1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00
llvm-mirror/unittests/CodeGen/AArch64SelectionDAGTest.cpp

595 lines
21 KiB
C++
Raw Normal View History

//===- llvm/unittest/CodeGen/AArch64SelectionDAGTest.cpp -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include "gtest/gtest.h"
namespace llvm {
class AArch64SelectionDAGTest : public testing::Test {
protected:
static void SetUpTestCase() {
InitializeAllTargets();
InitializeAllTargetMCs();
}
void SetUp() override {
StringRef Assembly = "define void @f() { ret void }";
Triple TargetTriple("aarch64--");
std::string Error;
const Target *T = TargetRegistry::lookupTarget("", TargetTriple, Error);
// FIXME: These tests do not depend on AArch64 specifically, but we have to
// initialize a target. A skeleton Target for unittests would allow us to
// always run these tests.
if (!T)
GTEST_SKIP();
TargetOptions Options;
TM = std::unique_ptr<LLVMTargetMachine>(static_cast<LLVMTargetMachine *>(
T->createTargetMachine("AArch64", "", "+sve", Options, None, None,
CodeGenOpt::Aggressive)));
if (!TM)
GTEST_SKIP();
SMDiagnostic SMError;
M = parseAssemblyString(Assembly, SMError, Context);
if (!M)
report_fatal_error(SMError.getMessage());
M->setDataLayout(TM->createDataLayout());
F = M->getFunction("f");
if (!F)
report_fatal_error("F?");
MachineModuleInfo MMI(TM.get());
MF = std::make_unique<MachineFunction>(*F, *TM, *TM->getSubtargetImpl(*F), 0,
MMI);
DAG = std::make_unique<SelectionDAG>(*TM, CodeGenOpt::None);
if (!DAG)
report_fatal_error("DAG?");
OptimizationRemarkEmitter ORE(F);
DAG->init(*MF, ORE, nullptr, nullptr, nullptr, nullptr, nullptr);
}
TargetLoweringBase::LegalizeTypeAction getTypeAction(EVT VT) {
return DAG->getTargetLoweringInfo().getTypeAction(Context, VT);
}
EVT getTypeToTransformTo(EVT VT) {
return DAG->getTargetLoweringInfo().getTypeToTransformTo(Context, VT);
}
LLVMContext Context;
std::unique_ptr<LLVMTargetMachine> TM;
std::unique_ptr<Module> M;
Function *F;
std::unique_ptr<MachineFunction> MF;
std::unique_ptr<SelectionDAG> DAG;
};
TEST_F(AArch64SelectionDAGTest, computeKnownBits_ZERO_EXTEND_VECTOR_INREG) {
SDLoc Loc;
auto Int8VT = EVT::getIntegerVT(Context, 8);
auto Int16VT = EVT::getIntegerVT(Context, 16);
auto InVecVT = EVT::getVectorVT(Context, Int8VT, 4);
auto OutVecVT = EVT::getVectorVT(Context, Int16VT, 2);
auto InVec = DAG->getConstant(0, Loc, InVecVT);
auto Op = DAG->getNode(ISD::ZERO_EXTEND_VECTOR_INREG, Loc, OutVecVT, InVec);
auto DemandedElts = APInt(2, 3);
KnownBits Known = DAG->computeKnownBits(Op, DemandedElts);
EXPECT_TRUE(Known.isZero());
}
TEST_F(AArch64SelectionDAGTest, computeKnownBitsSVE_ZERO_EXTEND_VECTOR_INREG) {
SDLoc Loc;
auto Int8VT = EVT::getIntegerVT(Context, 8);
auto Int16VT = EVT::getIntegerVT(Context, 16);
auto InVecVT = EVT::getVectorVT(Context, Int8VT, 4, true);
auto OutVecVT = EVT::getVectorVT(Context, Int16VT, 2, true);
auto InVec = DAG->getConstant(0, Loc, InVecVT);
auto Op = DAG->getNode(ISD::ZERO_EXTEND_VECTOR_INREG, Loc, OutVecVT, InVec);
auto DemandedElts = APInt(2, 3);
KnownBits Known = DAG->computeKnownBits(Op, DemandedElts);
// We don't know anything for SVE at the moment.
EXPECT_EQ(Known.Zero, APInt(16, 0u));
EXPECT_EQ(Known.One, APInt(16, 0u));
EXPECT_FALSE(Known.isZero());
}
TEST_F(AArch64SelectionDAGTest, computeKnownBits_EXTRACT_SUBVECTOR) {
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto VecVT = EVT::getVectorVT(Context, IntVT, 3);
auto IdxVT = EVT::getIntegerVT(Context, 64);
auto Vec = DAG->getConstant(0, Loc, VecVT);
auto ZeroIdx = DAG->getConstant(0, Loc, IdxVT);
auto Op = DAG->getNode(ISD::EXTRACT_SUBVECTOR, Loc, VecVT, Vec, ZeroIdx);
auto DemandedElts = APInt(3, 7);
KnownBits Known = DAG->computeKnownBits(Op, DemandedElts);
EXPECT_TRUE(Known.isZero());
}
TEST_F(AArch64SelectionDAGTest, ComputeNumSignBits_SIGN_EXTEND_VECTOR_INREG) {
SDLoc Loc;
auto Int8VT = EVT::getIntegerVT(Context, 8);
auto Int16VT = EVT::getIntegerVT(Context, 16);
auto InVecVT = EVT::getVectorVT(Context, Int8VT, 4);
auto OutVecVT = EVT::getVectorVT(Context, Int16VT, 2);
auto InVec = DAG->getConstant(1, Loc, InVecVT);
auto Op = DAG->getNode(ISD::SIGN_EXTEND_VECTOR_INREG, Loc, OutVecVT, InVec);
auto DemandedElts = APInt(2, 3);
EXPECT_EQ(DAG->ComputeNumSignBits(Op, DemandedElts), 15u);
}
TEST_F(AArch64SelectionDAGTest, ComputeNumSignBitsSVE_SIGN_EXTEND_VECTOR_INREG) {
SDLoc Loc;
auto Int8VT = EVT::getIntegerVT(Context, 8);
auto Int16VT = EVT::getIntegerVT(Context, 16);
auto InVecVT = EVT::getVectorVT(Context, Int8VT, 4, /*IsScalable=*/true);
auto OutVecVT = EVT::getVectorVT(Context, Int16VT, 2, /*IsScalable=*/true);
auto InVec = DAG->getConstant(1, Loc, InVecVT);
auto Op = DAG->getNode(ISD::SIGN_EXTEND_VECTOR_INREG, Loc, OutVecVT, InVec);
auto DemandedElts = APInt(2, 3);
EXPECT_EQ(DAG->ComputeNumSignBits(Op, DemandedElts), 1u);
}
TEST_F(AArch64SelectionDAGTest, ComputeNumSignBits_EXTRACT_SUBVECTOR) {
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto VecVT = EVT::getVectorVT(Context, IntVT, 3);
auto IdxVT = EVT::getIntegerVT(Context, 64);
auto Vec = DAG->getConstant(1, Loc, VecVT);
auto ZeroIdx = DAG->getConstant(0, Loc, IdxVT);
auto Op = DAG->getNode(ISD::EXTRACT_SUBVECTOR, Loc, VecVT, Vec, ZeroIdx);
auto DemandedElts = APInt(3, 7);
EXPECT_EQ(DAG->ComputeNumSignBits(Op, DemandedElts), 7u);
}
TEST_F(AArch64SelectionDAGTest, SimplifyDemandedVectorElts_EXTRACT_SUBVECTOR) {
TargetLowering TL(*TM);
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto VecVT = EVT::getVectorVT(Context, IntVT, 3);
auto IdxVT = EVT::getIntegerVT(Context, 64);
auto Vec = DAG->getConstant(1, Loc, VecVT);
auto ZeroIdx = DAG->getConstant(0, Loc, IdxVT);
auto Op = DAG->getNode(ISD::EXTRACT_SUBVECTOR, Loc, VecVT, Vec, ZeroIdx);
auto DemandedElts = APInt(3, 7);
auto KnownUndef = APInt(3, 0);
auto KnownZero = APInt(3, 0);
TargetLowering::TargetLoweringOpt TLO(*DAG, false, false);
EXPECT_EQ(TL.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef,
KnownZero, TLO),
false);
}
TEST_F(AArch64SelectionDAGTest, SimplifyDemandedBitsNEON) {
TargetLowering TL(*TM);
SDLoc Loc;
auto Int8VT = EVT::getIntegerVT(Context, 8);
auto InVecVT = EVT::getVectorVT(Context, Int8VT, 16);
SDValue UnknownOp = DAG->getRegister(0, InVecVT);
SDValue Mask1S = DAG->getConstant(0x8A, Loc, Int8VT);
SDValue Mask1V = DAG->getSplatBuildVector(InVecVT, Loc, Mask1S);
SDValue N0 = DAG->getNode(ISD::AND, Loc, InVecVT, Mask1V, UnknownOp);
SDValue Mask2S = DAG->getConstant(0x55, Loc, Int8VT);
SDValue Mask2V = DAG->getSplatBuildVector(InVecVT, Loc, Mask2S);
SDValue Op = DAG->getNode(ISD::AND, Loc, InVecVT, N0, Mask2V);
// N0 = ?000?0?0
// Mask2V = 01010101
// =>
// Known.Zero = 00100000 (0xAA)
KnownBits Known;
APInt DemandedBits = APInt(8, 0xFF);
TargetLowering::TargetLoweringOpt TLO(*DAG, false, false);
EXPECT_TRUE(TL.SimplifyDemandedBits(Op, DemandedBits, Known, TLO));
EXPECT_EQ(Known.Zero, APInt(8, 0xAA));
}
TEST_F(AArch64SelectionDAGTest, SimplifyDemandedBitsSVE) {
TargetLowering TL(*TM);
SDLoc Loc;
auto Int8VT = EVT::getIntegerVT(Context, 8);
auto InVecVT = EVT::getVectorVT(Context, Int8VT, 16, /*IsScalable=*/true);
SDValue UnknownOp = DAG->getRegister(0, InVecVT);
SDValue Mask1S = DAG->getConstant(0x8A, Loc, Int8VT);
SDValue Mask1V = DAG->getSplatVector(InVecVT, Loc, Mask1S);
SDValue N0 = DAG->getNode(ISD::AND, Loc, InVecVT, Mask1V, UnknownOp);
SDValue Mask2S = DAG->getConstant(0x55, Loc, Int8VT);
SDValue Mask2V = DAG->getSplatVector(InVecVT, Loc, Mask2S);
SDValue Op = DAG->getNode(ISD::AND, Loc, InVecVT, N0, Mask2V);
KnownBits Known;
APInt DemandedBits = APInt(8, 0xFF);
TargetLowering::TargetLoweringOpt TLO(*DAG, false, false);
EXPECT_FALSE(TL.SimplifyDemandedBits(Op, DemandedBits, Known, TLO));
EXPECT_EQ(Known.Zero, APInt(8, 0));
}
// Piggy-backing on the AArch64 tests to verify SelectionDAG::computeKnownBits.
TEST_F(AArch64SelectionDAGTest, ComputeKnownBits_ADD) {
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto UnknownOp = DAG->getRegister(0, IntVT);
auto Mask = DAG->getConstant(0x8A, Loc, IntVT);
auto N0 = DAG->getNode(ISD::AND, Loc, IntVT, Mask, UnknownOp);
auto N1 = DAG->getConstant(0x55, Loc, IntVT);
auto Op = DAG->getNode(ISD::ADD, Loc, IntVT, N0, N1);
// N0 = ?000?0?0
// N1 = 01010101
// =>
// Known.One = 01010101 (0x55)
// Known.Zero = 00100000 (0x20)
KnownBits Known = DAG->computeKnownBits(Op);
EXPECT_EQ(Known.Zero, APInt(8, 0x20));
EXPECT_EQ(Known.One, APInt(8, 0x55));
}
// Piggy-backing on the AArch64 tests to verify SelectionDAG::computeKnownBits.
TEST_F(AArch64SelectionDAGTest, ComputeKnownBits_SUB) {
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto N0 = DAG->getConstant(0x55, Loc, IntVT);
auto UnknownOp = DAG->getRegister(0, IntVT);
auto Mask = DAG->getConstant(0x2e, Loc, IntVT);
auto N1 = DAG->getNode(ISD::AND, Loc, IntVT, Mask, UnknownOp);
auto Op = DAG->getNode(ISD::SUB, Loc, IntVT, N0, N1);
// N0 = 01010101
// N1 = 00?0???0
// =>
// Known.One = 00000001 (0x1)
// Known.Zero = 10000000 (0x80)
KnownBits Known = DAG->computeKnownBits(Op);
EXPECT_EQ(Known.Zero, APInt(8, 0x80));
EXPECT_EQ(Known.One, APInt(8, 0x1));
}
TEST_F(AArch64SelectionDAGTest, isSplatValue_Fixed_BUILD_VECTOR) {
TargetLowering TL(*TM);
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto VecVT = EVT::getVectorVT(Context, IntVT, 16, false);
// Create a BUILD_VECTOR
SDValue Op = DAG->getConstant(1, Loc, VecVT);
EXPECT_EQ(Op->getOpcode(), ISD::BUILD_VECTOR);
EXPECT_TRUE(DAG->isSplatValue(Op, /*AllowUndefs=*/false));
APInt UndefElts;
APInt DemandedElts;
EXPECT_FALSE(DAG->isSplatValue(Op, DemandedElts, UndefElts));
// Width=16, Mask=3
DemandedElts = APInt(16, 3);
EXPECT_TRUE(DAG->isSplatValue(Op, DemandedElts, UndefElts));
}
TEST_F(AArch64SelectionDAGTest, isSplatValue_Fixed_ADD_of_BUILD_VECTOR) {
TargetLowering TL(*TM);
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto VecVT = EVT::getVectorVT(Context, IntVT, 16, false);
// Should create BUILD_VECTORs
SDValue Val1 = DAG->getConstant(1, Loc, VecVT);
SDValue Val2 = DAG->getConstant(3, Loc, VecVT);
EXPECT_EQ(Val1->getOpcode(), ISD::BUILD_VECTOR);
SDValue Op = DAG->getNode(ISD::ADD, Loc, VecVT, Val1, Val2);
EXPECT_TRUE(DAG->isSplatValue(Op, /*AllowUndefs=*/false));
APInt UndefElts;
APInt DemandedElts;
EXPECT_FALSE(DAG->isSplatValue(Op, DemandedElts, UndefElts));
// Width=16, Mask=3
DemandedElts = APInt(16, 3);
EXPECT_TRUE(DAG->isSplatValue(Op, DemandedElts, UndefElts));
}
TEST_F(AArch64SelectionDAGTest, isSplatValue_Scalable_SPLAT_VECTOR) {
TargetLowering TL(*TM);
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto VecVT = EVT::getVectorVT(Context, IntVT, 16, true);
// Create a SPLAT_VECTOR
SDValue Op = DAG->getConstant(1, Loc, VecVT);
EXPECT_EQ(Op->getOpcode(), ISD::SPLAT_VECTOR);
EXPECT_TRUE(DAG->isSplatValue(Op, /*AllowUndefs=*/false));
APInt UndefElts;
APInt DemandedElts;
EXPECT_TRUE(DAG->isSplatValue(Op, DemandedElts, UndefElts));
// Width=16, Mask=3. These bits should be ignored.
DemandedElts = APInt(16, 3);
EXPECT_TRUE(DAG->isSplatValue(Op, DemandedElts, UndefElts));
}
TEST_F(AArch64SelectionDAGTest, isSplatValue_Scalable_ADD_of_SPLAT_VECTOR) {
TargetLowering TL(*TM);
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto VecVT = EVT::getVectorVT(Context, IntVT, 16, true);
// Should create SPLAT_VECTORS
SDValue Val1 = DAG->getConstant(1, Loc, VecVT);
SDValue Val2 = DAG->getConstant(3, Loc, VecVT);
EXPECT_EQ(Val1->getOpcode(), ISD::SPLAT_VECTOR);
SDValue Op = DAG->getNode(ISD::ADD, Loc, VecVT, Val1, Val2);
EXPECT_TRUE(DAG->isSplatValue(Op, /*AllowUndefs=*/false));
APInt UndefElts;
APInt DemandedElts;
EXPECT_TRUE(DAG->isSplatValue(Op, DemandedElts, UndefElts));
// Width=16, Mask=3. These bits should be ignored.
DemandedElts = APInt(16, 3);
EXPECT_TRUE(DAG->isSplatValue(Op, DemandedElts, UndefElts));
}
TEST_F(AArch64SelectionDAGTest, getSplatSourceVector_Fixed_BUILD_VECTOR) {
TargetLowering TL(*TM);
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto VecVT = EVT::getVectorVT(Context, IntVT, 16, false);
// Create a BUILD_VECTOR
SDValue Op = DAG->getConstant(1, Loc, VecVT);
EXPECT_EQ(Op->getOpcode(), ISD::BUILD_VECTOR);
int SplatIdx = -1;
EXPECT_EQ(DAG->getSplatSourceVector(Op, SplatIdx), Op);
EXPECT_EQ(SplatIdx, 0);
}
TEST_F(AArch64SelectionDAGTest, getSplatSourceVector_Fixed_ADD_of_BUILD_VECTOR) {
TargetLowering TL(*TM);
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto VecVT = EVT::getVectorVT(Context, IntVT, 16, false);
// Should create BUILD_VECTORs
SDValue Val1 = DAG->getConstant(1, Loc, VecVT);
SDValue Val2 = DAG->getConstant(3, Loc, VecVT);
EXPECT_EQ(Val1->getOpcode(), ISD::BUILD_VECTOR);
SDValue Op = DAG->getNode(ISD::ADD, Loc, VecVT, Val1, Val2);
int SplatIdx = -1;
EXPECT_EQ(DAG->getSplatSourceVector(Op, SplatIdx), Op);
EXPECT_EQ(SplatIdx, 0);
}
TEST_F(AArch64SelectionDAGTest, getSplatSourceVector_Scalable_SPLAT_VECTOR) {
TargetLowering TL(*TM);
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto VecVT = EVT::getVectorVT(Context, IntVT, 16, true);
// Create a SPLAT_VECTOR
SDValue Op = DAG->getConstant(1, Loc, VecVT);
EXPECT_EQ(Op->getOpcode(), ISD::SPLAT_VECTOR);
int SplatIdx = -1;
EXPECT_EQ(DAG->getSplatSourceVector(Op, SplatIdx), Op);
EXPECT_EQ(SplatIdx, 0);
}
TEST_F(AArch64SelectionDAGTest, getSplatSourceVector_Scalable_ADD_of_SPLAT_VECTOR) {
TargetLowering TL(*TM);
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto VecVT = EVT::getVectorVT(Context, IntVT, 16, true);
// Should create SPLAT_VECTORS
SDValue Val1 = DAG->getConstant(1, Loc, VecVT);
SDValue Val2 = DAG->getConstant(3, Loc, VecVT);
EXPECT_EQ(Val1->getOpcode(), ISD::SPLAT_VECTOR);
SDValue Op = DAG->getNode(ISD::ADD, Loc, VecVT, Val1, Val2);
int SplatIdx = -1;
EXPECT_EQ(DAG->getSplatSourceVector(Op, SplatIdx), Op);
EXPECT_EQ(SplatIdx, 0);
}
TEST_F(AArch64SelectionDAGTest, getRepeatedSequence_Patterns) {
TargetLowering TL(*TM);
SDLoc Loc;
unsigned NumElts = 16;
MVT IntVT = MVT::i8;
MVT VecVT = MVT::getVectorVT(IntVT, NumElts);
// Base scalar constants.
SDValue Val0 = DAG->getConstant(0, Loc, IntVT);
SDValue Val1 = DAG->getConstant(1, Loc, IntVT);
SDValue Val2 = DAG->getConstant(2, Loc, IntVT);
SDValue Val3 = DAG->getConstant(3, Loc, IntVT);
SDValue UndefVal = DAG->getUNDEF(IntVT);
// Build some repeating sequences.
SmallVector<SDValue, 16> Pattern1111, Pattern1133, Pattern0123;
for(int I = 0; I != 4; ++I) {
Pattern1111.append(4, Val1);
Pattern1133.append(2, Val1);
Pattern1133.append(2, Val3);
Pattern0123.push_back(Val0);
Pattern0123.push_back(Val1);
Pattern0123.push_back(Val2);
Pattern0123.push_back(Val3);
}
// Build a non-pow2 repeating sequence.
SmallVector<SDValue, 16> Pattern022;
Pattern022.push_back(Val0);
Pattern022.append(2, Val2);
Pattern022.push_back(Val0);
Pattern022.append(2, Val2);
Pattern022.push_back(Val0);
Pattern022.append(2, Val2);
Pattern022.push_back(Val0);
Pattern022.append(2, Val2);
Pattern022.push_back(Val0);
Pattern022.append(2, Val2);
Pattern022.push_back(Val0);
// Build a non-repeating sequence.
SmallVector<SDValue, 16> Pattern1_3;
Pattern1_3.append(8, Val1);
Pattern1_3.append(8, Val3);
// Add some undefs to make it trickier.
Pattern1111[1] = Pattern1111[2] = Pattern1111[15] = UndefVal;
Pattern1133[0] = Pattern1133[2] = UndefVal;
auto *BV1111 =
cast<BuildVectorSDNode>(DAG->getBuildVector(VecVT, Loc, Pattern1111));
auto *BV1133 =
cast<BuildVectorSDNode>(DAG->getBuildVector(VecVT, Loc, Pattern1133));
auto *BV0123=
cast<BuildVectorSDNode>(DAG->getBuildVector(VecVT, Loc, Pattern0123));
auto *BV022 =
cast<BuildVectorSDNode>(DAG->getBuildVector(VecVT, Loc, Pattern022));
auto *BV1_3 =
cast<BuildVectorSDNode>(DAG->getBuildVector(VecVT, Loc, Pattern1_3));
// Check for sequences.
SmallVector<SDValue, 16> Seq1111, Seq1133, Seq0123, Seq022, Seq1_3;
BitVector Undefs1111, Undefs1133, Undefs0123, Undefs022, Undefs1_3;
EXPECT_TRUE(BV1111->getRepeatedSequence(Seq1111, &Undefs1111));
EXPECT_EQ(Undefs1111.count(), 3u);
EXPECT_EQ(Seq1111.size(), 1u);
EXPECT_EQ(Seq1111[0], Val1);
EXPECT_TRUE(BV1133->getRepeatedSequence(Seq1133, &Undefs1133));
EXPECT_EQ(Undefs1133.count(), 2u);
EXPECT_EQ(Seq1133.size(), 4u);
EXPECT_EQ(Seq1133[0], Val1);
EXPECT_EQ(Seq1133[1], Val1);
EXPECT_EQ(Seq1133[2], Val3);
EXPECT_EQ(Seq1133[3], Val3);
EXPECT_TRUE(BV0123->getRepeatedSequence(Seq0123, &Undefs0123));
EXPECT_EQ(Undefs0123.count(), 0u);
EXPECT_EQ(Seq0123.size(), 4u);
EXPECT_EQ(Seq0123[0], Val0);
EXPECT_EQ(Seq0123[1], Val1);
EXPECT_EQ(Seq0123[2], Val2);
EXPECT_EQ(Seq0123[3], Val3);
EXPECT_FALSE(BV022->getRepeatedSequence(Seq022, &Undefs022));
EXPECT_FALSE(BV1_3->getRepeatedSequence(Seq1_3, &Undefs1_3));
// Try again with DemandedElts masks.
APInt Mask1111_0 = APInt::getOneBitSet(NumElts, 0);
EXPECT_TRUE(BV1111->getRepeatedSequence(Mask1111_0, Seq1111, &Undefs1111));
EXPECT_EQ(Undefs1111.count(), 0u);
EXPECT_EQ(Seq1111.size(), 1u);
EXPECT_EQ(Seq1111[0], Val1);
APInt Mask1111_1 = APInt::getOneBitSet(NumElts, 2);
EXPECT_TRUE(BV1111->getRepeatedSequence(Mask1111_1, Seq1111, &Undefs1111));
EXPECT_EQ(Undefs1111.count(), 1u);
EXPECT_EQ(Seq1111.size(), 1u);
EXPECT_EQ(Seq1111[0], UndefVal);
APInt Mask0123 = APInt(NumElts, 0x7777);
EXPECT_TRUE(BV0123->getRepeatedSequence(Mask0123, Seq0123, &Undefs0123));
EXPECT_EQ(Undefs0123.count(), 0u);
EXPECT_EQ(Seq0123.size(), 4u);
EXPECT_EQ(Seq0123[0], Val0);
EXPECT_EQ(Seq0123[1], Val1);
EXPECT_EQ(Seq0123[2], Val2);
EXPECT_EQ(Seq0123[3], SDValue());
APInt Mask1_3 = APInt::getHighBitsSet(16, 8);
EXPECT_TRUE(BV1_3->getRepeatedSequence(Mask1_3, Seq1_3, &Undefs1_3));
EXPECT_EQ(Undefs1_3.count(), 0u);
EXPECT_EQ(Seq1_3.size(), 1u);
EXPECT_EQ(Seq1_3[0], Val3);
}
TEST_F(AArch64SelectionDAGTest, getTypeConversion_SplitScalableMVT) {
MVT VT = MVT::nxv4i64;
EXPECT_EQ(getTypeAction(VT), TargetLoweringBase::TypeSplitVector);
ASSERT_TRUE(getTypeToTransformTo(VT).isScalableVector());
}
TEST_F(AArch64SelectionDAGTest, getTypeConversion_PromoteScalableMVT) {
MVT VT = MVT::nxv2i32;
EXPECT_EQ(getTypeAction(VT), TargetLoweringBase::TypePromoteInteger);
ASSERT_TRUE(getTypeToTransformTo(VT).isScalableVector());
}
TEST_F(AArch64SelectionDAGTest, getTypeConversion_NoScalarizeMVT_nxv1f32) {
MVT VT = MVT::nxv1f32;
EXPECT_NE(getTypeAction(VT), TargetLoweringBase::TypeScalarizeVector);
ASSERT_TRUE(getTypeToTransformTo(VT).isScalableVector());
}
TEST_F(AArch64SelectionDAGTest, getTypeConversion_SplitScalableEVT) {
EVT VT = EVT::getVectorVT(Context, MVT::i64, 256, true);
EXPECT_EQ(getTypeAction(VT), TargetLoweringBase::TypeSplitVector);
EXPECT_EQ(getTypeToTransformTo(VT), VT.getHalfNumVectorElementsVT(Context));
}
TEST_F(AArch64SelectionDAGTest, getTypeConversion_WidenScalableEVT) {
EVT FromVT = EVT::getVectorVT(Context, MVT::i64, 6, true);
EVT ToVT = EVT::getVectorVT(Context, MVT::i64, 8, true);
EXPECT_EQ(getTypeAction(FromVT), TargetLoweringBase::TypeWidenVector);
EXPECT_EQ(getTypeToTransformTo(FromVT), ToVT);
}
TEST_F(AArch64SelectionDAGTest,
getTypeConversion_ScalarizeScalableEVT_nxv1f128) {
EVT VT = EVT::getVectorVT(Context, MVT::f128, ElementCount::getScalable(1));
EXPECT_EQ(getTypeAction(VT), TargetLoweringBase::TypeScalarizeScalableVector);
EXPECT_EQ(getTypeToTransformTo(VT), MVT::f128);
}
[IR][SVE] Add new llvm.experimental.stepvector intrinsic This patch adds a new llvm.experimental.stepvector intrinsic, which takes no arguments and returns a linear integer sequence of values of the form <0, 1, ...>. It is primarily intended for scalable vectors, although it will work for fixed width vectors too. It is intended that later patches will make use of this new intrinsic when vectorising induction variables, currently only supported for fixed width. I've added a new CreateStepVector method to the IRBuilder, which will generate a call to this intrinsic for scalable vectors and fall back on creating a ConstantVector for fixed width. For scalable vectors this intrinsic is lowered to a new ISD node called STEP_VECTOR, which takes a single constant integer argument as the step. During lowering this argument is set to a value of 1. The reason for this additional argument at the codegen level is because in future patches we will introduce various generic DAG combines such as mul step_vector(1), 2 -> step_vector(2) add step_vector(1), step_vector(1) -> step_vector(2) shl step_vector(1), 1 -> step_vector(2) etc. that encourage a canonical format for all targets. This hopefully means all other targets supporting scalable vectors can benefit from this too. I've added cost model tests for both fixed width and scalable vectors: llvm/test/Analysis/CostModel/AArch64/neon-stepvector.ll llvm/test/Analysis/CostModel/AArch64/sve-stepvector.ll as well as codegen lowering tests for fixed width and scalable vectors: llvm/test/CodeGen/AArch64/neon-stepvector.ll llvm/test/CodeGen/AArch64/sve-stepvector.ll See this thread for discussion of the intrinsic: https://lists.llvm.org/pipermail/llvm-dev/2021-January/147943.html
2021-02-08 16:46:24 +01:00
TEST_F(AArch64SelectionDAGTest, TestFold_STEP_VECTOR) {
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto VecVT = EVT::getVectorVT(Context, MVT::i8, 16, true);
// Should create SPLAT_VECTOR
SDValue Zero = DAG->getConstant(0, Loc, IntVT);
SDValue Op = DAG->getNode(ISD::STEP_VECTOR, Loc, VecVT, Zero);
EXPECT_EQ(Op.getOpcode(), ISD::SPLAT_VECTOR);
}
} // end namespace llvm