIB.
uint32_t Opcode = mcInst.getOpcode();
bool IndexIs128 = (Opcode == X86::VGATHERDPDrm ||
Opcode == X86::VGATHERDPDYrm ||
Opcode == X86::VGATHERQPDrm ||
Opcode == X86::VGATHERDPSrm ||
Opcode == X86::VGATHERQPSrm ||
Opcode == X86::VPGATHERDQrm ||
Opcode == X86::VPGATHERDQYrm ||
Opcode == X86::VPGATHERQQrm ||
Opcode == X86::VPGATHERDDrm ||
Opcode == X86::VPGATHERQDrm);
bool IndexIs256 = (Opcode == X86::VGATHERQPDYrm ||
Opcode == X86::VGATHERDPSYrm ||
Opcode == X86::VGATHERQPSYrm ||
Opcode == X86::VGATHERDPDZrm ||
Opcode == X86::VPGATHERDQZrm ||
Opcode == X86::VPGATHERQQYrm ||
Opcode == X86::VPGATHERDDYrm ||
Opcode == X86::VPGATHERQDYrm);
bool IndexIs512 = (Opcode == X86::VGATHERQPDZrm ||
Opcode == X86::VGATHERDPSZrm ||
Opcode == X86::VGATHERQPSZrm ||
Opcode == X86::VPGATHERQQZrm ||
Opcode == X86::VPGATHERDDZrm ||
Opcode == X86::VPGATHERQDZrm);
if (IndexIs128 || IndexIs256 || IndexIs512) {
unsigned IndexOffset = insn.sibIndex -
(insn.addressSize == 8 ? SIB_INDEX_RAX:SIB_INDEX_EAX);
SIBIndex IndexBase = IndexIs512 ? SIB_INDEX_ZMM0 :
IndexIs256 ? SIB_INDEX_YMM0 : SIB_INDEX_XMM0;
insn.sibIndex = (SIBIndex)(IndexBase +
(insn.sibIndex == SIB_INDEX_NONE ? 4 : IndexOffset));
}
if (insn.sibIndex != SIB_INDEX_NONE) {
switch (insn.sibIndex) {
default:
debug("Unexpected sibIndex");
return true;
#define ENTRY(x) \
case SIB_INDEX_##x: \
indexReg = MCOperand::createReg(X86::x); break;
EA_BASES_32BIT
EA_BASES_64BIT
REGS_XMM
REGS_YMM
REGS_ZMM
#undef ENTRY
}
} else {
indexReg = MCOperand::createReg(0);
}
scaleAmount = MCOperand::createImm(insn.sibScale);
} else {
switch (insn.eaBase) {
case EA_BASE_NONE:
if (insn.eaDisplacement == EA_DISP_NONE) {
debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
return true;
}
if (insn.mode == MODE_64BIT){
pcrel = insn.startLocation +
insn.displacementOffset + insn.displacementSize;
tryAddingPcLoadReferenceComment(insn.startLocation +
insn.displacementOffset,
insn.displacement + pcrel, Dis);
baseReg = MCOperand::createReg(X86::RIP); // Section 2.2.1.6
}
else
baseReg = MCOperand::createReg(0);
indexReg = MCOperand::createReg(0);
break;
case EA_BASE_BX_SI:
baseReg = MCOperand::createReg(X86::BX);
indexReg = MCOperand::createReg(X86::SI);
break;
case EA_BASE_BX_DI:
baseReg = MCOperand::createReg(X86::BX);
indexReg = MCOperand::createReg(X86::DI);
break;
case EA_BASE_BP_SI:
baseReg = MCOperand::createReg(X86::BP);
indexReg = MCOperand::createReg(X86::SI);
break;
case EA_BASE_BP_DI:
baseReg = MCOperand::createReg(X86::BP);
indexReg = MCOperand::createReg(X86::DI);
break;
default:
indexReg = MCOperand::createReg(0);
switch (insn.eaBase) {
default:
debug("Unexpected eaBase");
return true;
// Here, we will use the fill-ins defined above. However,
// BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
// sib and sib64 were handled in the top-level if, so they're only
// placeholders to keep the compiler happy.
#define ENTRY(x) \
case EA_BASE_##x: \
baseReg = MCOperand::createReg(X86::x); break;
ALL_EA_BASES
#undef ENTRY
#define ENTRY(x) case EA_REG_##x:
ALL_REGS
#undef ENTRY
debug("A R/M memory operand may not be a register; "
"the base field must be a base.");
return true;
}
}
scaleAmount = MCOperand::createImm(1);
}
displacement = MCOperand::createImm(insn.displacement);
segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
mcInst.addOperand(baseReg);
mcInst.addOperand(scaleAmount);
mcInst.addOperand(indexReg);
if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false,
insn.startLocation, insn.displacementOffset,
insn.displacementSize, mcInst, Dis))
mcInst.addOperand(displacement);
mcInst.addOperand(segmentReg);
return false;
}
/// translateRM - Translates an operand stored in the R/M (and possibly SIB)
/// byte of an instruction to LLVM form, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param operand - The operand, as stored in the descriptor table.
/// @param insn - The instruction to extract Mod, R/M, and SIB fields
/// from.
/// @return - 0 on success; nonzero otherwise
static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
InternalInstruction &insn, const MCDisassembler *Dis) {
switch (operand.type) {
default:
debug("Unexpected type for a R/M operand");
return true;
case TYPE_R8:
case TYPE_R16:
case TYPE_R32:
case TYPE_R64:
case TYPE_Rv:
case TYPE_MM64:
case TYPE_XMM32:
case TYPE_XMM64:
case TYPE_XMM128:
case TYPE_XMM256:
case TYPE_XMM512:
case TYPE_VK1:
case TYPE_VK2:
case TYPE_VK4:
case TYPE_VK8:
case TYPE_VK16:
case TYPE_VK32:
case TYPE_VK64:
case TYPE_DEBUGREG:
case TYPE_CONTROLREG:
case TYPE_BNDR:
return translateRMRegister(mcInst, insn);
case TYPE_M:
case TYPE_M8:
case TYPE_M16:
case TYPE_M32:
case TYPE_M64:
case TYPE_M128:
case TYPE_M256:
case TYPE_M512:
case TYPE_Mv:
case TYPE_M32FP:
case TYPE_M64FP:
case TYPE_M80FP:
case TYPE_M1616:
case TYPE_M1632:
case TYPE_M1664:
case TYPE_LEA:
return translateRMMemory(mcInst, insn, Dis);
}
}
/// translateFPRegister - Translates a stack position on the FPU stack to its
/// LLVM form, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param stackPos - The stack position to translate.
static void translateFPRegister(MCInst &mcInst,
uint8_t stackPos) {
mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
}
/// translateMaskRegister - Translates a 3-bit mask register number to
/// LLVM form, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param maskRegNum - Number of mask register from 0 to 7.
/// @return - false on success; true otherwise.
static bool translateMaskRegister(MCInst &mcInst,
uint8_t maskRegNum) {
if (maskRegNum >= 8) {
debug("Invalid mask register number");
return true;
}
mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
return false;
}
/// translateOperand - Translates an operand stored in an internal instruction
/// to LLVM's format and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param operand - The operand, as stored in the descriptor table.
/// @param insn - The internal instruction.
/// @return - false on success; true otherwise.
static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
InternalInstruction &insn,
const MCDisassembler *Dis) {
switch (operand.encoding) {
default:
debug("Unhandled operand encoding during translation");
return true;
case ENCODING_REG:
translateRegister(mcInst, insn.reg);
return false;
case ENCODING_WRITEMASK:
return translateMaskRegister(mcInst, insn.writemask);
CASE_ENCODING_RM:
return translateRM(mcInst, operand, insn, Dis);
case ENCODING_IB:
case ENCODING_IW:
case ENCODING_ID:
case ENCODING_IO:
case ENCODING_Iv:
case ENCODING_Ia:
translateImmediate(mcInst,
insn.immediates[insn.numImmediatesTranslated++],
operand,
insn,
Dis);
return false;
case ENCODING_SI:
return translateSrcIndex(mcInst, insn);
case ENCODING_DI:
return translateDstIndex(mcInst, insn);
case ENCODING_RB:
case ENCODING_RW:
case ENCODING_RD:
case ENCODING_RO:
case ENCODING_Rv:
translateRegister(mcInst, insn.opcodeRegister);
return false;
case ENCODING_FP:
translateFPRegister(mcInst, insn.modRM & 7);
return false;
case ENCODING_VVVV:
translateRegister(mcInst, insn.vvvv);
return false;
case ENCODING_DUP:
return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
insn, Dis);
}
}
/// translateInstruction - Translates an internal instruction and all its
/// operands to an MCInst.
///
/// @param mcInst - The MCInst to populate with the instruction's data.
/// @param insn - The internal instruction.
/// @return - false on success; true otherwise.
static bool translateInstruction(MCInst &mcInst,
InternalInstruction &insn,
const MCDisassembler *Dis) {
if (!insn.spec) {
debug("Instruction has no specification");
return true;
}
mcInst.clear();
mcInst.setOpcode(insn.instructionID);
// If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
// prefix bytes should be disassembled as xrelease and xacquire then set the
// opcode to those instead of the rep and repne opcodes.
if (insn.xAcquireRelease) {
if(mcInst.getOpcode() == X86::REP_PREFIX)
mcInst.setOpcode(X86::XRELEASE_PREFIX);
else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
mcInst.setOpcode(X86::XACQUIRE_PREFIX);
}
insn.numImmediatesTranslated = 0;
for (const auto &Op : insn.operands) {
if (Op.encoding != ENCODING_NONE) {
if (translateOperand(mcInst, Op, insn, Dis)) {
return true;
}
}
}
return false;
}
static MCDisassembler *createX86Disassembler(const Target &T,
const MCSubtargetInfo &STI,
MCContext &Ctx) {
std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
return new X86GenericDisassembler(STI, Ctx, std::move(MII));
}
extern "C" void LLVMInitializeX86Disassembler() {
// Register the disassembler.
TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(),
createX86Disassembler);
TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(),
createX86Disassembler);
}