1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 10:42:39 +01:00
llvm-mirror/lib/Analysis/DevelopmentModeInlineAdvisor.cpp

538 lines
20 KiB
C++
Raw Normal View History

//===- DevelopmentModeInlineAdvisor.cpp - runtime-loadable model runner --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a model runner using Tensorflow C APIs, allowing the
// loading of a model from a command line option.
//
//===----------------------------------------------------------------------===//
#include "llvm/Config/config.h"
#if defined(LLVM_HAVE_TF_API)
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/InlineSizeEstimatorAnalysis.h"
#include "llvm/Analysis/MLInlineAdvisor.h"
#include "llvm/Analysis/Utils/TFUtils.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ManagedStatic.h"
#include <vector>
using namespace llvm;
static cl::opt<std::string> TrainingLog(
"training-log", cl::Hidden,
cl::desc("Path where the development - mode inlining log is saved."));
static cl::opt<std::string> TFModelUnderTrainingPath(
"ml-inliner-model-under-training", cl::Hidden,
cl::desc("Path to SavedModel from the previous training iteration."));
static cl::opt<std::string> TFFeedPrefix("ml-inliner-trained-model-feed-prefix",
cl::Hidden, cl::init("action_"),
cl::desc("Prefix for feature names."));
static cl::opt<std::string> TFDecisionName(
"ml-inliner-trained-model-decision-name", cl::Hidden,
cl::init("StatefulPartitionedCall"),
cl::desc("Name of the graph operation representing the decision."));
namespace {
/// An InlineEvent, used by TrainingLogger.
struct InlineEvent {
/// What the default policy's decision would have been.
bool DefaultDecision = false;
/// What we advised. When training off the default policy, this is the same as
/// DefaultDecision.
bool AdvisedDecision = false;
/// What actually happened. This would be 'false' in the case of an inline
/// error, even if AdvisedDecision were true, otherwise it agrees with
/// AdvisedDecision.
bool Effect = false;
/// What the change in size was: size_after - size_before
int64_t Reward = 0;
};
/// Collect data we may use for training a model, and write it as a textual
/// Tensorflow SequenceExample
/// (https://www.tensorflow.org/api_docs/python/tf/train/SequenceExample)
/// protobuf (https://developers.google.com/protocol-buffers).
/// Because this is a protobuf, we cannot just stream the events as they come.
/// Internally, TrainingLogger stores data in column-major format, because that
/// lines up with how TF SequenceExample represents it.
class TrainingLogger final {
public:
TrainingLogger();
/// Log one inlining event.
void logInlineEvent(const InlineEvent &Event,
const MLModelRunner &ModelRunner);
/// Print the stored tensors.
void print(raw_fd_ostream &OutFile);
private:
/// Write the values of one tensor as a list.
template <typename T>
void writeTensorValues(raw_fd_ostream &OutFile, const char *TensorData,
size_t ElemCount) const {
OutFile << "[";
const T *TypedData = reinterpret_cast<const T *>(TensorData);
for (size_t I = 0; I < ElemCount; ++I) {
if (I > 0)
OutFile << ", ";
OutFile << TypedData[I];
}
OutFile << "]";
}
/// Write a list of tensors as a sequence of TensorFlow FeatureList protobufs.
/// The tensors are assumed to be stored contiguously, in row-major format,
/// in the TensorData buffer. Each tensor has the shape given by Spec. The
/// feature name in the output is either the provided LoggingName, if
/// specified, otherwise it's the name of the tensor (as given by Spec).
template <typename T>
void
writeTensorsAsFeatureLists(raw_fd_ostream &OutFile, const TensorSpec &Spec,
const T *TensorData, size_t TensorCount,
Optional<StringRef> LoggingName = None) const {
writeRawTensorsAsFeatureLists(OutFile, Spec,
reinterpret_cast<const char *>(TensorData),
TensorCount, LoggingName);
}
/// Untyped implementation of the API above.
void
writeRawTensorsAsFeatureLists(raw_fd_ostream &OutFile, const TensorSpec &Spec,
const char *TensorData, size_t TensorCount,
Optional<StringRef> LoggingName = None) const {
const char *FieldName = "<invalid>";
std::function<void(const char *)> ValueWriter;
// The 'Feature' protobuf only has 3 possible fields: float_list,
// int64_list, or bytes_list, so we capture int32 values as int64. We don't
// support any other types.
if (Spec.isElementType<int64_t>()) {
FieldName = "int64_list";
ValueWriter = [&](const char *Data) {
writeTensorValues<int64_t>(OutFile, Data, Spec.getElementCount());
};
} else if (Spec.isElementType<int32_t>()) {
FieldName = "int64_list";
ValueWriter = [&](const char *Data) {
writeTensorValues<int32_t>(OutFile, Data, Spec.getElementCount());
};
} else if (Spec.isElementType<float>()) {
FieldName = "float_list";
ValueWriter = [&](const char *Data) {
writeTensorValues<float>(OutFile, Data, Spec.getElementCount());
};
} else
llvm_unreachable("Unsupported tensor type.");
OutFile << " feature_list: {\n";
OutFile << " key: "
<< "\"" << (LoggingName ? *LoggingName : Spec.name()) << "\" ";
OutFile << "value: {\n";
size_t TensorByteSize = Spec.getElementCount() * Spec.getElementByteSize();
for (const char *P = TensorData,
*E = TensorData + TensorByteSize * TensorCount;
P < E; P += TensorByteSize) {
OutFile << " feature: { " << FieldName << ": { value: ";
ValueWriter(P);
OutFile << " } }\n";
}
OutFile << " }\n";
OutFile << " }\n";
}
std::vector<InlineFeatures> Features;
std::vector<int64_t> DefaultDecisions;
std::vector<int64_t> Decisions;
std::vector<bool> Effects;
std::vector<int64_t> Rewards;
};
/// An extension of the MLInlineAdvisor for the 'development' mode, targeting
/// the offline training scenario. Note that training happens outside of the
/// compiler, this facility is concerned with producing training data ("logs").
/// This InlineAdvisor can operate in the following modes:
///
/// 1) collect logs for the default policy. This is useful for bootstrapping
/// training, which will be considerably faster by starting from a reasonable
/// policy.
///
/// 2) collect logs for the ML policy, using a model from a previous
/// training. Potentially, that model uses internally some small random
/// perturbation of its weights, to induce exploration (setting this up is the
/// responsibility of the training algorithm). The logs would then be used to
/// retrain and improve on this model.
///
/// 3) use the provided model, with no logging. This is useful for end to end
/// validation - the model, in this case, is a release candidate and shouldn't
/// have random perturbations. It is a convenience feature: rather than needing
/// to take the release candidate model and compile it in 'release' mode,
/// validate it, then potentially discard it, it's easier to just pass the model
/// to the compiler, albeit compilation would be slower, as a one-off. Once the
/// model behaves satisfactorily, it can be compiled AOT, for efficiency, in
/// release mode. The expectation is that a well-trained model provides a good
/// policy over a sufficiently diverse codebase, over many changes (i.e.
/// training happens seldom).
class DevelopmentModeMLInlineAdvisor : public MLInlineAdvisor {
public:
DevelopmentModeMLInlineAdvisor(
Module &M, ModuleAnalysisManager &MAM,
std::unique_ptr<MLModelRunner> ModelRunner,
std::function<bool(CallBase &)> GetDefaultAdvice, bool IsDoingInference);
size_t getTotalSizeEstimate();
virtual ~DevelopmentModeMLInlineAdvisor();
void updateNativeSizeEstimate(int64_t Change) { CurrentNativeSize += Change; }
void resetNativeSize(Function *F) {
FAM.invalidate<InlineSizeEstimatorAnalysis>(*F);
}
std::unique_ptr<MLInlineAdvice>
getMandatoryAdvice(CallBase &CB, OptimizationRemarkEmitter &ORE) override;
std::unique_ptr<MLInlineAdvice>
getAdviceFromModel(CallBase &CB, OptimizationRemarkEmitter &ORE) override;
size_t getNativeSizeEstimate(const Function &F) const;
private:
bool isLogging() const { return !TrainingLog.empty(); }
std::function<bool(CallBase &)> GetDefaultAdvice;
TrainingLogger Logger;
const bool IsDoingInference;
const int32_t InitialNativeSize;
int32_t CurrentNativeSize = 0;
};
/// A variant of MLInlineAdvice that tracks all non-trivial inlining
/// decisions, for training/logging.
class LoggingMLInlineAdvice : public MLInlineAdvice {
public:
LoggingMLInlineAdvice(DevelopmentModeMLInlineAdvisor *Advisor, CallBase &CB,
OptimizationRemarkEmitter &ORE, bool Recommendation,
TrainingLogger &Logger, size_t CallerSizeEstimateBefore,
size_t CalleeSizeEstimateBefore, bool DefaultDecision,
bool Mandatory = false)
: MLInlineAdvice(Advisor, CB, ORE, Recommendation), Logger(Logger),
CallerSizeEstimateBefore(CallerSizeEstimateBefore),
CalleeSizeEstimateBefore(CalleeSizeEstimateBefore),
DefaultDecision(DefaultDecision), Mandatory(Mandatory) {}
virtual ~LoggingMLInlineAdvice() = default;
private:
DevelopmentModeMLInlineAdvisor *getAdvisor() const {
return static_cast<DevelopmentModeMLInlineAdvisor *>(Advisor);
}
void recordInliningImpl() override {
MLInlineAdvice::recordInliningImpl();
getAdvisor()->resetNativeSize(Caller);
int Reward = std::numeric_limits<int>::max();
if (!getAdvisor()->isForcedToStop()) {
int NativeSizeAfter = getAdvisor()->getNativeSizeEstimate(*Caller) +
CalleeSizeEstimateBefore;
Reward = NativeSizeAfter -
(CallerSizeEstimateBefore + CalleeSizeEstimateBefore);
getAdvisor()->updateNativeSizeEstimate(Reward);
}
log(Reward, /*Success=*/true);
}
void recordInliningWithCalleeDeletedImpl() override {
MLInlineAdvice::recordInliningWithCalleeDeletedImpl();
getAdvisor()->resetNativeSize(Caller);
if (!getAdvisor()->isForcedToStop()) {
int NativeSizeAfter = getAdvisor()->getNativeSizeEstimate(*Caller);
int Reward = NativeSizeAfter -
(CallerSizeEstimateBefore + CalleeSizeEstimateBefore);
getAdvisor()->updateNativeSizeEstimate(Reward);
log(Reward, /*Success=*/true);
}
}
void recordUnsuccessfulInliningImpl(const InlineResult &Result) override {
MLInlineAdvice::recordUnsuccessfulInliningImpl(Result);
log(NoReward, /*Success=*/false);
}
void recordUnattemptedInliningImpl() override {
MLInlineAdvice::recordUnattemptedInliningImpl();
log(NoReward, /*Success=*/false);
}
void log(int64_t Reward, bool Success) {
if (Mandatory)
return;
InlineEvent Event;
Event.AdvisedDecision = isInliningRecommended();
Event.DefaultDecision = DefaultDecision;
Event.Effect = Success;
Event.Reward = Reward;
Logger.logInlineEvent(Event, getAdvisor()->getModelRunner());
}
static const int64_t NoReward = 0;
TrainingLogger &Logger;
const size_t CallerSizeEstimateBefore;
const size_t CalleeSizeEstimateBefore;
const bool DefaultDecision;
const bool Mandatory;
};
/// A pseudo model runner. We use it to store feature values when collecting
/// logs for the default policy, but never ask it to 'run'.
class NoInferenceModelRunner : public MLModelRunner {
public:
NoInferenceModelRunner(LLVMContext &Ctx)
: MLModelRunner(Ctx), Features(NumberOfFeatures) {}
void setFeature(FeatureIndex Index, int64_t Value) override {
Features[static_cast<int>(Index)] = Value;
}
int64_t getFeature(int Index) const override { return Features[Index]; }
bool run() override {
llvm_unreachable("We shouldn't call run on this model runner.");
}
private:
InlineFeatures Features;
};
/// ModelUnderTrainingRunner - training mode implementation. It uses TF C APIs
/// to dynamically load and evaluate a TF SavedModel
/// (https://www.tensorflow.org/guide/saved_model). Runtime performance is
/// sacrificed for ease of use while training.
class ModelUnderTrainingRunner final : public MLModelRunner {
public:
ModelUnderTrainingRunner(LLVMContext &Ctx, const std::string &ModelPath);
bool run() override;
// Disallows copy and assign.
ModelUnderTrainingRunner(const ModelUnderTrainingRunner &) = delete;
ModelUnderTrainingRunner &
operator=(const ModelUnderTrainingRunner &) = delete;
void setFeature(FeatureIndex Index, int64_t Value) override;
int64_t getFeature(int Index) const override;
bool isValid() const { return !!Evaluator; }
private:
std::unique_ptr<TFModelEvaluator> Evaluator;
// The training framework needs some additional features.
const std::vector<TensorSpec> TrainingOnlyFeatures{
TensorSpec::createSpec<int64_t>(TFFeedPrefix + "inlining_default", {1}),
TensorSpec::createSpec<float>(TFFeedPrefix + "discount", {1}),
TensorSpec::createSpec<float>(TFFeedPrefix + "reward", {1}),
TensorSpec::createSpec<int32_t>(TFFeedPrefix + "step_type", {1})};
};
} // namespace
TrainingLogger::TrainingLogger() {
for (size_t I = 0; I < NumberOfFeatures; ++I) {
Features.push_back(InlineFeatures());
}
}
/// Log one inlining event.
void TrainingLogger::logInlineEvent(const InlineEvent &Event,
const MLModelRunner &ModelRunner) {
for (size_t I = 0; I < NumberOfFeatures; ++I) {
Features[I].push_back(ModelRunner.getFeature(I));
}
Decisions.push_back(Event.AdvisedDecision);
Effects.push_back(Event.Effect);
Rewards.push_back(Event.Reward);
DefaultDecisions.push_back(Event.DefaultDecision);
}
void TrainingLogger::print(raw_fd_ostream &OutFile) {
size_t NumberOfRecords = Decisions.size();
if (NumberOfRecords == 0)
return;
OutFile << "feature_lists: {\n";
for (size_t I = 0; I < Features.size(); ++I)
writeTensorsAsFeatureLists(
OutFile, TensorSpec::createSpec<int64_t>(FeatureNameMap.at(I), {1}),
Features[I].data(), NumberOfRecords);
writeTensorsAsFeatureLists(
OutFile, TensorSpec::createSpec<int64_t>(DefaultDecisionName, {1}),
DefaultDecisions.data(), NumberOfRecords);
writeTensorsAsFeatureLists(OutFile,
TensorSpec::createSpec<int64_t>(DecisionName, {1}),
Decisions.data(), NumberOfRecords);
writeTensorsAsFeatureLists(OutFile,
TensorSpec::createSpec<int64_t>(RewardName, {1}),
Rewards.data(), NumberOfRecords);
OutFile << "}\n";
}
DevelopmentModeMLInlineAdvisor::DevelopmentModeMLInlineAdvisor(
Module &M, ModuleAnalysisManager &MAM,
std::unique_ptr<MLModelRunner> ModelRunner,
std::function<bool(CallBase &)> GetDefaultAdvice, bool IsDoingInference)
: MLInlineAdvisor(M, MAM, std::move(ModelRunner)),
GetDefaultAdvice(GetDefaultAdvice), IsDoingInference(IsDoingInference),
InitialNativeSize(isLogging() ? getTotalSizeEstimate() : 0),
CurrentNativeSize(InitialNativeSize) {
// We cannot have the case of neither inference nor logging.
assert(IsDoingInference || isLogging());
}
DevelopmentModeMLInlineAdvisor::~DevelopmentModeMLInlineAdvisor() {
if (TrainingLog.empty())
return;
std::error_code ErrorCode;
raw_fd_ostream OutFile(TrainingLog, ErrorCode);
Logger.print(OutFile);
}
size_t
DevelopmentModeMLInlineAdvisor::getNativeSizeEstimate(const Function &F) const {
auto &R =
FAM.getResult<InlineSizeEstimatorAnalysis>(const_cast<Function &>(F));
if (!R) {
F.getParent()->getContext().emitError(
"Native size estimator is not present.");
return 0;
}
return *R;
}
std::unique_ptr<MLInlineAdvice>
DevelopmentModeMLInlineAdvisor::getMandatoryAdvice(
CallBase &CB, OptimizationRemarkEmitter &ORE) {
if (!isLogging())
return MLInlineAdvisor::getMandatoryAdvice(CB, ORE);
return std::make_unique<LoggingMLInlineAdvice>(
/*Advisor=*/this,
/*CB=*/CB, /*ORE=*/ORE, /*Recommendation=*/true, /*Logger=*/Logger,
/*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()),
/*CalleeSizeEstimateBefore=*/
getNativeSizeEstimate(*CB.getCalledFunction()),
/*DefaultDecision=*/true, /*Mandatory*/ true);
}
std::unique_ptr<MLInlineAdvice>
DevelopmentModeMLInlineAdvisor::getAdviceFromModel(
CallBase &CB, OptimizationRemarkEmitter &ORE) {
if (IsDoingInference && !isLogging())
return MLInlineAdvisor::getAdviceFromModel(CB, ORE);
bool DefaultAdvice = GetDefaultAdvice(CB);
auto Recommendation = IsDoingInference ? ModelRunner->run() : DefaultAdvice;
return std::make_unique<LoggingMLInlineAdvice>(
/*Advisor=*/this,
/*CB=*/CB, /*ORE=*/ORE, /*Recommendation=*/Recommendation,
/*Logger=*/Logger,
/*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()),
/*CalleeSizeEstimateBefore=*/
getNativeSizeEstimate(*CB.getCalledFunction()),
/*DefaultDecision=*/DefaultAdvice);
}
size_t DevelopmentModeMLInlineAdvisor::getTotalSizeEstimate() {
size_t Ret = 0;
for (auto &F : M) {
if (F.isDeclaration())
continue;
if (isFunctionDeleted(&F))
continue;
Ret += getNativeSizeEstimate(F);
}
return Ret;
}
ModelUnderTrainingRunner::ModelUnderTrainingRunner(LLVMContext &Ctx,
const std::string &ModelPath)
: MLModelRunner(Ctx) {
std::vector<TensorSpec> InputSpecs;
std::vector<TensorSpec> OutputSpecs;
for (size_t I = 0; I < NumberOfFeatures; ++I)
InputSpecs.push_back(
TensorSpec::createSpec<int64_t>(TFFeedPrefix + FeatureNameMap[I], {1}));
InputSpecs.insert(InputSpecs.end(), TrainingOnlyFeatures.begin(),
TrainingOnlyFeatures.end());
OutputSpecs.push_back(TensorSpec::createSpec<int64_t>(TFDecisionName, {1}));
Evaluator =
std::make_unique<TFModelEvaluator>(ModelPath, InputSpecs, OutputSpecs);
if (!Evaluator || !Evaluator->isValid()) {
Ctx.emitError("Failed to create inliner saved model evaluator");
Evaluator.reset();
return;
}
}
bool ModelUnderTrainingRunner::run() {
auto ER = Evaluator->evaluate();
if (!ER.hasValue()) {
Ctx.emitError("Error evaluating model.");
return false;
}
int64_t Decision = *ER->getTensorValue<int64_t>(0);
return static_cast<bool>(Decision);
}
int64_t ModelUnderTrainingRunner::getFeature(int Index) const {
return *Evaluator->getInput<int64_t>(Index);
}
void ModelUnderTrainingRunner::setFeature(FeatureIndex Index, int64_t Value) {
size_t NumericIndex = static_cast<size_t>(Index);
*(Evaluator->getInput<int64_t>(NumericIndex)) = Value;
}
std::unique_ptr<InlineAdvisor> llvm::getDevelopmentModeAdvisor(
Module &M, ModuleAnalysisManager &MAM,
std::function<bool(CallBase &)> GetDefaultAdvice) {
auto &Ctx = M.getContext();
if (TrainingLog.empty() !=
!InlineSizeEstimatorAnalysis::isEvaluatorRequested()) {
Ctx.emitError("For development mode, if training logs are requested, then "
"a size estimator must be available; either that, or neither "
"are specified.");
return nullptr;
}
std::unique_ptr<MLModelRunner> Runner;
bool IsDoingInference = false;
if (TFModelUnderTrainingPath.empty())
Runner.reset(new NoInferenceModelRunner(Ctx));
else {
Runner = std::make_unique<ModelUnderTrainingRunner>(
Ctx, TFModelUnderTrainingPath);
if (!Runner) {
Ctx.emitError("Could not load the policy model from the provided path");
return nullptr;
}
IsDoingInference = true;
}
return std::make_unique<DevelopmentModeMLInlineAdvisor>(
M, MAM, std::move(Runner), GetDefaultAdvice, IsDoingInference);
}
#endif // defined(LLVM_HAVE_TF_API)