1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 20:12:56 +02:00
llvm-mirror/lib/Target/AMDGPU/AMDGPUCodeGenPrepare.cpp

423 lines
13 KiB
C++
Raw Normal View History

//===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass does misc. AMDGPU optimizations on IR before instruction
/// selection.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUIntrinsicInfo.h"
#include "AMDGPUSubtarget.h"
#include "AMDGPUTargetMachine.h"
#include "llvm/Analysis/DivergenceAnalysis.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "amdgpu-codegenprepare"
using namespace llvm;
namespace {
class AMDGPUCodeGenPrepare : public FunctionPass,
public InstVisitor<AMDGPUCodeGenPrepare, bool> {
const GCNTargetMachine *TM;
const SISubtarget *ST;
DivergenceAnalysis *DA;
Module *Mod;
bool HasUnsafeFPMath;
/// \brief Copies exact/nsw/nuw flags (if any) from binary operator \p I to
/// binary operator \p V.
///
/// \returns Binary operator \p V.
Value *copyFlags(const BinaryOperator &I, Value *V) const;
/// \returns Equivalent 16 bit integer type for given 32 bit integer type
/// \p T.
Type *getI16Ty(IRBuilder<> &B, const Type *T) const;
/// \returns Equivalent 32 bit integer type for given 16 bit integer type
/// \p T.
Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
/// \returns True if the base element of type \p T is 16 bit integer, false
/// otherwise.
bool isI16Ty(const Type *T) const;
/// \returns True if the base element of type \p T is 32 bit integer, false
/// otherwise.
bool isI32Ty(const Type *T) const;
/// \returns True if binary operation \p I is a signed binary operation, false
/// otherwise.
bool isSigned(const BinaryOperator &I) const;
/// \returns True if the condition of 'select' operation \p I comes from a
/// signed 'icmp' operation, false otherwise.
bool isSigned(const SelectInst &I) const;
/// \brief Promotes uniform 16 bit binary operation \p I to equivalent 32 bit
/// binary operation by sign or zero extending operands to 32 bits, replacing
/// 16 bit operation with equivalent 32 bit operation, and truncating the
/// result of 32 bit operation back to 16 bits. 16 bit division operation is
/// not promoted.
///
/// \returns True if 16 bit binary operation is promoted to equivalent 32 bit
/// binary operation, false otherwise.
bool promoteUniformI16OpToI32Op(BinaryOperator &I) const;
/// \brief Promotes uniform 16 bit 'icmp' operation \p I to 32 bit 'icmp'
/// operation by sign or zero extending operands to 32 bits, and replacing 16
/// bit operation with 32 bit operation.
///
/// \returns True.
bool promoteUniformI16OpToI32Op(ICmpInst &I) const;
/// \brief Promotes uniform 16 bit 'select' operation \p I to 32 bit 'select'
/// operation by sign or zero extending operands to 32 bits, replacing 16 bit
/// operation with 32 bit operation, and truncating the result of 32 bit
/// operation back to 16 bits.
///
/// \returns True.
bool promoteUniformI16OpToI32Op(SelectInst &I) const;
public:
static char ID;
AMDGPUCodeGenPrepare(const TargetMachine *TM = nullptr) :
FunctionPass(ID),
TM(static_cast<const GCNTargetMachine *>(TM)),
ST(nullptr),
DA(nullptr),
Mod(nullptr),
HasUnsafeFPMath(false) { }
bool visitFDiv(BinaryOperator &I);
bool visitInstruction(Instruction &I) { return false; }
bool visitBinaryOperator(BinaryOperator &I);
bool visitICmpInst(ICmpInst &I);
bool visitSelectInst(SelectInst &I);
bool doInitialization(Module &M) override;
bool runOnFunction(Function &F) override;
StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DivergenceAnalysis>();
AU.setPreservesAll();
}
};
} // End anonymous namespace
Value *AMDGPUCodeGenPrepare::copyFlags(
const BinaryOperator &I, Value *V) const {
assert(isa<BinaryOperator>(V) && "V must be binary operator");
BinaryOperator *BinOp = cast<BinaryOperator>(V);
if (isa<OverflowingBinaryOperator>(BinOp)) {
BinOp->setHasNoSignedWrap(I.hasNoSignedWrap());
BinOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
} else if (isa<PossiblyExactOperator>(BinOp)) {
BinOp->setIsExact(I.isExact());
}
return V;
}
Type *AMDGPUCodeGenPrepare::getI16Ty(IRBuilder<> &B, const Type *T) const {
assert(isI32Ty(T) && "T must be 32 bits");
if (T->isIntegerTy())
return B.getInt16Ty();
return VectorType::get(B.getInt16Ty(), cast<VectorType>(T)->getNumElements());
}
Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const {
assert(isI16Ty(T) && "T must be 16 bits");
if (T->isIntegerTy())
return B.getInt32Ty();
return VectorType::get(B.getInt32Ty(), cast<VectorType>(T)->getNumElements());
}
bool AMDGPUCodeGenPrepare::isI16Ty(const Type *T) const {
if (T->isIntegerTy(16))
return true;
if (!T->isVectorTy())
return false;
return cast<VectorType>(T)->getElementType()->isIntegerTy(16);
}
bool AMDGPUCodeGenPrepare::isI32Ty(const Type *T) const {
if (T->isIntegerTy(32))
return true;
if (!T->isVectorTy())
return false;
return cast<VectorType>(T)->getElementType()->isIntegerTy(32);
}
bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const {
return I.getOpcode() == Instruction::SDiv ||
I.getOpcode() == Instruction::SRem;
}
bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const {
return isa<ICmpInst>(I.getOperand(0)) ?
cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
}
bool AMDGPUCodeGenPrepare::promoteUniformI16OpToI32Op(BinaryOperator &I) const {
assert(isI16Ty(I.getType()) && "Op must be 16 bits");
if (I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::UDiv)
return false;
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getType());
Value *ExtOp0 = nullptr;
Value *ExtOp1 = nullptr;
Value *ExtRes = nullptr;
Value *TruncRes = nullptr;
if (isSigned(I)) {
ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
} else {
ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
}
ExtRes = copyFlags(I, Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1));
TruncRes = Builder.CreateTrunc(ExtRes, getI16Ty(Builder, ExtRes->getType()));
I.replaceAllUsesWith(TruncRes);
I.eraseFromParent();
return true;
}
bool AMDGPUCodeGenPrepare::promoteUniformI16OpToI32Op(ICmpInst &I) const {
assert(isI16Ty(I.getOperand(0)->getType()) && "Op0 must be 16 bits");
assert(isI16Ty(I.getOperand(1)->getType()) && "Op1 must be 16 bits");
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32TyOp0 = getI32Ty(Builder, I.getOperand(0)->getType());
Type *I32TyOp1 = getI32Ty(Builder, I.getOperand(1)->getType());
Value *ExtOp0 = nullptr;
Value *ExtOp1 = nullptr;
Value *NewICmp = nullptr;
if (I.isSigned()) {
ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32TyOp0);
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32TyOp1);
} else {
ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32TyOp0);
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32TyOp1);
}
NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
I.replaceAllUsesWith(NewICmp);
I.eraseFromParent();
return true;
}
bool AMDGPUCodeGenPrepare::promoteUniformI16OpToI32Op(SelectInst &I) const {
assert(isI16Ty(I.getType()) && "Op must be 16 bits");
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getType());
Value *ExtOp1 = nullptr;
Value *ExtOp2 = nullptr;
Value *ExtRes = nullptr;
Value *TruncRes = nullptr;
if (isSigned(I)) {
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
} else {
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
}
ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
TruncRes = Builder.CreateTrunc(ExtRes, getI16Ty(Builder, ExtRes->getType()));
I.replaceAllUsesWith(TruncRes);
I.eraseFromParent();
return true;
}
static bool shouldKeepFDivF32(Value *Num, bool UnsafeDiv) {
const ConstantFP *CNum = dyn_cast<ConstantFP>(Num);
if (!CNum)
return false;
// Reciprocal f32 is handled separately without denormals.
return UnsafeDiv || CNum->isExactlyValue(+1.0);
}
// Insert an intrinsic for fast fdiv for safe math situations where we can
// reduce precision. Leave fdiv for situations where the generic node is
// expected to be optimized.
bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) {
Type *Ty = FDiv.getType();
// TODO: Handle half
if (!Ty->getScalarType()->isFloatTy())
return false;
MDNode *FPMath = FDiv.getMetadata(LLVMContext::MD_fpmath);
if (!FPMath)
return false;
const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
float ULP = FPOp->getFPAccuracy();
if (ULP < 2.5f)
return false;
FastMathFlags FMF = FPOp->getFastMathFlags();
bool UnsafeDiv = HasUnsafeFPMath || FMF.unsafeAlgebra() ||
FMF.allowReciprocal();
if (ST->hasFP32Denormals() && !UnsafeDiv)
return false;
IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()), FPMath);
Builder.setFastMathFlags(FMF);
Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
const AMDGPUIntrinsicInfo *II = TM->getIntrinsicInfo();
Function *Decl
= II->getDeclaration(Mod, AMDGPUIntrinsic::amdgcn_fdiv_fast, {});
Value *Num = FDiv.getOperand(0);
Value *Den = FDiv.getOperand(1);
Value *NewFDiv = nullptr;
if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
NewFDiv = UndefValue::get(VT);
// FIXME: Doesn't do the right thing for cases where the vector is partially
// constant. This works when the scalarizer pass is run first.
for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) {
Value *NumEltI = Builder.CreateExtractElement(Num, I);
Value *DenEltI = Builder.CreateExtractElement(Den, I);
Value *NewElt;
if (shouldKeepFDivF32(NumEltI, UnsafeDiv)) {
NewElt = Builder.CreateFDiv(NumEltI, DenEltI);
} else {
NewElt = Builder.CreateCall(Decl, { NumEltI, DenEltI });
}
NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I);
}
} else {
if (!shouldKeepFDivF32(Num, UnsafeDiv))
NewFDiv = Builder.CreateCall(Decl, { Num, Den });
}
if (NewFDiv) {
FDiv.replaceAllUsesWith(NewFDiv);
NewFDiv->takeName(&FDiv);
FDiv.eraseFromParent();
}
return true;
}
static bool hasUnsafeFPMath(const Function &F) {
Attribute Attr = F.getFnAttribute("unsafe-fp-math");
return Attr.getValueAsString() == "true";
}
bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) {
bool Changed = false;
// TODO: Should we promote smaller types that will be legalized to i16?
if (ST->has16BitInsts() && isI16Ty(I.getType()) && DA->isUniform(&I))
Changed |= promoteUniformI16OpToI32Op(I);
return Changed;
}
bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) {
bool Changed = false;
// TODO: Should we promote smaller types that will be legalized to i16?
if (ST->has16BitInsts() && isI16Ty(I.getOperand(0)->getType()) &&
isI16Ty(I.getOperand(1)->getType()) && DA->isUniform(&I))
Changed |= promoteUniformI16OpToI32Op(I);
return Changed;
}
bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) {
bool Changed = false;
// TODO: Should we promote smaller types that will be legalized to i16?
if (ST->has16BitInsts() && isI16Ty(I.getType()) && DA->isUniform(&I))
Changed |= promoteUniformI16OpToI32Op(I);
return Changed;
}
bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
Mod = &M;
return false;
}
bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
if (!TM || skipFunction(F))
return false;
ST = &TM->getSubtarget<SISubtarget>(F);
DA = &getAnalysis<DivergenceAnalysis>();
HasUnsafeFPMath = hasUnsafeFPMath(F);
bool MadeChange = false;
for (BasicBlock &BB : F) {
BasicBlock::iterator Next;
for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; I = Next) {
Next = std::next(I);
MadeChange |= visit(*I);
}
}
return MadeChange;
}
INITIALIZE_TM_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
"AMDGPU IR optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(DivergenceAnalysis)
INITIALIZE_TM_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE,
"AMDGPU IR optimizations", false, false)
char AMDGPUCodeGenPrepare::ID = 0;
FunctionPass *llvm::createAMDGPUCodeGenPreparePass(const GCNTargetMachine *TM) {
return new AMDGPUCodeGenPrepare(TM);
}