1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00
llvm-mirror/lib/IR/LLVMContextImpl.cpp

252 lines
7.9 KiB
C++
Raw Normal View History

//===- LLVMContextImpl.cpp - Implement LLVMContextImpl --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the opaque LLVMContextImpl.
//
//===----------------------------------------------------------------------===//
#include "LLVMContextImpl.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/OptBisect.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/ManagedStatic.h"
#include <cassert>
#include <utility>
using namespace llvm;
LLVMContextImpl::LLVMContextImpl(LLVMContext &C)
: DiagHandler(llvm::make_unique<DiagnosticHandler>()),
VoidTy(C, Type::VoidTyID),
LabelTy(C, Type::LabelTyID),
HalfTy(C, Type::HalfTyID),
FloatTy(C, Type::FloatTyID),
DoubleTy(C, Type::DoubleTyID),
MetadataTy(C, Type::MetadataTyID),
[IR] Add token types This introduces the basic functionality to support "token types". The motivation stems from the need to perform operations on a Value whose provenance cannot be obscured. There are several applications for such a type but my immediate motivation stems from WinEH. Our personality routine enforces a single-entry - single-exit regime for cleanups. After several rounds of optimizations, we may be left with a terminator whose "cleanup-entry block" is not entirely clear because control flow has merged two cleanups together. We have experimented with using labels as operands inside of instructions which are not terminators to indicate where we came from but found that LLVM does not expect such exotic uses of BasicBlocks. Instead, we can use this new type to clearly associate the "entry point" and "exit point" of our cleanup. This is done by having the cleanuppad yield a Token and consuming it at the cleanupret. The token type makes it impossible to obscure or otherwise hide the Value, making it trivial to track the relationship between the two points. What is the burden to the optimizer? Well, it turns out we have already paid down this cost by accepting that there are certain calls that we are not permitted to duplicate, optimizations have to watch out for such instructions anyway. There are additional places in the optimizer that we will probably have to update but early examination has given me the impression that this will not be heroic. Differential Revision: http://reviews.llvm.org/D11861 llvm-svn: 245029
2015-08-14 07:09:07 +02:00
TokenTy(C, Type::TokenTyID),
X86_FP80Ty(C, Type::X86_FP80TyID),
FP128Ty(C, Type::FP128TyID),
PPC_FP128Ty(C, Type::PPC_FP128TyID),
X86_MMXTy(C, Type::X86_MMXTyID),
Int1Ty(C, 1),
Int8Ty(C, 8),
Int16Ty(C, 16),
Int32Ty(C, 32),
Int64Ty(C, 64),
Int128Ty(C, 128) {}
LLVMContextImpl::~LLVMContextImpl() {
// NOTE: We need to delete the contents of OwnedModules, but Module's dtor
// will call LLVMContextImpl::removeModule, thus invalidating iterators into
// the container. Avoid iterators during this operation:
while (!OwnedModules.empty())
delete *OwnedModules.begin();
#ifndef NDEBUG
// Check for metadata references from leaked Instructions.
for (auto &Pair : InstructionMetadata)
Pair.first->dump();
assert(InstructionMetadata.empty() &&
"Instructions with metadata have been leaked");
#endif
// Drop references for MDNodes. Do this before Values get deleted to avoid
// unnecessary RAUW when nodes are still unresolved.
for (auto *I : DistinctMDNodes)
I->dropAllReferences();
#define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
for (auto *I : CLASS##s) \
I->dropAllReferences();
#include "llvm/IR/Metadata.def"
// Also drop references that come from the Value bridges.
for (auto &Pair : ValuesAsMetadata)
Pair.second->dropUsers();
for (auto &Pair : MetadataAsValues)
Pair.second->dropUse();
// Destroy MDNodes.
for (MDNode *I : DistinctMDNodes)
I->deleteAsSubclass();
#define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
for (CLASS * I : CLASS##s) \
delete I;
#include "llvm/IR/Metadata.def"
// Free the constants.
for (auto *I : ExprConstants)
I->dropAllReferences();
for (auto *I : ArrayConstants)
I->dropAllReferences();
for (auto *I : StructConstants)
I->dropAllReferences();
for (auto *I : VectorConstants)
I->dropAllReferences();
ExprConstants.freeConstants();
ArrayConstants.freeConstants();
StructConstants.freeConstants();
VectorConstants.freeConstants();
InlineAsms.freeConstants();
CAZConstants.clear();
CPNConstants.clear();
UVConstants.clear();
IntConstants.clear();
FPConstants.clear();
for (auto &CDSConstant : CDSConstants)
delete CDSConstant.second;
CDSConstants.clear();
// Destroy attributes.
for (FoldingSetIterator<AttributeImpl> I = AttrsSet.begin(),
E = AttrsSet.end(); I != E; ) {
FoldingSetIterator<AttributeImpl> Elem = I++;
delete &*Elem;
}
// Destroy attribute lists.
for (FoldingSetIterator<AttributeListImpl> I = AttrsLists.begin(),
E = AttrsLists.end();
I != E;) {
FoldingSetIterator<AttributeListImpl> Elem = I++;
delete &*Elem;
}
// Destroy attribute node lists.
for (FoldingSetIterator<AttributeSetNode> I = AttrsSetNodes.begin(),
E = AttrsSetNodes.end(); I != E; ) {
FoldingSetIterator<AttributeSetNode> Elem = I++;
delete &*Elem;
}
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-09 19:38:53 +01:00
// Destroy MetadataAsValues.
{
SmallVector<MetadataAsValue *, 8> MDVs;
MDVs.reserve(MetadataAsValues.size());
for (auto &Pair : MetadataAsValues)
MDVs.push_back(Pair.second);
MetadataAsValues.clear();
for (auto *V : MDVs)
delete V;
}
// Destroy ValuesAsMetadata.
for (auto &Pair : ValuesAsMetadata)
delete Pair.second;
}
void LLVMContextImpl::dropTriviallyDeadConstantArrays() {
bool Changed;
do {
Changed = false;
for (auto I = ArrayConstants.begin(), E = ArrayConstants.end(); I != E;) {
auto *C = *I++;
if (C->use_empty()) {
Changed = true;
C->destroyConstant();
}
}
} while (Changed);
}
void Module::dropTriviallyDeadConstantArrays() {
Context.pImpl->dropTriviallyDeadConstantArrays();
}
namespace llvm {
/// Make MDOperand transparent for hashing.
///
/// This overload of an implementation detail of the hashing library makes
/// MDOperand hash to the same value as a \a Metadata pointer.
///
/// Note that overloading \a hash_value() as follows:
///
/// \code
/// size_t hash_value(const MDOperand &X) { return hash_value(X.get()); }
/// \endcode
///
/// does not cause MDOperand to be transparent. In particular, a bare pointer
/// doesn't get hashed before it's combined, whereas \a MDOperand would.
static const Metadata *get_hashable_data(const MDOperand &X) { return X.get(); }
} // end namespace llvm
unsigned MDNodeOpsKey::calculateHash(MDNode *N, unsigned Offset) {
unsigned Hash = hash_combine_range(N->op_begin() + Offset, N->op_end());
#ifndef NDEBUG
{
SmallVector<Metadata *, 8> MDs(N->op_begin() + Offset, N->op_end());
unsigned RawHash = calculateHash(MDs);
assert(Hash == RawHash &&
"Expected hash of MDOperand to equal hash of Metadata*");
}
#endif
return Hash;
}
unsigned MDNodeOpsKey::calculateHash(ArrayRef<Metadata *> Ops) {
return hash_combine_range(Ops.begin(), Ops.end());
}
StringMapEntry<uint32_t> *LLVMContextImpl::getOrInsertBundleTag(StringRef Tag) {
uint32_t NewIdx = BundleTagCache.size();
return &*(BundleTagCache.insert(std::make_pair(Tag, NewIdx)).first);
}
void LLVMContextImpl::getOperandBundleTags(SmallVectorImpl<StringRef> &Tags) const {
Tags.resize(BundleTagCache.size());
for (const auto &T : BundleTagCache)
Tags[T.second] = T.first();
}
uint32_t LLVMContextImpl::getOperandBundleTagID(StringRef Tag) const {
auto I = BundleTagCache.find(Tag);
assert(I != BundleTagCache.end() && "Unknown tag!");
return I->second;
}
SyncScope::ID LLVMContextImpl::getOrInsertSyncScopeID(StringRef SSN) {
auto NewSSID = SSC.size();
assert(NewSSID < std::numeric_limits<SyncScope::ID>::max() &&
"Hit the maximum number of synchronization scopes allowed!");
return SSC.insert(std::make_pair(SSN, SyncScope::ID(NewSSID))).first->second;
}
void LLVMContextImpl::getSyncScopeNames(
SmallVectorImpl<StringRef> &SSNs) const {
SSNs.resize(SSC.size());
for (const auto &SSE : SSC)
SSNs[SSE.second] = SSE.first();
}
/// Singleton instance of the OptBisect class.
///
/// This singleton is accessed via the LLVMContext::getOptPassGate() function.
/// It provides a mechanism to disable passes and individual optimizations at
/// compile time based on a command line option (-opt-bisect-limit) in order to
/// perform a bisecting search for optimization-related problems.
///
/// Even if multiple LLVMContext objects are created, they will all return the
/// same instance of OptBisect in order to provide a single bisect count. Any
/// code that uses the OptBisect object should be serialized when bisection is
/// enabled in order to enable a consistent bisect count.
static ManagedStatic<OptBisect> OptBisector;
OptPassGate &LLVMContextImpl::getOptPassGate() const {
if (!OPG)
OPG = &(*OptBisector);
return *OPG;
}
void LLVMContextImpl::setOptPassGate(OptPassGate& OPG) {
this->OPG = &OPG;
}