1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00
llvm-mirror/include/llvm/InitializePasses.h

374 lines
18 KiB
C
Raw Normal View History

//===- llvm/InitializePasses.h -------- Initialize All Passes ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declarations for the pass initialization routines
// for the entire LLVM project.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_INITIALIZEPASSES_H
#define LLVM_INITIALIZEPASSES_H
namespace llvm {
class PassRegistry;
/// Initialize all passes linked into the TransformUtils library.
void initializeCore(PassRegistry&);
/// Initialize all passes linked into the TransformUtils library.
void initializeTransformUtils(PassRegistry&);
/// Initialize all passes linked into the ScalarOpts library.
void initializeScalarOpts(PassRegistry&);
/// Initialize all passes linked into the ObjCARCOpts library.
void initializeObjCARCOpts(PassRegistry&);
/// Initialize all passes linked into the Vectorize library.
void initializeVectorization(PassRegistry&);
/// Initialize all passes linked into the InstCombine library.
void initializeInstCombine(PassRegistry&);
/// Initialize all passes linked into the IPO library.
void initializeIPO(PassRegistry&);
/// Initialize all passes linked into the Instrumentation library.
void initializeInstrumentation(PassRegistry&);
/// Initialize all passes linked into the Analysis library.
void initializeAnalysis(PassRegistry&);
/// Initialize all passes linked into the Coroutines library.
void initializeCoroutines(PassRegistry&);
/// Initialize all passes linked into the CodeGen library.
void initializeCodeGen(PassRegistry&);
/// Initialize all passes linked into the GlobalISel library.
void initializeGlobalISel(PassRegistry&);
/// Initialize all passes linked into the CodeGen library.
void initializeTarget(PassRegistry&);
void initializeAAEvalLegacyPassPass(PassRegistry&);
void initializeAAResultsWrapperPassPass(PassRegistry&);
void initializeADCELegacyPassPass(PassRegistry&);
void initializeAddDiscriminatorsLegacyPassPass(PassRegistry&);
void initializeAddressSanitizerModulePass(PassRegistry&);
void initializeAddressSanitizerPass(PassRegistry&);
void initializeAliasSetPrinterPass(PassRegistry&);
void initializeAlignmentFromAssumptionsPass(PassRegistry&);
[PM] Port the always inliner to the new pass manager in a much more minimal and boring form than the old pass manager's version. This pass does the very minimal amount of work necessary to inline functions declared as always-inline. It doesn't support a wide array of things that the legacy pass manager did support, but is alse ... about 20 lines of code. So it has that going for it. Notably things this doesn't support: - Array alloca merging - To support the above, bottom-up inlining with careful history tracking and call graph updates - DCE of the functions that become dead after this inlining. - Inlining through call instructions with the always_inline attribute. Instead, it focuses on inlining functions with that attribute. The first I've omitted because I'm hoping to just turn it off for the primary pass manager. If that doesn't pan out, I can add it here but it will be reasonably expensive to do so. The second should really be handled by running global-dce after the inliner. I don't want to re-implement the non-trivial logic necessary to do comdat-correct DCE of functions. This means the -O0 pipeline will have to be at least 'always-inline,global-dce', but that seems reasonable to me. If others are seriously worried about this I'd like to hear about it and understand why. Again, this is all solveable by factoring that logic into a utility and calling it here, but I'd like to wait to do that until there is a clear reason why the existing pass-based factoring won't work. The final point is a serious one. I can fairly easily add support for this, but it seems both costly and a confusing construct for the use case of the always inliner running at -O0. This attribute can of course still impact the normal inliner easily (although I find that a questionable re-use of the same attribute). I've started a discussion to sort out what semantics we want here and based on that can figure out if it makes sense ta have this complexity at O0 or not. One other advantage of this design is that it should be quite a bit faster due to checking for whether the function is a viable candidate for inlining exactly once per function instead of doing it for each call site. Anyways, hopefully a reasonable starting point for this pass. Differential Revision: https://reviews.llvm.org/D23299 llvm-svn: 278896
2016-08-17 04:56:20 +02:00
void initializeAlwaysInlinerLegacyPassPass(PassRegistry&);
void initializeArgPromotionPass(PassRegistry&);
void initializeAssumptionCacheTrackerPass(PassRegistry&);
void initializeAtomicExpandPass(PassRegistry&);
void initializeBBVectorizePass(PassRegistry&);
void initializeBDCELegacyPassPass(PassRegistry&);
void initializeBarrierNoopPass(PassRegistry&);
[PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible with the new pass manager, and no longer relying on analysis groups. This builds essentially a ground-up new AA infrastructure stack for LLVM. The core ideas are the same that are used throughout the new pass manager: type erased polymorphism and direct composition. The design is as follows: - FunctionAAResults is a type-erasing alias analysis results aggregation interface to walk a single query across a range of results from different alias analyses. Currently this is function-specific as we always assume that aliasing queries are *within* a function. - AAResultBase is a CRTP utility providing stub implementations of various parts of the alias analysis result concept, notably in several cases in terms of other more general parts of the interface. This can be used to implement only a narrow part of the interface rather than the entire interface. This isn't really ideal, this logic should be hoisted into FunctionAAResults as currently it will cause a significant amount of redundant work, but it faithfully models the behavior of the prior infrastructure. - All the alias analysis passes are ported to be wrapper passes for the legacy PM and new-style analysis passes for the new PM with a shared result object. In some cases (most notably CFL), this is an extremely naive approach that we should revisit when we can specialize for the new pass manager. - BasicAA has been restructured to reflect that it is much more fundamentally a function analysis because it uses dominator trees and loop info that need to be constructed for each function. All of the references to getting alias analysis results have been updated to use the new aggregation interface. All the preservation and other pass management code has been updated accordingly. The way the FunctionAAResultsWrapperPass works is to detect the available alias analyses when run, and add them to the results object. This means that we should be able to continue to respect when various passes are added to the pipeline, for example adding CFL or adding TBAA passes should just cause their results to be available and to get folded into this. The exception to this rule is BasicAA which really needs to be a function pass due to using dominator trees and loop info. As a consequence, the FunctionAAResultsWrapperPass directly depends on BasicAA and always includes it in the aggregation. This has significant implications for preserving analyses. Generally, most passes shouldn't bother preserving FunctionAAResultsWrapperPass because rebuilding the results just updates the set of known AA passes. The exception to this rule are LoopPass instances which need to preserve all the function analyses that the loop pass manager will end up needing. This means preserving both BasicAAWrapperPass and the aggregating FunctionAAResultsWrapperPass. Now, when preserving an alias analysis, you do so by directly preserving that analysis. This is only necessary for non-immutable-pass-provided alias analyses though, and there are only three of interest: BasicAA, GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is preserved when needed because it (like DominatorTree and LoopInfo) is marked as a CFG-only pass. I've expanded GlobalsAA into the preserved set everywhere we previously were preserving all of AliasAnalysis, and I've added SCEVAA in the intersection of that with where we preserve SCEV itself. One significant challenge to all of this is that the CGSCC passes were actually using the alias analysis implementations by taking advantage of a pretty amazing set of loop holes in the old pass manager's analysis management code which allowed analysis groups to slide through in many cases. Moving away from analysis groups makes this problem much more obvious. To fix it, I've leveraged the flexibility the design of the new PM components provides to just directly construct the relevant alias analyses for the relevant functions in the IPO passes that need them. This is a bit hacky, but should go away with the new pass manager, and is already in many ways cleaner than the prior state. Another significant challenge is that various facilities of the old alias analysis infrastructure just don't fit any more. The most significant of these is the alias analysis 'counter' pass. That pass relied on the ability to snoop on AA queries at different points in the analysis group chain. Instead, I'm planning to build printing functionality directly into the aggregation layer. I've not included that in this patch merely to keep it smaller. Note that all of this needs a nearly complete rewrite of the AA documentation. I'm planning to do that, but I'd like to make sure the new design settles, and to flesh out a bit more of what it looks like in the new pass manager first. Differential Revision: http://reviews.llvm.org/D12080 llvm-svn: 247167
2015-09-09 19:55:00 +02:00
void initializeBasicAAWrapperPassPass(PassRegistry&);
void initializeBlockExtractorPassPass(PassRegistry&);
void initializeBlockFrequencyInfoWrapperPassPass(PassRegistry&);
void initializeBoundsCheckingPass(PassRegistry&);
void initializeBranchCoalescingPass(PassRegistry&);
void initializeBranchFolderPassPass(PassRegistry&);
void initializeBranchProbabilityInfoWrapperPassPass(PassRegistry&);
void initializeBranchRelaxationPass(PassRegistry&);
void initializeBreakCriticalEdgesPass(PassRegistry&);
void initializeCFGOnlyPrinterLegacyPassPass(PassRegistry&);
void initializeCFGOnlyViewerLegacyPassPass(PassRegistry&);
void initializeCFGPrinterLegacyPassPass(PassRegistry&);
void initializeCFGSimplifyPassPass(PassRegistry&);
void initializeLateCFGSimplifyPassPass(PassRegistry&);
void initializeCFGViewerLegacyPassPass(PassRegistry&);
void initializeCFLAndersAAWrapperPassPass(PassRegistry&);
void initializeCFLSteensAAWrapperPassPass(PassRegistry&);
void initializeCallGraphDOTPrinterPass(PassRegistry&);
void initializeCallGraphPrinterLegacyPassPass(PassRegistry&);
void initializeCallGraphViewerPass(PassRegistry&);
void initializeCallGraphWrapperPassPass(PassRegistry&);
void initializeCodeGenPreparePass(PassRegistry&);
void initializeConstantHoistingLegacyPassPass(PassRegistry&);
void initializeConstantMergeLegacyPassPass(PassRegistry&);
void initializeConstantPropagationPass(PassRegistry&);
void initializeCorrelatedValuePropagationPass(PassRegistry&);
void initializeCostModelAnalysisPass(PassRegistry&);
void initializeCountingFunctionInserterPass(PassRegistry&);
void initializeCrossDSOCFIPass(PassRegistry&);
void initializeDAEPass(PassRegistry&);
void initializeDAHPass(PassRegistry&);
void initializeDCELegacyPassPass(PassRegistry&);
void initializeDSELegacyPassPass(PassRegistry&);
void initializeDataFlowSanitizerPass(PassRegistry&);
void initializeDeadInstEliminationPass(PassRegistry&);
void initializeDeadMachineInstructionElimPass(PassRegistry&);
void initializeDelinearizationPass(PassRegistry&);
void initializeDemandedBitsWrapperPassPass(PassRegistry&);
void initializeDependenceAnalysisPass(PassRegistry&);
void initializeDependenceAnalysisWrapperPassPass(PassRegistry&);
void initializeDetectDeadLanesPass(PassRegistry&);
void initializeDivergenceAnalysisPass(PassRegistry&);
void initializeDomOnlyPrinterPass(PassRegistry&);
void initializeDomOnlyViewerPass(PassRegistry&);
void initializeDomPrinterPass(PassRegistry&);
void initializeDomViewerPass(PassRegistry&);
void initializeDominanceFrontierWrapperPassPass(PassRegistry&);
void initializeDominatorTreeWrapperPassPass(PassRegistry&);
void initializeDwarfEHPreparePass(PassRegistry&);
void initializeEarlyCSELegacyPassPass(PassRegistry&);
void initializeEarlyCSEMemSSALegacyPassPass(PassRegistry&);
void initializeEarlyIfConverterPass(PassRegistry&);
void initializeEdgeBundlesPass(PassRegistry&);
void initializeEfficiencySanitizerPass(PassRegistry&);
void initializeEliminateAvailableExternallyLegacyPassPass(PassRegistry&);
void initializeExpandISelPseudosPass(PassRegistry&);
void initializeExpandPostRAPass(PassRegistry&);
void initializeExternalAAWrapperPassPass(PassRegistry&);
void initializeFEntryInserterPass(PassRegistry&);
void initializeFinalizeMachineBundlesPass(PassRegistry&);
void initializeFlattenCFGPassPass(PassRegistry&);
void initializeFloat2IntLegacyPassPass(PassRegistry&);
void initializeForceFunctionAttrsLegacyPassPass(PassRegistry&);
void initializeForwardControlFlowIntegrityPass(PassRegistry&);
void initializeFuncletLayoutPass(PassRegistry&);
void initializeFunctionImportLegacyPassPass(PassRegistry&);
void initializeGCMachineCodeAnalysisPass(PassRegistry&);
void initializeGCModuleInfoPass(PassRegistry&);
void initializeGCOVProfilerLegacyPassPass(PassRegistry&);
void initializeGVNHoistLegacyPassPass(PassRegistry&);
void initializeGVNLegacyPassPass(PassRegistry&);
void initializeGlobalDCELegacyPassPass(PassRegistry&);
void initializeGlobalMergePass(PassRegistry&);
void initializeGlobalOptLegacyPassPass(PassRegistry&);
void initializeGlobalSplitPass(PassRegistry&);
[PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible with the new pass manager, and no longer relying on analysis groups. This builds essentially a ground-up new AA infrastructure stack for LLVM. The core ideas are the same that are used throughout the new pass manager: type erased polymorphism and direct composition. The design is as follows: - FunctionAAResults is a type-erasing alias analysis results aggregation interface to walk a single query across a range of results from different alias analyses. Currently this is function-specific as we always assume that aliasing queries are *within* a function. - AAResultBase is a CRTP utility providing stub implementations of various parts of the alias analysis result concept, notably in several cases in terms of other more general parts of the interface. This can be used to implement only a narrow part of the interface rather than the entire interface. This isn't really ideal, this logic should be hoisted into FunctionAAResults as currently it will cause a significant amount of redundant work, but it faithfully models the behavior of the prior infrastructure. - All the alias analysis passes are ported to be wrapper passes for the legacy PM and new-style analysis passes for the new PM with a shared result object. In some cases (most notably CFL), this is an extremely naive approach that we should revisit when we can specialize for the new pass manager. - BasicAA has been restructured to reflect that it is much more fundamentally a function analysis because it uses dominator trees and loop info that need to be constructed for each function. All of the references to getting alias analysis results have been updated to use the new aggregation interface. All the preservation and other pass management code has been updated accordingly. The way the FunctionAAResultsWrapperPass works is to detect the available alias analyses when run, and add them to the results object. This means that we should be able to continue to respect when various passes are added to the pipeline, for example adding CFL or adding TBAA passes should just cause their results to be available and to get folded into this. The exception to this rule is BasicAA which really needs to be a function pass due to using dominator trees and loop info. As a consequence, the FunctionAAResultsWrapperPass directly depends on BasicAA and always includes it in the aggregation. This has significant implications for preserving analyses. Generally, most passes shouldn't bother preserving FunctionAAResultsWrapperPass because rebuilding the results just updates the set of known AA passes. The exception to this rule are LoopPass instances which need to preserve all the function analyses that the loop pass manager will end up needing. This means preserving both BasicAAWrapperPass and the aggregating FunctionAAResultsWrapperPass. Now, when preserving an alias analysis, you do so by directly preserving that analysis. This is only necessary for non-immutable-pass-provided alias analyses though, and there are only three of interest: BasicAA, GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is preserved when needed because it (like DominatorTree and LoopInfo) is marked as a CFG-only pass. I've expanded GlobalsAA into the preserved set everywhere we previously were preserving all of AliasAnalysis, and I've added SCEVAA in the intersection of that with where we preserve SCEV itself. One significant challenge to all of this is that the CGSCC passes were actually using the alias analysis implementations by taking advantage of a pretty amazing set of loop holes in the old pass manager's analysis management code which allowed analysis groups to slide through in many cases. Moving away from analysis groups makes this problem much more obvious. To fix it, I've leveraged the flexibility the design of the new PM components provides to just directly construct the relevant alias analyses for the relevant functions in the IPO passes that need them. This is a bit hacky, but should go away with the new pass manager, and is already in many ways cleaner than the prior state. Another significant challenge is that various facilities of the old alias analysis infrastructure just don't fit any more. The most significant of these is the alias analysis 'counter' pass. That pass relied on the ability to snoop on AA queries at different points in the analysis group chain. Instead, I'm planning to build printing functionality directly into the aggregation layer. I've not included that in this patch merely to keep it smaller. Note that all of this needs a nearly complete rewrite of the AA documentation. I'm planning to do that, but I'd like to make sure the new design settles, and to flesh out a bit more of what it looks like in the new pass manager first. Differential Revision: http://reviews.llvm.org/D12080 llvm-svn: 247167
2015-09-09 19:55:00 +02:00
void initializeGlobalsAAWrapperPassPass(PassRegistry&);
void initializeGuardWideningLegacyPassPass(PassRegistry&);
void initializeIPCPPass(PassRegistry&);
void initializeIPSCCPLegacyPassPass(PassRegistry&);
void initializeIRTranslatorPass(PassRegistry&);
void initializeIVUsersWrapperPassPass(PassRegistry&);
void initializeIfConverterPass(PassRegistry&);
void initializeImplicitNullChecksPass(PassRegistry&);
void initializeIndVarSimplifyLegacyPassPass(PassRegistry&);
void initializeInductiveRangeCheckEliminationPass(PassRegistry&);
void initializeInferAddressSpacesPass(PassRegistry&);
void initializeInferFunctionAttrsLegacyPassPass(PassRegistry&);
void initializeInlineCostAnalysisPass(PassRegistry&);
void initializeInstCountPass(PassRegistry&);
void initializeInstNamerPass(PassRegistry&);
void initializeInstSimplifierPass(PassRegistry&);
void initializeInstrProfilingLegacyPassPass(PassRegistry&);
void initializeInstructionCombiningPassPass(PassRegistry&);
void initializeInstructionSelectPass(PassRegistry&);
void initializeInterleavedAccessPass(PassRegistry&);
void initializeInternalizeLegacyPassPass(PassRegistry&);
void initializeIntervalPartitionPass(PassRegistry&);
void initializeJumpThreadingPass(PassRegistry&);
void initializeLCSSAVerificationPassPass(PassRegistry&);
void initializeLCSSAWrapperPassPass(PassRegistry&);
void initializeLazyBlockFrequencyInfoPassPass(PassRegistry&);
void initializeLazyBranchProbabilityInfoPassPass(PassRegistry&);
void initializeLazyMachineBlockFrequencyInfoPassPass(PassRegistry&);
void initializeLazyValueInfoWrapperPassPass(PassRegistry&);
void initializeLegacyLICMPassPass(PassRegistry&);
void initializeLegacyLoopSinkPassPass(PassRegistry&);
void initializeLazyValueInfoPrinterPass(PassRegistry&);
void initializeLegalizerPass(PassRegistry&);
void initializeLibCallsShrinkWrapLegacyPassPass(PassRegistry&);
void initializeLintPass(PassRegistry&);
void initializeLiveDebugValuesPass(PassRegistry&);
void initializeLiveDebugVariablesPass(PassRegistry&);
void initializeLiveIntervalsPass(PassRegistry&);
void initializeLiveRegMatrixPass(PassRegistry&);
void initializeLiveStacksPass(PassRegistry&);
void initializeLiveVariablesPass(PassRegistry&);
void initializeLoadCombinePass(PassRegistry&);
void initializeLoadStoreVectorizerPass(PassRegistry&);
void initializeLoaderPassPass(PassRegistry&);
void initializeLocalStackSlotPassPass(PassRegistry&);
void initializeLoopAccessLegacyAnalysisPass(PassRegistry&);
void initializeLoopDataPrefetchLegacyPassPass(PassRegistry&);
void initializeLoopDeletionLegacyPassPass(PassRegistry&);
void initializeLoopDistributeLegacyPass(PassRegistry&);
void initializeLoopExtractorPass(PassRegistry&);
void initializeLoopIdiomRecognizeLegacyPassPass(PassRegistry&);
void initializeLoopInfoWrapperPassPass(PassRegistry&);
void initializeLoopInstSimplifyLegacyPassPass(PassRegistry&);
void initializeLoopInterchangePass(PassRegistry&);
void initializeLoopLoadEliminationPass(PassRegistry&);
void initializeLoopPassPass(PassRegistry&);
void initializeLoopPredicationLegacyPassPass(PassRegistry&);
void initializeLoopRerollPass(PassRegistry&);
void initializeLoopRotateLegacyPassPass(PassRegistry&);
void initializeLoopSimplifyCFGLegacyPassPass(PassRegistry&);
void initializeLoopSimplifyPass(PassRegistry&);
void initializeLoopStrengthReducePass(PassRegistry&);
void initializeLoopUnrollPass(PassRegistry&);
void initializeLoopUnswitchPass(PassRegistry&);
void initializeLoopVectorizePass(PassRegistry&);
void initializeLoopVersioningLICMPass(PassRegistry&);
void initializeLoopVersioningPassPass(PassRegistry&);
void initializeLowerAtomicLegacyPassPass(PassRegistry&);
void initializeLowerEmuTLSPass(PassRegistry&);
void initializeLowerExpectIntrinsicPass(PassRegistry&);
void initializeLowerGuardIntrinsicLegacyPassPass(PassRegistry&);
void initializeLowerIntrinsicsPass(PassRegistry&);
void initializeLowerInvokeLegacyPassPass(PassRegistry&);
void initializeLowerSwitchPass(PassRegistry&);
IR: New representation for CFI and virtual call optimization pass metadata. The bitset metadata currently used in LLVM has a few problems: 1. It has the wrong name. The name "bitset" refers to an implementation detail of one use of the metadata (i.e. its original use case, CFI). This makes it harder to understand, as the name makes no sense in the context of virtual call optimization. 2. It is represented using a global named metadata node, rather than being directly associated with a global. This makes it harder to manipulate the metadata when rebuilding global variables, summarise it as part of ThinLTO and drop unused metadata when associated globals are dropped. For this reason, CFI does not currently work correctly when both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable globals, and fails to associate metadata with the rebuilt globals. As I understand it, the same problem could also affect ASan, which rebuilds globals with a red zone. This patch solves both of those problems in the following way: 1. Rename the metadata to "type metadata". This new name reflects how the metadata is currently being used (i.e. to represent type information for CFI and vtable opt). The new name is reflected in the name for the associated intrinsic (llvm.type.test) and pass (LowerTypeTests). 2. Attach metadata directly to the globals that it pertains to, rather than using the "llvm.bitsets" global metadata node as we are doing now. This is done using the newly introduced capability to attach metadata to global variables (r271348 and r271358). See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html Differential Revision: http://reviews.llvm.org/D21053 llvm-svn: 273729
2016-06-24 23:21:32 +02:00
void initializeLowerTypeTestsPass(PassRegistry&);
void initializeMIRPrintingPassPass(PassRegistry&);
void initializeMachineBlockFrequencyInfoPass(PassRegistry&);
Implement a block placement pass based on the branch probability and block frequency analyses. This differs substantially from the existing block-placement pass in LLVM: 1) It operates on the Machine-IR in the CodeGen layer. This exposes much more (and more precise) information and opportunities. Also, the results are more stable due to fewer transforms ocurring after the pass runs. 2) It uses the generalized probability and frequency analyses. These can model static heuristics, code annotation derived heuristics as well as eventual profile loading. By basing the optimization on the analysis interface it can work from any (or a combination) of these inputs. 3) It uses a more aggressive algorithm, both building chains from tho bottom up to maximize benefit, and using an SCC-based walk to layout chains of blocks in a profitable ordering without O(N^2) iterations which the old pass involves. The pass is currently gated behind a flag, and not enabled by default because it still needs to grow some important features. Most notably, it needs to support loop aligning and careful layout of loop structures much as done by hand currently in CodePlacementOpt. Once it supports these, and has sufficient testing and quality tuning, it should replace both of these passes. Thanks to Nick Lewycky and Richard Smith for help authoring & debugging this, and to Jakob, Andy, Eric, Jim, and probably a few others I'm forgetting for reviewing and answering all my questions. Writing a backend pass is *sooo* much better now than it used to be. =D llvm-svn: 142641
2011-10-21 08:46:38 +02:00
void initializeMachineBlockPlacementPass(PassRegistry&);
void initializeMachineBlockPlacementStatsPass(PassRegistry&);
void initializeMachineBranchProbabilityInfoPass(PassRegistry&);
void initializeMachineCSEPass(PassRegistry&);
void initializeMachineCombinerPass(PassRegistry&);
void initializeMachineCopyPropagationPass(PassRegistry&);
void initializeMachineDominanceFrontierPass(PassRegistry&);
void initializeMachineDominatorTreePass(PassRegistry&);
void initializeMachineFunctionPrinterPassPass(PassRegistry&);
void initializeMachineLICMPass(PassRegistry&);
void initializeMachineLoopInfoPass(PassRegistry&);
void initializeMachineModuleInfoPass(PassRegistry&);
void initializeMachineOptimizationRemarkEmitterPassPass(PassRegistry&);
void initializeMachineOutlinerPass(PassRegistry&);
void initializeMachinePipelinerPass(PassRegistry&);
void initializeMachinePostDominatorTreePass(PassRegistry&);
void initializeMachineRegionInfoPassPass(PassRegistry&);
void initializeMachineSchedulerPass(PassRegistry&);
void initializeMachineSinkingPass(PassRegistry&);
void initializeMachineTraceMetricsPass(PassRegistry&);
void initializeMachineVerifierPassPass(PassRegistry&);
void initializeMemCpyOptLegacyPassPass(PassRegistry&);
void initializeMemDepPrinterPass(PassRegistry&);
void initializeMemDerefPrinterPass(PassRegistry&);
void initializeMemoryDependenceWrapperPassPass(PassRegistry&);
void initializeMemorySSAPrinterLegacyPassPass(PassRegistry&);
void initializeMemorySSAWrapperPassPass(PassRegistry&);
void initializeMemorySanitizerPass(PassRegistry&);
void initializeMergeFunctionsPass(PassRegistry&);
void initializeMergedLoadStoreMotionLegacyPassPass(PassRegistry&);
void initializeMetaRenamerPass(PassRegistry&);
void initializeModuleDebugInfoPrinterPass(PassRegistry&);
void initializeModuleSummaryIndexWrapperPassPass(PassRegistry&);
void initializeNameAnonGlobalLegacyPassPass(PassRegistry&);
void initializeNaryReassociateLegacyPassPass(PassRegistry&);
void initializeNewGVNLegacyPassPass(PassRegistry&);
[PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible with the new pass manager, and no longer relying on analysis groups. This builds essentially a ground-up new AA infrastructure stack for LLVM. The core ideas are the same that are used throughout the new pass manager: type erased polymorphism and direct composition. The design is as follows: - FunctionAAResults is a type-erasing alias analysis results aggregation interface to walk a single query across a range of results from different alias analyses. Currently this is function-specific as we always assume that aliasing queries are *within* a function. - AAResultBase is a CRTP utility providing stub implementations of various parts of the alias analysis result concept, notably in several cases in terms of other more general parts of the interface. This can be used to implement only a narrow part of the interface rather than the entire interface. This isn't really ideal, this logic should be hoisted into FunctionAAResults as currently it will cause a significant amount of redundant work, but it faithfully models the behavior of the prior infrastructure. - All the alias analysis passes are ported to be wrapper passes for the legacy PM and new-style analysis passes for the new PM with a shared result object. In some cases (most notably CFL), this is an extremely naive approach that we should revisit when we can specialize for the new pass manager. - BasicAA has been restructured to reflect that it is much more fundamentally a function analysis because it uses dominator trees and loop info that need to be constructed for each function. All of the references to getting alias analysis results have been updated to use the new aggregation interface. All the preservation and other pass management code has been updated accordingly. The way the FunctionAAResultsWrapperPass works is to detect the available alias analyses when run, and add them to the results object. This means that we should be able to continue to respect when various passes are added to the pipeline, for example adding CFL or adding TBAA passes should just cause their results to be available and to get folded into this. The exception to this rule is BasicAA which really needs to be a function pass due to using dominator trees and loop info. As a consequence, the FunctionAAResultsWrapperPass directly depends on BasicAA and always includes it in the aggregation. This has significant implications for preserving analyses. Generally, most passes shouldn't bother preserving FunctionAAResultsWrapperPass because rebuilding the results just updates the set of known AA passes. The exception to this rule are LoopPass instances which need to preserve all the function analyses that the loop pass manager will end up needing. This means preserving both BasicAAWrapperPass and the aggregating FunctionAAResultsWrapperPass. Now, when preserving an alias analysis, you do so by directly preserving that analysis. This is only necessary for non-immutable-pass-provided alias analyses though, and there are only three of interest: BasicAA, GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is preserved when needed because it (like DominatorTree and LoopInfo) is marked as a CFG-only pass. I've expanded GlobalsAA into the preserved set everywhere we previously were preserving all of AliasAnalysis, and I've added SCEVAA in the intersection of that with where we preserve SCEV itself. One significant challenge to all of this is that the CGSCC passes were actually using the alias analysis implementations by taking advantage of a pretty amazing set of loop holes in the old pass manager's analysis management code which allowed analysis groups to slide through in many cases. Moving away from analysis groups makes this problem much more obvious. To fix it, I've leveraged the flexibility the design of the new PM components provides to just directly construct the relevant alias analyses for the relevant functions in the IPO passes that need them. This is a bit hacky, but should go away with the new pass manager, and is already in many ways cleaner than the prior state. Another significant challenge is that various facilities of the old alias analysis infrastructure just don't fit any more. The most significant of these is the alias analysis 'counter' pass. That pass relied on the ability to snoop on AA queries at different points in the analysis group chain. Instead, I'm planning to build printing functionality directly into the aggregation layer. I've not included that in this patch merely to keep it smaller. Note that all of this needs a nearly complete rewrite of the AA documentation. I'm planning to do that, but I'd like to make sure the new design settles, and to flesh out a bit more of what it looks like in the new pass manager first. Differential Revision: http://reviews.llvm.org/D12080 llvm-svn: 247167
2015-09-09 19:55:00 +02:00
void initializeObjCARCAAWrapperPassPass(PassRegistry&);
void initializeObjCARCAPElimPass(PassRegistry&);
void initializeObjCARCContractPass(PassRegistry&);
void initializeObjCARCExpandPass(PassRegistry&);
void initializeObjCARCOptPass(PassRegistry&);
void initializeOptimizationRemarkEmitterWrapperPassPass(PassRegistry&);
void initializeOptimizePHIsPass(PassRegistry&);
void initializePAEvalPass(PassRegistry&);
void initializePEIPass(PassRegistry&);
void initializePGOIndirectCallPromotionLegacyPassPass(PassRegistry&);
void initializePGOInstrumentationGenLegacyPassPass(PassRegistry&);
void initializePGOInstrumentationUseLegacyPassPass(PassRegistry&);
void initializePGOMemOPSizeOptLegacyPassPass(PassRegistry&);
void initializePHIEliminationPass(PassRegistry&);
void initializePartialInlinerLegacyPassPass(PassRegistry&);
void initializePartiallyInlineLibCallsLegacyPassPass(PassRegistry&);
void initializePatchableFunctionPass(PassRegistry&);
void initializePeepholeOptimizerPass(PassRegistry&);
void initializePhysicalRegisterUsageInfoPass(PassRegistry&);
void initializePlaceBackedgeSafepointsImplPass(PassRegistry&);
void initializePlaceSafepointsPass(PassRegistry&);
void initializePostDomOnlyPrinterPass(PassRegistry&);
void initializePostDomOnlyViewerPass(PassRegistry&);
void initializePostDomPrinterPass(PassRegistry&);
void initializePostDomViewerPass(PassRegistry&);
void initializePostDominatorTreeWrapperPassPass(PassRegistry&);
void initializePostMachineSchedulerPass(PassRegistry&);
void initializePostOrderFunctionAttrsLegacyPassPass(PassRegistry&);
void initializePostRAHazardRecognizerPass(PassRegistry&);
void initializePostRASchedulerPass(PassRegistry&);
void initializePreISelIntrinsicLoweringLegacyPassPass(PassRegistry&);
void initializePredicateInfoPrinterLegacyPassPass(PassRegistry&);
void initializePrintBasicBlockPassPass(PassRegistry&);
void initializePrintFunctionPassWrapperPass(PassRegistry&);
void initializePrintModulePassWrapperPass(PassRegistry&);
void initializeProcessImplicitDefsPass(PassRegistry&);
void initializeProfileSummaryInfoWrapperPassPass(PassRegistry&);
void initializePromoteLegacyPassPass(PassRegistry&);
void initializePruneEHPass(PassRegistry&);
void initializeRAGreedyPass(PassRegistry&);
void initializeReassociateLegacyPassPass(PassRegistry&);
void initializeRegBankSelectPass(PassRegistry&);
void initializeRegToMemPass(PassRegistry&);
void initializeRegionInfoPassPass(PassRegistry&);
void initializeRegionOnlyPrinterPass(PassRegistry&);
void initializeRegionOnlyViewerPass(PassRegistry&);
void initializeRegionPrinterPass(PassRegistry&);
void initializeRegionViewerPass(PassRegistry&);
void initializeRegisterCoalescerPass(PassRegistry&);
void initializeRenameIndependentSubregsPass(PassRegistry&);
void initializeResetMachineFunctionPass(PassRegistry&);
[PM] Port ReversePostOrderFunctionAttrs to the new PM Below are my super rough notes when porting. They can probably serve as a basic guide for porting other passes to the new PM. As I port more passes I'll expand and generalize this and make a proper docs/HowToPortToNewPassManager.rst document. There is also missing documentation for general concepts and API's in the new PM which will require some documentation. Once there is proper documentation in place we can put up a list of passes that have to be ported and game-ify/crowdsource the rest of the porting (at least of the middle end; the backend is still unclear). I will however be taking personal responsibility for ensuring that the LLD/ELF LTO pipeline is ported in a timely fashion. The remaining passes to be ported are (do something like `git grep "<the string in the bullet point below>"` to find the pass): General Scalar: [ ] Simplify the CFG [ ] Jump Threading [ ] MemCpy Optimization [ ] Promote Memory to Register [ ] MergedLoadStoreMotion [ ] Lazy Value Information Analysis General IPO: [ ] Dead Argument Elimination [ ] Deduce function attributes in RPO Loop stuff / vectorization stuff: [ ] Alignment from assumptions [ ] Canonicalize natural loops [ ] Delete dead loops [ ] Loop Access Analysis [ ] Loop Invariant Code Motion [ ] Loop Vectorization [ ] SLP Vectorizer [ ] Unroll loops Devirtualization / CFI: [ ] Cross-DSO CFI [ ] Whole program devirtualization [ ] Lower bitset metadata CGSCC passes: [ ] Function Integration/Inlining [ ] Remove unused exception handling info [ ] Promote 'by reference' arguments to scalars Please let me know if you are interested in working on any of the passes in the above list (e.g. reply to the post-commit thread for this patch). I'll probably be tackling "General Scalar" and "General IPO" first FWIW. Steps as I port "Deduce function attributes in RPO" --------------------------------------------------- (note: if you are doing any work based on these notes, please leave a note in the post-commit review thread for this commit with any improvements / suggestions / incompleteness you ran into!) Note: "Deduce function attributes in RPO" is a module pass. 1. Do preparatory refactoring. Do preparatory factoring. In this case all I had to do was to pull out a static helper (r272503). (TODO: give more advice here e.g. if pass holds state or something) 2. Rename the old pass class. llvm/lib/Transforms/IPO/FunctionAttrs.cpp Rename class ReversePostOrderFunctionAttrs -> ReversePostOrderFunctionAttrsLegacyPass in preparation for adding a class ReversePostOrderFunctionAttrs as the pass in the new PM. (edit: actually wait what? The new class name will be ReversePostOrderFunctionAttrsPass, so it doesn't conflict. So this step is sort of useless churn). llvm/include/llvm/InitializePasses.h llvm/lib/LTO/LTOCodeGenerator.cpp llvm/lib/Transforms/IPO/IPO.cpp llvm/lib/Transforms/IPO/FunctionAttrs.cpp Rename initializeReversePostOrderFunctionAttrsPass -> initializeReversePostOrderFunctionAttrsLegacyPassPass (note that the "PassPass" thing falls out of `s/ReversePostOrderFunctionAttrs/ReversePostOrderFunctionAttrsLegacyPass/`) Note that the INITIALIZE_PASS macro is what creates this identifier name, so renaming the class requires this renaming too. Note that createReversePostOrderFunctionAttrsPass does not need to be renamed since its name is not generated from the class name. 3. Add the new PM pass class. In the new PM all passes need to have their declaration in a header somewhere, so you will often need to add a header. In this case llvm/include/llvm/Transforms/IPO/FunctionAttrs.h is already there because PostOrderFunctionAttrsPass was already ported. The file-level comment from the .cpp file can be used as the file-level comment for the new header. You may want to tweak the wording slightly from "this file implements" to "this file provides" or similar. Add declaration for the new PM pass in this header: class ReversePostOrderFunctionAttrsPass : public PassInfoMixin<ReversePostOrderFunctionAttrsPass> { public: PreservedAnalyses run(Module &M, AnalysisManager<Module> &AM); }; Its name should end with `Pass` for consistency (note that this doesn't collide with the names of most old PM passes). E.g. call it `<name of the old PM pass>Pass`. Also, move the doxygen comment from the old PM pass to the declaration of this class in the header. Also, include the declaration for the new PM class `llvm/Transforms/IPO/FunctionAttrs.h` at the top of the file (in this case, it was already done when the other pass in this file was ported). Now define the `run` method for the new class. The main things here are: a) Use AM.getResult<...>(M) to get results instead of `getAnalysis<...>()` b) If the old PM pass would have returned "false" (i.e. `Changed == false`), then you should return PreservedAnalyses::all(); c) In the old PM getAnalysisUsage method, observe the calls `AU.addPreserved<...>();`. In the case `Changed == true`, for each preserved analysis you should do call `PA.preserve<...>()` on a PreservedAnalyses object and return it. E.g.: PreservedAnalyses PA; PA.preserve<CallGraphAnalysis>(); return PA; Note that calls to skipModule/skipFunction are not supported in the new PM currently, so optnone and optimization bisect support do not work. You can just drop those calls for now. 4. Add the pass to the new PM pass registry to make it available in opt. In llvm/lib/Passes/PassBuilder.cpp add a #include for your header. `#include "llvm/Transforms/IPO/FunctionAttrs.h"` In this case there is already an include (from when PostOrderFunctionAttrsPass was ported). Add your pass to llvm/lib/Passes/PassRegistry.def In this case, I added `MODULE_PASS("rpo-functionattrs", ReversePostOrderFunctionAttrsPass())` The string is from the `INITIALIZE_PASS*` macros used in the old pass manager. Then choose a test that uses the pass and use the new PM `-passes=...` to run it. E.g. in this case there is a test that does: ; RUN: opt < %s -basicaa -functionattrs -rpo-functionattrs -S | FileCheck %s I have added the line: ; RUN: opt < %s -aa-pipeline=basic-aa -passes='require<targetlibinfo>,cgscc(function-attrs),rpo-functionattrs' -S | FileCheck %s The `-aa-pipeline=basic-aa` and `require<targetlibinfo>,cgscc(function-attrs)` are what is needed to run functionattrs in the new PM (note that in the new PM "functionattrs" becomes "function-attrs" for some reason). This is just pulled from `readattrs.ll` which contains the change from when functionattrs was ported to the new PM. Adding rpo-functionattrs causes the pass that was just ported to run. llvm-svn: 272505
2016-06-12 09:48:51 +02:00
void initializeReversePostOrderFunctionAttrsLegacyPassPass(PassRegistry&);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 02:06:44 +01:00
void initializeRewriteStatepointsForGCPass(PassRegistry&);
void initializeRewriteSymbolsLegacyPassPass(PassRegistry&);
void initializeSCCPLegacyPassPass(PassRegistry&);
void initializeSCEVAAWrapperPassPass(PassRegistry&);
void initializeSLPVectorizerPass(PassRegistry&);
[PM] Port SROA to the new pass manager. In some ways this is a very boring port to the new pass manager as there are no interesting analyses or dependencies or other oddities. However, this does introduce the first good example of a transformation pass with non-trivial state porting to the new pass manager. I've tried to carve out patterns here to replicate elsewhere, and would appreciate comments on whether folks like these patterns: - A common need in the new pass manager is to effectively lift the pass class and some of its state into a public header file. Prior to this, LLVM used anonymous namespaces to provide "module private" types and utilities, but that doesn't scale to cases where a public header file is needed and the new pass manager will exacerbate that. The pattern I've adopted here is to use the namespace-cased-name of the core pass (what would be a module if we had them) as a module-private namespace. Then utility and other code can be declared and defined in this namespace. At some point in the future, we could even have (conditionally compiled) code that used modules features when available to do the same basic thing. - I've split the actual pass run method in two in order to expose a private method usable by the old pass manager to wrap the new class with a minimum of duplicated code. I actually looked at a bunch of ways to automate or generate these, but they are all quite terrible IMO. The fundamental need is to extract the set of analyses which need to cross this interface boundary, and that will end up being too unpredictable to effectively encapsulate IMO. This is also a relatively small amount of boiler plate that will live a relatively short time, so I'm not too worried about the fact that it is boiler plate. The rest of the patch is totally boring but results in a massive diff (sorry). It just moves code around and removes or adds qualifiers to reflect the new name and nesting structure. Differential Revision: http://reviews.llvm.org/D12773 llvm-svn: 247501
2015-09-12 11:09:14 +02:00
void initializeSROALegacyPassPass(PassRegistry&);
void initializeSafeStackPass(PassRegistry&);
void initializeSampleProfileLoaderLegacyPassPass(PassRegistry&);
void initializeSanitizerCoverageModulePass(PassRegistry&);
[PM] Port ScalarEvolution to the new pass manager. This change makes ScalarEvolution a stand-alone object and just produces one from a pass as needed. Making this work well requires making the object movable, using references instead of overwritten pointers in a number of places, and other refactorings. I've also wired it up to the new pass manager and added a RUN line to a test to exercise it under the new pass manager. This includes basic printing support much like with other analyses. But there is a big and somewhat scary change here. Prior to this patch ScalarEvolution was never *actually* invalidated!!! Re-running the pass just re-wired up the various other analyses and didn't remove any of the existing entries in the SCEV caches or clear out anything at all. This might seem OK as everything in SCEV that can uses ValueHandles to track updates to the values that serve as SCEV keys. However, this still means that as we ran SCEV over each function in the module, we kept accumulating more and more SCEVs into the cache. At the end, we would have a SCEV cache with every value that we ever needed a SCEV for in the entire module!!! Yowzers. The releaseMemory routine would dump all of this, but that isn't realy called during normal runs of the pipeline as far as I can see. To make matters worse, there *is* actually a key that we don't update with value handles -- there is a map keyed off of Loop*s. Because LoopInfo *does* release its memory from run to run, it is entirely possible to run SCEV over one function, then over another function, and then lookup a Loop* from the second function but find an entry inserted for the first function! Ouch. To make matters still worse, there are plenty of updates that *don't* trip a value handle. It seems incredibly unlikely that today GVN or another pass that invalidates SCEV can update values in *just* such a way that a subsequent run of SCEV will incorrectly find lookups in a cache, but it is theoretically possible and would be a nightmare to debug. With this refactoring, I've fixed all this by actually destroying and recreating the ScalarEvolution object from run to run. Technically, this could increase the amount of malloc traffic we see, but then again it is also technically correct. ;] I don't actually think we're suffering from tons of malloc traffic from SCEV because if we were, the fact that we never clear the memory would seem more likely to have come up as an actual problem before now. So, I've made the simple fix here. If in fact there are serious issues with too much allocation and deallocation, I can work on a clever fix that preserves the allocations (while clearing the data) between each run, but I'd prefer to do that kind of optimization with a test case / benchmark that shows why we need such cleverness (and that can test that we actually make it faster). It's possible that this will make some things faster by making the SCEV caches have higher locality (due to being significantly smaller) so until there is a clear benchmark, I think the simple change is best. Differential Revision: http://reviews.llvm.org/D12063 llvm-svn: 245193
2015-08-17 04:08:17 +02:00
void initializeScalarEvolutionWrapperPassPass(PassRegistry&);
void initializeScalarizerPass(PassRegistry&);
void initializeScopedNoAliasAAWrapperPassPass(PassRegistry&);
void initializeSeparateConstOffsetFromGEPPass(PassRegistry&);
void initializeShadowStackGCLoweringPass(PassRegistry&);
void initializeShrinkWrapPass(PassRegistry&);
void initializeSimpleInlinerPass(PassRegistry&);
void initializeSingleLoopExtractorPass(PassRegistry&);
void initializeSinkingLegacyPassPass(PassRegistry&);
void initializeSjLjEHPreparePass(PassRegistry&);
void initializeSlotIndexesPass(PassRegistry&);
void initializeSpeculativeExecutionLegacyPassPass(PassRegistry&);
void initializeSpillPlacementPass(PassRegistry&);
void initializeStackColoringPass(PassRegistry&);
void initializeStackMapLivenessPass(PassRegistry&);
void initializeStackProtectorPass(PassRegistry&);
void initializeStackSlotColoringPass(PassRegistry&);
void initializeStraightLineStrengthReducePass(PassRegistry&);
void initializeStripDeadDebugInfoPass(PassRegistry&);
void initializeStripDeadPrototypesLegacyPassPass(PassRegistry&);
void initializeStripDebugDeclarePass(PassRegistry&);
void initializeStripGCRelocatesPass(PassRegistry&);
void initializeStripNonDebugSymbolsPass(PassRegistry&);
void initializeStripNonLineTableDebugInfoPass(PassRegistry&);
void initializeStripSymbolsPass(PassRegistry&);
void initializeStructurizeCFGPass(PassRegistry&);
void initializeTailCallElimPass(PassRegistry&);
void initializeTailDuplicatePassPass(PassRegistry&);
void initializeTargetLibraryInfoWrapperPassPass(PassRegistry&);
void initializeTargetPassConfigPass(PassRegistry&);
void initializeTargetTransformInfoWrapperPassPass(PassRegistry&);
void initializeThreadSanitizerPass(PassRegistry&);
void initializeTwoAddressInstructionPassPass(PassRegistry&);
[PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible with the new pass manager, and no longer relying on analysis groups. This builds essentially a ground-up new AA infrastructure stack for LLVM. The core ideas are the same that are used throughout the new pass manager: type erased polymorphism and direct composition. The design is as follows: - FunctionAAResults is a type-erasing alias analysis results aggregation interface to walk a single query across a range of results from different alias analyses. Currently this is function-specific as we always assume that aliasing queries are *within* a function. - AAResultBase is a CRTP utility providing stub implementations of various parts of the alias analysis result concept, notably in several cases in terms of other more general parts of the interface. This can be used to implement only a narrow part of the interface rather than the entire interface. This isn't really ideal, this logic should be hoisted into FunctionAAResults as currently it will cause a significant amount of redundant work, but it faithfully models the behavior of the prior infrastructure. - All the alias analysis passes are ported to be wrapper passes for the legacy PM and new-style analysis passes for the new PM with a shared result object. In some cases (most notably CFL), this is an extremely naive approach that we should revisit when we can specialize for the new pass manager. - BasicAA has been restructured to reflect that it is much more fundamentally a function analysis because it uses dominator trees and loop info that need to be constructed for each function. All of the references to getting alias analysis results have been updated to use the new aggregation interface. All the preservation and other pass management code has been updated accordingly. The way the FunctionAAResultsWrapperPass works is to detect the available alias analyses when run, and add them to the results object. This means that we should be able to continue to respect when various passes are added to the pipeline, for example adding CFL or adding TBAA passes should just cause their results to be available and to get folded into this. The exception to this rule is BasicAA which really needs to be a function pass due to using dominator trees and loop info. As a consequence, the FunctionAAResultsWrapperPass directly depends on BasicAA and always includes it in the aggregation. This has significant implications for preserving analyses. Generally, most passes shouldn't bother preserving FunctionAAResultsWrapperPass because rebuilding the results just updates the set of known AA passes. The exception to this rule are LoopPass instances which need to preserve all the function analyses that the loop pass manager will end up needing. This means preserving both BasicAAWrapperPass and the aggregating FunctionAAResultsWrapperPass. Now, when preserving an alias analysis, you do so by directly preserving that analysis. This is only necessary for non-immutable-pass-provided alias analyses though, and there are only three of interest: BasicAA, GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is preserved when needed because it (like DominatorTree and LoopInfo) is marked as a CFG-only pass. I've expanded GlobalsAA into the preserved set everywhere we previously were preserving all of AliasAnalysis, and I've added SCEVAA in the intersection of that with where we preserve SCEV itself. One significant challenge to all of this is that the CGSCC passes were actually using the alias analysis implementations by taking advantage of a pretty amazing set of loop holes in the old pass manager's analysis management code which allowed analysis groups to slide through in many cases. Moving away from analysis groups makes this problem much more obvious. To fix it, I've leveraged the flexibility the design of the new PM components provides to just directly construct the relevant alias analyses for the relevant functions in the IPO passes that need them. This is a bit hacky, but should go away with the new pass manager, and is already in many ways cleaner than the prior state. Another significant challenge is that various facilities of the old alias analysis infrastructure just don't fit any more. The most significant of these is the alias analysis 'counter' pass. That pass relied on the ability to snoop on AA queries at different points in the analysis group chain. Instead, I'm planning to build printing functionality directly into the aggregation layer. I've not included that in this patch merely to keep it smaller. Note that all of this needs a nearly complete rewrite of the AA documentation. I'm planning to do that, but I'd like to make sure the new design settles, and to flesh out a bit more of what it looks like in the new pass manager first. Differential Revision: http://reviews.llvm.org/D12080 llvm-svn: 247167
2015-09-09 19:55:00 +02:00
void initializeTypeBasedAAWrapperPassPass(PassRegistry&);
void initializeUnifyFunctionExitNodesPass(PassRegistry&);
void initializeUnpackMachineBundlesPass(PassRegistry&);
void initializeUnreachableBlockElimLegacyPassPass(PassRegistry&);
void initializeUnreachableMachineBlockElimPass(PassRegistry&);
void initializeVerifierLegacyPassPass(PassRegistry&);
void initializeVirtRegMapPass(PassRegistry&);
void initializeVirtRegRewriterPass(PassRegistry&);
void initializeWholeProgramDevirtPass(PassRegistry&);
void initializeWinEHPreparePass(PassRegistry&);
void initializeWriteBitcodePassPass(PassRegistry&);
void initializeWriteThinLTOBitcodePass(PassRegistry&);
void initializeXRayInstrumentationPass(PassRegistry&);
}
#endif