1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/test/CodeGen/AMDGPU/nested-loop-conditions.ll

267 lines
9.3 KiB
LLVM
Raw Normal View History

; RUN: opt -mtriple=amdgcn-- -S -structurizecfg -si-annotate-control-flow %s | FileCheck -check-prefix=IR %s
; RUN: llc -march=amdgcn -mcpu=hawaii -verify-machineinstrs < %s | FileCheck -check-prefix=GCN %s
; After structurizing, there are 3 levels of loops. The i1 phi
; conditions mutually depend on each other, so it isn't safe to delete
; the condition that appears to have no uses until the loop is
; completely processed.
; IR-LABEL: @reduced_nested_loop_conditions(
; IR: bb5:
; IR-NEXT: %phi.broken = phi i64 [ %3, %bb10 ], [ 0, %bb ]
; IR-NEXT: %tmp6 = phi i32 [ 0, %bb ], [ %tmp11, %bb10 ]
; IR-NEXT: %tmp7 = icmp eq i32 %tmp6, 1
; IR-NEXT: %0 = call { i1, i64 } @llvm.amdgcn.if(i1 %tmp7)
; IR-NEXT: %1 = extractvalue { i1, i64 } %0, 0
; IR-NEXT: %2 = extractvalue { i1, i64 } %0, 1
; IR-NEXT: br i1 %1, label %bb8, label %Flow
; IR: bb8:
; IR-NEXT: br label %bb13
; IR: bb10:
; IR-NEXT: %tmp11 = phi i32 [ %6, %Flow ]
; IR-NEXT: %tmp12 = phi i1 [ %5, %Flow ]
; IR-NEXT: %3 = call i64 @llvm.amdgcn.if.break(i1 %tmp12, i64 %phi.broken)
; IR-NEXT: %4 = call i1 @llvm.amdgcn.loop(i64 %3)
; IR-NEXT: br i1 %4, label %bb23, label %bb5
; IR: Flow:
; IR-NEXT: %5 = phi i1 [ %tmp22, %bb4 ], [ true, %bb5 ]
; IR-NEXT: %6 = phi i32 [ %tmp21, %bb4 ], [ undef, %bb5 ]
; IR-NEXT: call void @llvm.amdgcn.end.cf(i64 %2)
; IR-NEXT: br label %bb10
; IR: bb13:
; IR-NEXT: %tmp14 = phi i1 [ %tmp22, %bb3 ], [ true, %bb8 ]
; IR-NEXT: %tmp15 = bitcast i64 %tmp2 to <2 x i32>
; IR-NEXT: br i1 %tmp14, label %bb16, label %bb20
; IR: bb16:
; IR-NEXT: %tmp17 = extractelement <2 x i32> %tmp15, i64 1
; IR-NEXT: %tmp18 = getelementptr inbounds i32, i32 addrspace(3)* undef, i32 %tmp17
; IR-NEXT: %tmp19 = load volatile i32, i32 addrspace(3)* %tmp18
; IR-NEXT: br label %bb20
; IR: bb20:
; IR-NEXT: %tmp21 = phi i32 [ %tmp19, %bb16 ], [ 0, %bb13 ]
; IR-NEXT: %tmp22 = phi i1 [ false, %bb16 ], [ %tmp14, %bb13 ]
; IR-NEXT: br label %bb9
; IR: bb23:
; IR-NEXT: call void @llvm.amdgcn.end.cf(i64 %3)
; IR-NEXT: ret void
; GCN-LABEL: {{^}}reduced_nested_loop_conditions:
Generalize MergeBlockIntoPredecessor. Replace uses of MergeBasicBlockIntoOnlyPred. Summary: Two utils methods have essentially the same functionality. This is an attempt to merge them into one. 1. lib/Transforms/Utils/Local.cpp : MergeBasicBlockIntoOnlyPred 2. lib/Transforms/Utils/BasicBlockUtils.cpp : MergeBlockIntoPredecessor Prior to the patch: 1. MergeBasicBlockIntoOnlyPred Updates either DomTree or DeferredDominance Moves all instructions from Pred to BB, deletes Pred Asserts BB has single predecessor If address was taken, replace the block address with constant 1 (?) 2. MergeBlockIntoPredecessor Updates DomTree, LoopInfo and MemoryDependenceResults Moves all instruction from BB to Pred, deletes BB Returns if doesn't have a single predecessor Returns if BB's address was taken After the patch: Method 2. MergeBlockIntoPredecessor is attempting to become the new default: Updates DomTree or DeferredDominance, and LoopInfo and MemoryDependenceResults Moves all instruction from BB to Pred, deletes BB Returns if doesn't have a single predecessor Returns if BB's address was taken Uses of MergeBasicBlockIntoOnlyPred that need to be replaced: 1. lib/Transforms/Scalar/LoopSimplifyCFG.cpp Updated in this patch. No challenges. 2. lib/CodeGen/CodeGenPrepare.cpp Updated in this patch. i. eliminateFallThrough is straightforward, but I added using a temporary array to avoid the iterator invalidation. ii. eliminateMostlyEmptyBlock(s) methods also now use a temporary array for blocks Some interesting aspects: - Since Pred is not deleted (BB is), the entry block does not need updating. - The entry block was being updated with the deleted block in eliminateMostlyEmptyBlock. Added assert to make obvious that BB=SinglePred. - isMergingEmptyBlockProfitable assumes BB is the one to be deleted. - eliminateMostlyEmptyBlock(BB) does not delete BB on one path, it deletes its unique predecessor instead. - adding some test owner as subscribers for the interesting tests modified: test/CodeGen/X86/avx-cmp.ll test/CodeGen/AMDGPU/nested-loop-conditions.ll test/CodeGen/AMDGPU/si-annotate-cf.ll test/CodeGen/X86/hoist-spill.ll test/CodeGen/X86/2006-11-17-IllegalMove.ll 3. lib/Transforms/Scalar/JumpThreading.cpp Not covered in this patch. It is the only use case using the DeferredDominance. I would defer to Brian Rzycki to make this replacement. Reviewers: chandlerc, spatel, davide, brzycki, bkramer, javed.absar Subscribers: qcolombet, sanjoy, nemanjai, nhaehnle, jlebar, tpr, kbarton, RKSimon, wmi, arsenm, llvm-commits Differential Revision: https://reviews.llvm.org/D48202 llvm-svn: 335183
2018-06-21 00:01:04 +02:00
; GCN: s_cmp_lg_u32 s{{[0-9]+}}, 1
; GCN-NEXT: s_cbranch_scc0
; FIXME: Should fold to unconditional branch?
; GCN: ; implicit-def
Generalize MergeBlockIntoPredecessor. Replace uses of MergeBasicBlockIntoOnlyPred. Summary: Two utils methods have essentially the same functionality. This is an attempt to merge them into one. 1. lib/Transforms/Utils/Local.cpp : MergeBasicBlockIntoOnlyPred 2. lib/Transforms/Utils/BasicBlockUtils.cpp : MergeBlockIntoPredecessor Prior to the patch: 1. MergeBasicBlockIntoOnlyPred Updates either DomTree or DeferredDominance Moves all instructions from Pred to BB, deletes Pred Asserts BB has single predecessor If address was taken, replace the block address with constant 1 (?) 2. MergeBlockIntoPredecessor Updates DomTree, LoopInfo and MemoryDependenceResults Moves all instruction from BB to Pred, deletes BB Returns if doesn't have a single predecessor Returns if BB's address was taken After the patch: Method 2. MergeBlockIntoPredecessor is attempting to become the new default: Updates DomTree or DeferredDominance, and LoopInfo and MemoryDependenceResults Moves all instruction from BB to Pred, deletes BB Returns if doesn't have a single predecessor Returns if BB's address was taken Uses of MergeBasicBlockIntoOnlyPred that need to be replaced: 1. lib/Transforms/Scalar/LoopSimplifyCFG.cpp Updated in this patch. No challenges. 2. lib/CodeGen/CodeGenPrepare.cpp Updated in this patch. i. eliminateFallThrough is straightforward, but I added using a temporary array to avoid the iterator invalidation. ii. eliminateMostlyEmptyBlock(s) methods also now use a temporary array for blocks Some interesting aspects: - Since Pred is not deleted (BB is), the entry block does not need updating. - The entry block was being updated with the deleted block in eliminateMostlyEmptyBlock. Added assert to make obvious that BB=SinglePred. - isMergingEmptyBlockProfitable assumes BB is the one to be deleted. - eliminateMostlyEmptyBlock(BB) does not delete BB on one path, it deletes its unique predecessor instead. - adding some test owner as subscribers for the interesting tests modified: test/CodeGen/X86/avx-cmp.ll test/CodeGen/AMDGPU/nested-loop-conditions.ll test/CodeGen/AMDGPU/si-annotate-cf.ll test/CodeGen/X86/hoist-spill.ll test/CodeGen/X86/2006-11-17-IllegalMove.ll 3. lib/Transforms/Scalar/JumpThreading.cpp Not covered in this patch. It is the only use case using the DeferredDominance. I would defer to Brian Rzycki to make this replacement. Reviewers: chandlerc, spatel, davide, brzycki, bkramer, javed.absar Subscribers: qcolombet, sanjoy, nemanjai, nhaehnle, jlebar, tpr, kbarton, RKSimon, wmi, arsenm, llvm-commits Differential Revision: https://reviews.llvm.org/D48202 llvm-svn: 335183
2018-06-21 00:01:04 +02:00
; GCN: s_cbranch_vccnz
; GCN: ds_read_b32
; GCN: [[BB9:BB[0-9]+_[0-9]+]]: ; %bb9
; GCN-NEXT: ; =>This Inner Loop Header: Depth=1
; GCN-NEXT: s_cbranch_vccnz [[BB9]]
define amdgpu_kernel void @reduced_nested_loop_conditions(i64 addrspace(3)* nocapture %arg) #0 {
bb:
%tmp = tail call i32 @llvm.amdgcn.workitem.id.x() #1
%tmp1 = getelementptr inbounds i64, i64 addrspace(3)* %arg, i32 %tmp
%tmp2 = load volatile i64, i64 addrspace(3)* %tmp1
br label %bb5
bb3: ; preds = %bb9
br i1 true, label %bb4, label %bb13
bb4: ; preds = %bb3
br label %bb10
bb5: ; preds = %bb10, %bb
%tmp6 = phi i32 [ 0, %bb ], [ %tmp11, %bb10 ]
%tmp7 = icmp eq i32 %tmp6, 1
br i1 %tmp7, label %bb8, label %bb10
bb8: ; preds = %bb5
br label %bb13
bb9: ; preds = %bb20, %bb9
br i1 false, label %bb3, label %bb9
bb10: ; preds = %bb5, %bb4
%tmp11 = phi i32 [ %tmp21, %bb4 ], [ undef, %bb5 ]
%tmp12 = phi i1 [ %tmp22, %bb4 ], [ true, %bb5 ]
br i1 %tmp12, label %bb23, label %bb5
bb13: ; preds = %bb8, %bb3
%tmp14 = phi i1 [ %tmp22, %bb3 ], [ true, %bb8 ]
%tmp15 = bitcast i64 %tmp2 to <2 x i32>
br i1 %tmp14, label %bb16, label %bb20
bb16: ; preds = %bb13
%tmp17 = extractelement <2 x i32> %tmp15, i64 1
%tmp18 = getelementptr inbounds i32, i32 addrspace(3)* undef, i32 %tmp17
%tmp19 = load volatile i32, i32 addrspace(3)* %tmp18
br label %bb20
bb20: ; preds = %bb16, %bb13
%tmp21 = phi i32 [ %tmp19, %bb16 ], [ 0, %bb13 ]
%tmp22 = phi i1 [ false, %bb16 ], [ %tmp14, %bb13 ]
br label %bb9
bb23: ; preds = %bb10
ret void
}
; Earlier version of above, before a run of the structurizer.
; IR-LABEL: @nested_loop_conditions(
; IR: Flow3:
; IR-NEXT: call void @llvm.amdgcn.end.cf(i64 %21)
; IR-NEXT: %0 = call { i1, i64 } @llvm.amdgcn.if(i1 %14)
; IR-NEXT: %1 = extractvalue { i1, i64 } %0, 0
; IR-NEXT: %2 = extractvalue { i1, i64 } %0, 1
; IR-NEXT: br i1 %1, label %bb4.bb13_crit_edge, label %Flow4
; IR: Flow4:
; IR-NEXT: %3 = phi i1 [ true, %bb4.bb13_crit_edge ], [ false, %Flow3 ]
; IR-NEXT: call void @llvm.amdgcn.end.cf(i64 %2)
; IR-NEXT: br label %Flow
; IR: Flow:
; IR-NEXT: %4 = phi i1 [ %3, %Flow4 ], [ true, %bb ]
; IR-NEXT: %5 = call { i1, i64 } @llvm.amdgcn.if(i1 %4)
; IR-NEXT: %6 = extractvalue { i1, i64 } %5, 0
; IR-NEXT: %7 = extractvalue { i1, i64 } %5, 1
; IR-NEXT: br i1 %6, label %bb13, label %bb31
; IR: bb14:
; IR: %tmp15 = icmp eq i32 %tmp1037, 1
; IR-NEXT: %8 = call { i1, i64 } @llvm.amdgcn.if(i1 %tmp15)
; IR: Flow1:
; IR-NEXT: %11 = phi <4 x i32> [ %tmp9, %bb21 ], [ undef, %bb14 ]
; IR-NEXT: %12 = phi i32 [ %tmp10, %bb21 ], [ undef, %bb14 ]
; IR-NEXT: %13 = phi i1 [ %18, %bb21 ], [ true, %bb14 ]
; IR-NEXT: %14 = phi i1 [ %18, %bb21 ], [ false, %bb14 ]
; IR-NEXT: %15 = phi i1 [ false, %bb21 ], [ true, %bb14 ]
; IR-NEXT: call void @llvm.amdgcn.end.cf(i64 %10)
; IR-NEXT: %16 = call i64 @llvm.amdgcn.if.break(i1 %13, i64 %phi.broken)
; IR-NEXT: %17 = call i1 @llvm.amdgcn.loop(i64 %16)
; IR-NEXT: br i1 %17, label %Flow2, label %bb14
; IR: bb21:
; IR: %tmp12 = icmp slt i32 %tmp11, 9
; IR-NEXT: %18 = xor i1 %tmp12, true
; IR-NEXT: br label %Flow1
; IR: Flow2:
; IR-NEXT: call void @llvm.amdgcn.end.cf(i64 %16)
; IR-NEXT: %19 = call { i1, i64 } @llvm.amdgcn.if(i1 %15)
; IR-NEXT: %20 = extractvalue { i1, i64 } %19, 0
; IR-NEXT: %21 = extractvalue { i1, i64 } %19, 1
; IR-NEXT: br i1 %20, label %bb31.loopexit, label %Flow3
; IR: bb31:
; IR-NEXT: call void @llvm.amdgcn.end.cf(i64 %7)
; IR-NEXT: store volatile i32 0, i32 addrspace(1)* undef
; IR-NEXT: ret void
; GCN-LABEL: {{^}}nested_loop_conditions:
; GCN: v_cmp_lt_i32_e32 vcc, 8, v
; GCN: s_and_b64 vcc, exec, vcc
; GCN: s_cbranch_vccnz [[BB31:BB[0-9]+_[0-9]+]]
; GCN: [[BB14:BB[0-9]+_[0-9]+]]: ; %bb14
; GCN: v_cmp_ne_u32_e32 vcc, 1, v
; GCN-NEXT: s_and_b64 vcc, exec, vcc
; GCN-NEXT: s_cbranch_vccnz [[BB31]]
; GCN: [[BB18:BB[0-9]+_[0-9]+]]: ; %bb18
; GCN: buffer_load_dword
; GCN: v_cmp_lt_i32_e32 vcc, 8, v
; GCN-NEXT: s_and_b64 vcc, exec, vcc
; GCN-NEXT: s_cbranch_vccnz [[BB18]]
; GCN: buffer_load_dword
; GCN: buffer_load_dword
; GCN: v_cmp_gt_i32_e32 vcc, 9
; GCN-NEXT: s_and_b64 vcc, exec, vcc
; GCN-NEXT: s_cbranch_vccnz [[BB14]]
; GCN: [[BB31]]:
; GCN: buffer_store_dword
; GCN: s_endpgm
define amdgpu_kernel void @nested_loop_conditions(i64 addrspace(1)* nocapture %arg) #0 {
bb:
%tmp = tail call i32 @llvm.amdgcn.workitem.id.x() #1
%tmp1 = zext i32 %tmp to i64
%tmp2 = getelementptr inbounds i64, i64 addrspace(1)* %arg, i64 %tmp1
%tmp3 = load i64, i64 addrspace(1)* %tmp2, align 16
%tmp932 = load <4 x i32>, <4 x i32> addrspace(1)* undef, align 16
%tmp1033 = extractelement <4 x i32> %tmp932, i64 0
%tmp1134 = load volatile i32, i32 addrspace(1)* undef
%tmp1235 = icmp slt i32 %tmp1134, 9
br i1 %tmp1235, label %bb14.lr.ph, label %bb13
bb14.lr.ph: ; preds = %bb
br label %bb14
bb4.bb13_crit_edge: ; preds = %bb21
br label %bb13
bb13: ; preds = %bb4.bb13_crit_edge, %bb
br label %bb31
bb14: ; preds = %bb21, %bb14.lr.ph
%tmp1037 = phi i32 [ %tmp1033, %bb14.lr.ph ], [ %tmp10, %bb21 ]
%tmp936 = phi <4 x i32> [ %tmp932, %bb14.lr.ph ], [ %tmp9, %bb21 ]
%tmp15 = icmp eq i32 %tmp1037, 1
br i1 %tmp15, label %bb16, label %bb31.loopexit
bb16: ; preds = %bb14
%tmp17 = bitcast i64 %tmp3 to <2 x i32>
br label %bb18
bb18: ; preds = %bb18, %bb16
%tmp19 = load volatile i32, i32 addrspace(1)* undef
%tmp20 = icmp slt i32 %tmp19, 9
br i1 %tmp20, label %bb21, label %bb18
bb21: ; preds = %bb18
%tmp22 = extractelement <2 x i32> %tmp17, i64 1
%tmp23 = lshr i32 %tmp22, 16
%tmp24 = select i1 undef, i32 undef, i32 %tmp23
%tmp25 = uitofp i32 %tmp24 to float
%tmp26 = fmul float %tmp25, 0x3EF0001000000000
%tmp27 = fsub float %tmp26, undef
%tmp28 = fcmp olt float %tmp27, 5.000000e-01
%tmp29 = select i1 %tmp28, i64 1, i64 2
%tmp30 = extractelement <4 x i32> %tmp936, i64 %tmp29
%tmp7 = zext i32 %tmp30 to i64
%tmp8 = getelementptr inbounds <4 x i32>, <4 x i32> addrspace(1)* undef, i64 %tmp7
%tmp9 = load <4 x i32>, <4 x i32> addrspace(1)* %tmp8, align 16
%tmp10 = extractelement <4 x i32> %tmp9, i64 0
%tmp11 = load volatile i32, i32 addrspace(1)* undef
%tmp12 = icmp slt i32 %tmp11, 9
br i1 %tmp12, label %bb14, label %bb4.bb13_crit_edge
bb31.loopexit: ; preds = %bb14
br label %bb31
bb31: ; preds = %bb31.loopexit, %bb13
store volatile i32 0, i32 addrspace(1)* undef
ret void
}
declare i32 @llvm.amdgcn.workitem.id.x() #1
attributes #0 = { nounwind }
attributes #1 = { nounwind readnone }