1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-01 16:33:37 +01:00
llvm-mirror/lib/CodeGen/PHIElimination.cpp

485 lines
19 KiB
C++
Raw Normal View History

2003-01-13 21:01:16 +01:00
//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
2003-01-13 21:01:16 +01:00
//
// This pass eliminates machine instruction PHI nodes by inserting copy
// instructions. This destroys SSA information, but is the desired input for
// some register allocators.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "phielim"
#include "PHIElimination.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineDominators.h"
2003-01-13 21:01:16 +01:00
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Function.h"
2003-01-13 21:01:16 +01:00
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
#include <map>
using namespace llvm;
STATISTIC(NumAtomic, "Number of atomic phis lowered");
STATISTIC(NumSplits, "Number of critical edges split on demand");
STATISTIC(NumReused, "Number of reused lowered phis");
char PHIElimination::ID = 0;
static RegisterPass<PHIElimination>
X("phi-node-elimination", "Eliminate PHI nodes for register allocation");
const PassInfo *const llvm::PHIEliminationID = &X;
2003-01-13 21:01:16 +01:00
void llvm::PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<LiveVariables>();
AU.addPreserved<MachineDominatorTree>();
// rdar://7401784 This would be nice:
// AU.addPreservedID(MachineLoopInfoID);
MachineFunctionPass::getAnalysisUsage(AU);
}
bool llvm::PHIElimination::runOnMachineFunction(MachineFunction &Fn) {
MRI = &Fn.getRegInfo();
PHIDefs.clear();
PHIKills.clear();
bool Changed = false;
// Split critical edges to help the coalescer
if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>())
for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
Changed |= SplitPHIEdges(Fn, *I, *LV);
// Populate VRegPHIUseCount
analyzePHINodes(Fn);
// Eliminate PHI instructions by inserting copies into predecessor blocks.
for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
Changed |= EliminatePHINodes(Fn, *I);
// Remove dead IMPLICIT_DEF instructions.
for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
E = ImpDefs.end(); I != E; ++I) {
MachineInstr *DefMI = *I;
unsigned DefReg = DefMI->getOperand(0).getReg();
2008-06-19 03:21:26 +02:00
if (MRI->use_empty(DefReg))
DefMI->eraseFromParent();
}
// Clean up the lowered PHI instructions.
for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
I != E; ++I)
Fn.DeleteMachineInstr(I->first);
LoweredPHIs.clear();
ImpDefs.clear();
VRegPHIUseCount.clear();
return Changed;
}
2003-01-13 21:01:16 +01:00
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
/// predecessor basic blocks.
///
bool llvm::PHIElimination::EliminatePHINodes(MachineFunction &MF,
MachineBasicBlock &MBB) {
if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
return false; // Quick exit for basic blocks without PHIs.
2003-01-13 21:01:16 +01:00
// Get an iterator to the first instruction after the last PHI node (this may
// also be the end of the basic block).
MachineBasicBlock::iterator AfterPHIsIt = SkipPHIsAndLabels(MBB, MBB.begin());
while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
LowerAtomicPHINode(MBB, AfterPHIsIt);
return true;
}
2008-06-19 03:21:26 +02:00
/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
/// are implicit_def's.
static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
2008-06-19 03:21:26 +02:00
const MachineRegisterInfo *MRI) {
for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
unsigned SrcReg = MPhi->getOperand(i).getReg();
const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
if (!DefMI || DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF)
return false;
}
return true;
}
// FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg
// when following the CFG edge to SuccMBB. This needs to be after any def of
// SrcReg, but before any subsequent point where control flow might jump out of
// the basic block.
MachineBasicBlock::iterator
llvm::PHIElimination::FindCopyInsertPoint(MachineBasicBlock &MBB,
MachineBasicBlock &SuccMBB,
unsigned SrcReg) {
// Handle the trivial case trivially.
if (MBB.empty())
return MBB.begin();
// Usually, we just want to insert the copy before the first terminator
// instruction. However, for the edge going to a landing pad, we must insert
// the copy before the call/invoke instruction.
if (!SuccMBB.isLandingPad())
return MBB.getFirstTerminator();
// Discover any defs/uses in this basic block.
SmallPtrSet<MachineInstr*, 8> DefUsesInMBB;
for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
RE = MRI->reg_end(); RI != RE; ++RI) {
MachineInstr *DefUseMI = &*RI;
if (DefUseMI->getParent() == &MBB)
DefUsesInMBB.insert(DefUseMI);
}
MachineBasicBlock::iterator InsertPoint;
if (DefUsesInMBB.empty()) {
// No defs. Insert the copy at the start of the basic block.
InsertPoint = MBB.begin();
} else if (DefUsesInMBB.size() == 1) {
// Insert the copy immediately after the def/use.
InsertPoint = *DefUsesInMBB.begin();
++InsertPoint;
} else {
// Insert the copy immediately after the last def/use.
InsertPoint = MBB.end();
while (!DefUsesInMBB.count(&*--InsertPoint)) {}
++InsertPoint;
}
// Make sure the copy goes after any phi nodes however.
return SkipPHIsAndLabels(MBB, InsertPoint);
}
/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
/// under the assuption that it needs to be lowered in a way that supports
/// atomic execution of PHIs. This lowering method is always correct all of the
/// time.
///
void llvm::PHIElimination::LowerAtomicPHINode(
MachineBasicBlock &MBB,
MachineBasicBlock::iterator AfterPHIsIt) {
++NumAtomic;
// Unlink the PHI node from the basic block, but don't delete the PHI yet.
MachineInstr *MPhi = MBB.remove(MBB.begin());
unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
unsigned DestReg = MPhi->getOperand(0).getReg();
bool isDead = MPhi->getOperand(0).isDead();
// Create a new register for the incoming PHI arguments.
MachineFunction &MF = *MBB.getParent();
const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
unsigned IncomingReg = 0;
bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
// Insert a register to register copy at the top of the current block (but
// after any remaining phi nodes) which copies the new incoming register
// into the phi node destination.
const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
if (isSourceDefinedByImplicitDef(MPhi, MRI))
// If all sources of a PHI node are implicit_def, just emit an
// implicit_def instead of a copy.
BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
TII->get(TargetInstrInfo::IMPLICIT_DEF), DestReg);
else {
// Can we reuse an earlier PHI node? This only happens for critical edges,
// typically those created by tail duplication.
unsigned &entry = LoweredPHIs[MPhi];
if (entry) {
// An identical PHI node was already lowered. Reuse the incoming register.
IncomingReg = entry;
reusedIncoming = true;
++NumReused;
DEBUG(dbgs() << "Reusing %reg" << IncomingReg << " for " << *MPhi);
} else {
entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
}
TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
}
2003-01-13 21:01:16 +01:00
// Record PHI def.
assert(!hasPHIDef(DestReg) && "Vreg has multiple phi-defs?");
PHIDefs[DestReg] = &MBB;
// Update live variable information if there is any.
LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
if (LV) {
MachineInstr *PHICopy = prior(AfterPHIsIt);
if (IncomingReg) {
LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
// Increment use count of the newly created virtual register.
VI.NumUses++;
// When we are reusing the incoming register, it may already have been
// killed in this block. The old kill will also have been inserted at
// AfterPHIsIt, so it appears before the current PHICopy.
if (reusedIncoming)
if (MachineInstr *OldKill = VI.findKill(&MBB)) {
DEBUG(dbgs() << "Remove old kill from " << *OldKill);
LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
DEBUG(MBB.dump());
}
// Add information to LiveVariables to know that the incoming value is
// killed. Note that because the value is defined in several places (once
// each for each incoming block), the "def" block and instruction fields
// for the VarInfo is not filled in.
LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
}
2003-01-13 21:01:16 +01:00
// Since we are going to be deleting the PHI node, if it is the last use of
// any registers, or if the value itself is dead, we need to move this
// information over to the new copy we just inserted.
LV->removeVirtualRegistersKilled(MPhi);
// If the result is dead, update LV.
if (isDead) {
LV->addVirtualRegisterDead(DestReg, PHICopy);
LV->removeVirtualRegisterDead(DestReg, MPhi);
}
}
// Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
--VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
MPhi->getOperand(i).getReg())];
// Now loop over all of the incoming arguments, changing them to copy into the
// IncomingReg register in the corresponding predecessor basic block.
SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
for (int i = NumSrcs - 1; i >= 0; --i) {
unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
"Machine PHI Operands must all be virtual registers!");
// Get the MachineBasicBlock equivalent of the BasicBlock that is the source
// path the PHI.
MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
// Record the kill.
PHIKills[SrcReg].insert(&opBlock);
// If source is defined by an implicit def, there is no need to insert a
// copy.
MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
ImpDefs.insert(DefMI);
continue;
}
// Check to make sure we haven't already emitted the copy for this block.
// This can happen because PHI nodes may have multiple entries for the same
// basic block.
if (!MBBsInsertedInto.insert(&opBlock))
continue; // If the copy has already been emitted, we're done.
// Find a safe location to insert the copy, this may be the first terminator
// in the block (or end()).
MachineBasicBlock::iterator InsertPos =
FindCopyInsertPoint(opBlock, MBB, SrcReg);
// Insert the copy.
if (!reusedIncoming && IncomingReg)
TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC);
// Now update live variable information if we have it. Otherwise we're done
if (!LV) continue;
// We want to be able to insert a kill of the register if this PHI (aka, the
// copy we just inserted) is the last use of the source value. Live
// variable analysis conservatively handles this by saying that the value is
// live until the end of the block the PHI entry lives in. If the value
// really is dead at the PHI copy, there will be no successor blocks which
// have the value live-in.
// Also check to see if this register is in use by another PHI node which
// has not yet been eliminated. If so, it will be killed at an appropriate
// point later.
// Is it used by any PHI instructions in this block?
bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
// Okay, if we now know that the value is not live out of the block, we can
// add a kill marker in this block saying that it kills the incoming value!
if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
// In our final twist, we have to decide which instruction kills the
// register. In most cases this is the copy, however, the first
// terminator instruction at the end of the block may also use the value.
// In this case, we should mark *it* as being the killing block, not the
// copy.
MachineBasicBlock::iterator KillInst;
MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
if (Term != opBlock.end() && Term->readsRegister(SrcReg)) {
KillInst = Term;
// Check that no other terminators use values.
#ifndef NDEBUG
for (MachineBasicBlock::iterator TI = llvm::next(Term);
TI != opBlock.end(); ++TI) {
assert(!TI->readsRegister(SrcReg) &&
"Terminator instructions cannot use virtual registers unless"
"they are the first terminator in a block!");
}
#endif
} else if (reusedIncoming || !IncomingReg) {
// We may have to rewind a bit if we didn't insert a copy this time.
KillInst = Term;
while (KillInst != opBlock.begin())
if ((--KillInst)->readsRegister(SrcReg))
break;
} else {
// We just inserted this copy.
KillInst = prior(InsertPos);
}
assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
// Finally, mark it killed.
LV->addVirtualRegisterKilled(SrcReg, KillInst);
// This vreg no longer lives all of the way through opBlock.
unsigned opBlockNum = opBlock.getNumber();
LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
2003-01-13 21:01:16 +01:00
}
}
// Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
if (reusedIncoming || !IncomingReg)
MF.DeleteMachineInstr(MPhi);
2003-01-13 21:01:16 +01:00
}
/// analyzePHINodes - Gather information about the PHI nodes in here. In
/// particular, we want to map the number of uses of a virtual register which is
/// used in a PHI node. We map that to the BB the vreg is coming from. This is
/// used later to determine when the vreg is killed in the BB.
///
void llvm::PHIElimination::analyzePHINodes(const MachineFunction& Fn) {
for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
I != E; ++I)
for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
BBI->getOperand(i).getReg())];
}
bool llvm::PHIElimination::SplitPHIEdges(MachineFunction &MF,
MachineBasicBlock &MBB,
LiveVariables &LV) {
if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI ||
MBB.isLandingPad())
return false; // Quick exit for basic blocks without PHIs.
for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end();
BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) {
for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
unsigned Reg = BBI->getOperand(i).getReg();
MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
// We break edges when registers are live out from the predecessor block
// (not considering PHI nodes). If the register is live in to this block
// anyway, we would gain nothing from splitting.
if (!LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB))
SplitCriticalEdge(PreMBB, &MBB);
}
}
return true;
}
MachineBasicBlock *PHIElimination::SplitCriticalEdge(MachineBasicBlock *A,
MachineBasicBlock *B) {
assert(A && B && "Missing MBB end point");
MachineFunction *MF = A->getParent();
// We may need to update A's terminator, but we can't do that if AnalyzeBranch
// fails. If A uses a jump table, we won't touch it.
const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
MachineBasicBlock *TBB = 0, *FBB = 0;
SmallVector<MachineOperand, 4> Cond;
if (TII->AnalyzeBranch(*A, TBB, FBB, Cond))
return NULL;
++NumSplits;
MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
MF->insert(llvm::next(MachineFunction::iterator(A)), NMBB);
DEBUG(dbgs() << "PHIElimination splitting critical edge:"
" BB#" << A->getNumber()
2009-11-12 21:53:43 +01:00
<< " -- BB#" << NMBB->getNumber()
<< " -- BB#" << B->getNumber() << '\n');
A->ReplaceUsesOfBlockWith(B, NMBB);
A->updateTerminator();
// Insert unconditional "jump B" instruction in NMBB if necessary.
NMBB->addSuccessor(B);
if (!NMBB->isLayoutSuccessor(B)) {
Cond.clear();
MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, B, NULL, Cond);
}
// Fix PHI nodes in B so they refer to NMBB instead of A
for (MachineBasicBlock::iterator i = B->begin(), e = B->end();
i != e && i->getOpcode() == TargetInstrInfo::PHI; ++i)
for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
if (i->getOperand(ni+1).getMBB() == A)
i->getOperand(ni+1).setMBB(NMBB);
if (LiveVariables *LV=getAnalysisIfAvailable<LiveVariables>())
LV->addNewBlock(NMBB, A, B);
if (MachineDominatorTree *MDT=getAnalysisIfAvailable<MachineDominatorTree>())
MDT->addNewBlock(NMBB, A);
return NMBB;
}
unsigned
PHIElimination::PHINodeTraits::getHashValue(const MachineInstr *MI) {
if (!MI || MI==getEmptyKey() || MI==getTombstoneKey())
return DenseMapInfo<MachineInstr*>::getHashValue(MI);
unsigned hash = 0;
for (unsigned ni = 1, ne = MI->getNumOperands(); ni != ne; ni += 2)
hash = hash*37 + DenseMapInfo<BBVRegPair>::
getHashValue(BBVRegPair(MI->getOperand(ni+1).getMBB()->getNumber(),
MI->getOperand(ni).getReg()));
return hash;
}
bool PHIElimination::PHINodeTraits::isEqual(const MachineInstr *LHS,
const MachineInstr *RHS) {
const MachineInstr *EmptyKey = getEmptyKey();
const MachineInstr *TombstoneKey = getTombstoneKey();
if (!LHS || !RHS || LHS==EmptyKey || RHS==EmptyKey ||
LHS==TombstoneKey || RHS==TombstoneKey)
return LHS==RHS;
unsigned ne = LHS->getNumOperands();
if (ne != RHS->getNumOperands())
return false;
// Ignore operand 0, the defined register.
for (unsigned ni = 1; ni != ne; ni += 2)
if (LHS->getOperand(ni).getReg() != RHS->getOperand(ni).getReg() ||
LHS->getOperand(ni+1).getMBB() != RHS->getOperand(ni+1).getMBB())
return false;
return true;
}