1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-25 14:02:52 +02:00
llvm-mirror/include/llvm/Analysis/DemandedBits.h

118 lines
3.3 KiB
C
Raw Normal View History

//===-- llvm/Analysis/DemandedBits.h - Determine demanded bits --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass implements a demanded bits analysis. A demanded bit is one that
// contributes to a result; bits that are not demanded can be either zero or
// one without affecting control or data flow. For example in this sequence:
//
// %1 = add i32 %x, %y
// %2 = trunc i32 %1 to i16
//
// Only the lowest 16 bits of %1 are demanded; the rest are removed by the
// trunc.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_DEMANDED_BITS_H
#define LLVM_ANALYSIS_DEMANDED_BITS_H
#include "llvm/Pass.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/IR/PassManager.h"
namespace llvm {
class FunctionPass;
class Function;
class Instruction;
class DominatorTree;
class AssumptionCache;
class DemandedBits {
public:
DemandedBits(Function &F, AssumptionCache &AC, DominatorTree &DT) :
F(F), AC(AC), DT(DT), Analyzed(false) {}
/// Return the bits demanded from instruction I.
APInt getDemandedBits(Instruction *I);
/// Return true if, during analysis, I could not be reached.
bool isInstructionDead(Instruction *I);
void print(raw_ostream &OS);
private:
Function &F;
AssumptionCache ∾
DominatorTree &DT;
void performAnalysis();
void determineLiveOperandBits(const Instruction *UserI,
const Instruction *I, unsigned OperandNo,
const APInt &AOut, APInt &AB,
APInt &KnownZero, APInt &KnownOne,
APInt &KnownZero2, APInt &KnownOne2);
bool Analyzed;
// The set of visited instructions (non-integer-typed only).
SmallPtrSet<Instruction*, 32> Visited;
DenseMap<Instruction *, APInt> AliveBits;
};
class DemandedBitsWrapperPass : public FunctionPass {
private:
mutable Optional<DemandedBits> DB;
public:
static char ID; // Pass identification, replacement for typeid
DemandedBitsWrapperPass();
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
/// Clean up memory in between runs
void releaseMemory() override;
DemandedBits &getDemandedBits() { return *DB; }
void print(raw_ostream &OS, const Module *M) const override;
};
/// An analysis that produces \c DemandedBits for a function.
class DemandedBitsAnalysis : public AnalysisInfoMixin<DemandedBitsAnalysis> {
friend AnalysisInfoMixin<DemandedBitsAnalysis>;
[PM] Change the static object whose address is used to uniquely identify analyses to have a common type which is enforced rather than using a char object and a `void *` type when used as an identifier. This has a number of advantages. First, it at least helps some of the confusion raised in Justin Lebar's code review of why `void *` was being used everywhere by having a stronger type that connects to documentation about this. However, perhaps more importantly, it addresses a serious issue where the alignment of these pointer-like identifiers was unknown. This made it hard to use them in pointer-like data structures. We were already dodging this in dangerous ways to create the "all analyses" entry. In a subsequent patch I attempted to use these with TinyPtrVector and things fell apart in a very bad way. And it isn't just a compile time or type system issue. Worse than that, the actual alignment of these pointer-like opaque identifiers wasn't guaranteed to be a useful alignment as they were just characters. This change introduces a type to use as the "key" object whose address forms the opaque identifier. This both forces the objects to have proper alignment, and provides type checking that we get it right everywhere. It also makes the types somewhat less mysterious than `void *`. We could go one step further and introduce a truly opaque pointer-like type to return from the `ID()` static function rather than returning `AnalysisKey *`, but that didn't seem to be a clear win so this is just the initial change to get to a reliably typed and aligned object serving is a key for all the analyses. Thanks to Richard Smith and Justin Lebar for helping pick plausible names and avoid making this refactoring many times. =] And thanks to Sean for the super fast review! While here, I've tried to move away from the "PassID" nomenclature entirely as it wasn't really helping and is overloaded with old pass manager constructs. Now we have IDs for analyses, and key objects whose address can be used as IDs. Where possible and clear I've shortened this to just "ID". In a few places I kept "AnalysisID" to make it clear what was being identified. Differential Revision: https://reviews.llvm.org/D27031 llvm-svn: 287783
2016-11-23 18:53:26 +01:00
static AnalysisKey Key;
public:
/// \brief Provide the result typedef for this analysis pass.
typedef DemandedBits Result;
/// \brief Run the analysis pass over a function and produce demanded bits
/// information.
DemandedBits run(Function &F, FunctionAnalysisManager &AM);
};
/// \brief Printer pass for DemandedBits
class DemandedBitsPrinterPass : public PassInfoMixin<DemandedBitsPrinterPass> {
raw_ostream &OS;
public:
explicit DemandedBitsPrinterPass(raw_ostream &OS) : OS(OS) {}
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};
/// Create a demanded bits analysis pass.
FunctionPass *createDemandedBitsWrapperPass();
} // End llvm namespace
#endif