1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00
llvm-mirror/lib/Transforms/Scalar/PiNodeInsertion.cpp

189 lines
7.0 KiB
C++
Raw Normal View History

//===- PiNodeInsertion.cpp - Insert Pi nodes into a program ---------------===//
//
// PiNodeInsertion - This pass inserts single entry Phi nodes into basic blocks
// that are preceeded by a conditional branch, where the branch gives
// information about the operands of the condition. For example, this C code:
// if (x == 0) { ... = x + 4;
// becomes:
// if (x == 0) {
// x2 = phi(x); // Node that can hold data flow information about X
// ... = x2 + 4;
//
// Since the direction of the condition branch gives information about X itself
// (whether or not it is zero), some passes (like value numbering or ABCD) can
// use the inserted Phi/Pi nodes as a place to attach information, in this case
// saying that X has a value of 0 in this scope. The power of this analysis
// information is that "in the scope" translates to "for all uses of x2".
//
// This special form of Phi node is refered to as a Pi node, following the
// terminology defined in the "Array Bounds Checks on Demand" paper.
//
// As a really trivial example of what the Pi nodes are good for, this pass
// replaces values compared for equality with direct constants with the constant
// itself in the branch it's equal to the constant. In the case above, it would
// change the body to be "... = 0 + 4;" Real value numbering can do much more.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Pass.h"
#include "llvm/Function.h"
#include "llvm/BasicBlock.h"
#include "llvm/iTerminators.h"
#include "llvm/iOperators.h"
#include "llvm/iPHINode.h"
#include "llvm/Support/CFG.h"
#include "Support/StatisticReporter.h"
static Statistic<> NumInserted("pinodes\t\t- Number of Pi nodes inserted");
namespace {
struct PiNodeInserter : public FunctionPass {
virtual bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.preservesCFG();
AU.addRequired<DominatorSet>();
}
// insertPiNodeFor - Insert a Pi node for V in the successors of BB if our
// conditions hold. If Rep is not null, fill in a value of 'Rep' instead of
// creating a new Pi node itself because we know that the value is a simple
// constant.
//
bool insertPiNodeFor(Value *V, BasicBlock *BB, Value *Rep = 0);
};
RegisterOpt<PiNodeInserter> X("pinodes", "Pi Node Insertion");
}
Pass *createPiNodeInsertionPass() { return new PiNodeInserter(); }
bool PiNodeInserter::runOnFunction(Function &F) {
bool Changed = false;
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
TerminatorInst *TI = I->getTerminator();
// FIXME: Insert PI nodes for switch statements too
// Look for conditional branch instructions... that branch on a setcc test
if (BranchInst *BI = dyn_cast<BranchInst>(TI))
if (BI->isConditional())
// TODO: we could in theory support logical operations here too...
if (SetCondInst *SCI = dyn_cast<SetCondInst>(BI->getCondition())) {
// Calculate replacement values if this is an obvious constant == or
// != comparison...
Value *TrueRep = 0, *FalseRep = 0;
// Make sure the the constant is the second operand if there is one...
// This fits with our cannonicalization patterns used elsewhere in the
// compiler, without depending on instcombine running before us.
//
if (isa<Constant>(SCI->getOperand(0)) &&
!isa<Constant>(SCI->getOperand(1))) {
SCI->swapOperands();
Changed = true;
}
if (isa<Constant>(SCI->getOperand(1))) {
if (SCI->getOpcode() == Instruction::SetEQ)
TrueRep = SCI->getOperand(1);
else if (SCI->getOpcode() == Instruction::SetNE)
FalseRep = SCI->getOperand(1);
}
BasicBlock *TB = BI->getSuccessor(0); // True block
BasicBlock *FB = BI->getSuccessor(1); // False block
// Insert the Pi nodes for the first operand to the comparison...
Changed |= insertPiNodeFor(SCI->getOperand(0), TB, TrueRep);
Changed |= insertPiNodeFor(SCI->getOperand(0), FB, FalseRep);
// Insert the Pi nodes for the second operand to the comparison...
Changed |= insertPiNodeFor(SCI->getOperand(1), TB);
Changed |= insertPiNodeFor(SCI->getOperand(1), FB);
}
}
return Changed;
}
// alreadyHasPiNodeFor - Return true if there is already a Pi node in BB for V.
static bool alreadyHasPiNodeFor(Value *V, BasicBlock *BB) {
for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I)
if (PHINode *PN = dyn_cast<PHINode>(*I))
if (PN->getParent() == BB)
return true;
return false;
}
// insertPiNodeFor - Insert a Pi node for V in the successors of BB if our
// conditions hold. If Rep is not null, fill in a value of 'Rep' instead of
// creating a new Pi node itself because we know that the value is a simple
// constant.
//
bool PiNodeInserter::insertPiNodeFor(Value *V, BasicBlock *Succ, Value *Rep) {
// Do not insert Pi nodes for constants!
if (isa<Constant>(V)) return false;
// Check to make sure that there is not already a PI node inserted...
if (alreadyHasPiNodeFor(V, Succ) && Rep == 0)
return false;
// Insert Pi nodes only into successors that the conditional branch dominates.
// In this simple case, we know that BB dominates a successor as long there
// are no other incoming edges to the successor.
//
// Check to make sure that the successor only has a single predecessor...
pred_iterator PI = pred_begin(Succ);
BasicBlock *Pred = *PI;
if (++PI != pred_end(Succ)) return false; // Multiple predecessor? Bail...
// It seems to be safe to insert the Pi node. Do so now...
// Create the Pi node...
Value *Pi = Rep;
if (Rep == 0) {
PHINode *Phi = new PHINode(V->getType(), V->getName() + ".pi");
// Insert the Pi node in the successor basic block...
Succ->getInstList().push_front(Phi);
Pi = Phi;
}
// Loop over all of the uses of V, replacing ones that the Pi node
// dominates with references to the Pi node itself.
//
DominatorSet &DS = getAnalysis<DominatorSet>();
for (unsigned i = 0; i < V->use_size(); ) {
if (Instruction *U = dyn_cast<Instruction>(*(V->use_begin()+i)))
if (U->getParent()->getParent() == Succ->getParent() &&
DS.dominates(Succ, U->getParent())) {
// This instruction is dominated by the Pi node, replace reference to V
// with a reference to the Pi node.
//
U->replaceUsesOfWith(V, Pi);
continue; // Do not skip the next use...
}
// This use is not dominated by the Pi node, skip it...
++i;
}
// Set up the incoming value for the Pi node... do this after uses have been
// replaced, because we don't want the Pi node to refer to itself.
//
if (Rep == 0)
cast<PHINode>(Pi)->addIncoming(V, Pred);
++NumInserted;
return true;
}