1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 03:02:36 +01:00

[VPlan] Introduce VPlan-based dominator analysis.

The patch introduces dominator analysis for VPBlockBases and extend
VPlan's GraphTraits specialization with the required interfaces. Dominator
analysis will be necessary to perform some H-CFG transformations and
to introduce VPLoopInfo (LoopInfo analysis on top of the VPlan representation).

Reviewers: fhahn, rengolin, mkuper, hfinkel, mssimpso

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D48815

llvm-svn: 338310
This commit is contained in:
Diego Caballero 2018-07-30 21:33:31 +00:00
parent 6b74a89e2d
commit 00583a45ed
9 changed files with 384 additions and 25 deletions

View File

@ -7060,8 +7060,8 @@ LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
auto Plan = llvm::make_unique<VPlan>();
// Build hierarchical CFG
VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI);
HCFGBuilder.buildHierarchicalCFG(*Plan.get());
VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
HCFGBuilder.buildHierarchicalCFG();
return Plan;
}

View File

@ -18,6 +18,7 @@
//===----------------------------------------------------------------------===//
#include "VPlan.h"
#include "VPlanDominatorTree.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallVector.h"
@ -25,7 +26,6 @@
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
@ -34,6 +34,7 @@
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GenericDomTreeConstruction.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
@ -576,3 +577,5 @@ void VPWidenMemoryInstructionRecipe::print(raw_ostream &O,
}
O << "\\l\"";
}
template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);

View File

@ -28,6 +28,7 @@
#include "VPlanValue.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallPtrSet.h"
@ -516,6 +517,16 @@ public:
/// Delete all blocks reachable from a given VPBlockBase, inclusive.
static void deleteCFG(VPBlockBase *Entry);
void printAsOperand(raw_ostream &OS, bool PrintType) const {
OS << getName();
}
void print(raw_ostream &OS) const {
// TODO: Only printing VPBB name for now since we only have dot printing
// support for VPInstructions/Recipes.
printAsOperand(OS, false);
}
};
/// VPRecipeBase is a base class modeling a sequence of one or more output IR
@ -1037,6 +1048,12 @@ public:
EntryBlock->setParent(this);
}
// FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a
// specific interface of llvm::Function, instead of using
// GraphTraints::getEntryNode. We should add a new template parameter to
// DominatorTreeBase representing the Graph type.
VPBlockBase &front() const { return *Entry; }
const VPBlockBase *getExit() const { return Exit; }
VPBlockBase *getExit() { return Exit; }
@ -1210,12 +1227,15 @@ inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) {
return OS;
}
//===--------------------------------------------------------------------===//
// GraphTraits specializations for VPlan/VPRegionBlock Control-Flow Graphs //
//===--------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs //
//===----------------------------------------------------------------------===//
// Provide specializations of GraphTraits to be able to treat a VPBlockBase as a
// graph of VPBlockBase nodes...
// The following set of template specializations implement GraphTraits to treat
// any VPBlockBase as a node in a graph of VPBlockBases. It's important to note
// that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the
// VPBlockBase is a VPRegionBlock, this specialization provides access to its
// successors/predecessors but not to the blocks inside the region.
template <> struct GraphTraits<VPBlockBase *> {
using NodeRef = VPBlockBase *;
@ -1247,17 +1267,13 @@ template <> struct GraphTraits<const VPBlockBase *> {
}
};
// Provide specializations of GraphTraits to be able to treat a VPBlockBase as a
// graph of VPBlockBase nodes... and to walk it in inverse order. Inverse order
// for a VPBlockBase is considered to be when traversing the predecessors of a
// VPBlockBase instead of its successors.
// Inverse order specialization for VPBasicBlocks. Predecessors are used instead
// of successors for the inverse traversal.
template <> struct GraphTraits<Inverse<VPBlockBase *>> {
using NodeRef = VPBlockBase *;
using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
static Inverse<VPBlockBase *> getEntryNode(Inverse<VPBlockBase *> B) {
return B;
}
static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; }
static inline ChildIteratorType child_begin(NodeRef N) {
return N->getPredecessors().begin();
@ -1268,6 +1284,71 @@ template <> struct GraphTraits<Inverse<VPBlockBase *>> {
}
};
// The following set of template specializations implement GraphTraits to
// treat VPRegionBlock as a graph and recurse inside its nodes. It's important
// to note that the blocks inside the VPRegionBlock are treated as VPBlockBases
// (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so
// there won't be automatic recursion into other VPBlockBases that turn to be
// VPRegionBlocks.
template <>
struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> {
using GraphRef = VPRegionBlock *;
using nodes_iterator = df_iterator<NodeRef>;
static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
static nodes_iterator nodes_begin(GraphRef N) {
return nodes_iterator::begin(N->getEntry());
}
static nodes_iterator nodes_end(GraphRef N) {
// df_iterator::end() returns an empty iterator so the node used doesn't
// matter.
return nodes_iterator::end(N);
}
};
template <>
struct GraphTraits<const VPRegionBlock *>
: public GraphTraits<const VPBlockBase *> {
using GraphRef = const VPRegionBlock *;
using nodes_iterator = df_iterator<NodeRef>;
static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
static nodes_iterator nodes_begin(GraphRef N) {
return nodes_iterator::begin(N->getEntry());
}
static nodes_iterator nodes_end(GraphRef N) {
// df_iterator::end() returns an empty iterator so the node used doesn't
// matter.
return nodes_iterator::end(N);
}
};
template <>
struct GraphTraits<Inverse<VPRegionBlock *>>
: public GraphTraits<Inverse<VPBlockBase *>> {
using GraphRef = VPRegionBlock *;
using nodes_iterator = df_iterator<NodeRef>;
static NodeRef getEntryNode(Inverse<GraphRef> N) {
return N.Graph->getExit();
}
static nodes_iterator nodes_begin(GraphRef N) {
return nodes_iterator::begin(N->getExit());
}
static nodes_iterator nodes_end(GraphRef N) {
// df_iterator::end() returns an empty iterator so the node used doesn't
// matter.
return nodes_iterator::end(N);
}
};
//===----------------------------------------------------------------------===//
// VPlan Utilities
//===----------------------------------------------------------------------===//

View File

@ -0,0 +1,41 @@
//===-- VPlanDominatorTree.h ------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements dominator tree analysis for a single level of a VPlan's
/// H-CFG.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLANDOMINATORTREE_H
#define LLVM_TRANSFORMS_VECTORIZE_VPLANDOMINATORTREE_H
#include "VPlan.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/IR/Dominators.h"
namespace llvm {
/// Template specialization of the standard LLVM dominator tree utility for
/// VPBlockBases.
using VPDominatorTree = DomTreeBase<VPBlockBase>;
using VPDomTreeNode = DomTreeNodeBase<VPBlockBase>;
/// Template specializations of GraphTraits for VPDomTreeNode.
template <>
struct GraphTraits<VPDomTreeNode *>
: public DomTreeGraphTraitsBase<VPDomTreeNode, VPDomTreeNode::iterator> {};
template <>
struct GraphTraits<const VPDomTreeNode *>
: public DomTreeGraphTraitsBase<const VPDomTreeNode,
VPDomTreeNode::const_iterator> {};
} // namespace llvm
#endif // LLVM_TRANSFORMS_VECTORIZE_VPLANDOMINATORTREE_H

View File

@ -324,13 +324,22 @@ VPRegionBlock *PlainCFGBuilder::buildPlainCFG() {
return TopRegion;
}
// Public interface to build a H-CFG.
void VPlanHCFGBuilder::buildHierarchicalCFG(VPlan &Plan) {
// Build Top Region enclosing the plain CFG and set it as VPlan entry.
VPRegionBlock *VPlanHCFGBuilder::buildPlainCFG() {
PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan);
VPRegionBlock *TopRegion = PCFGBuilder.buildPlainCFG();
return PCFGBuilder.buildPlainCFG();
}
// Public interface to build a H-CFG.
void VPlanHCFGBuilder::buildHierarchicalCFG() {
// Build Top Region enclosing the plain CFG and set it as VPlan entry.
VPRegionBlock *TopRegion = buildPlainCFG();
Plan.setEntry(TopRegion);
LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan);
Verifier.verifyHierarchicalCFG(TopRegion);
// Compute plain CFG dom tree for VPLInfo.
VPDomTree.recalculate(*TopRegion);
LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n";
VPDomTree.print(dbgs()));
}

View File

@ -26,14 +26,18 @@
#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_VPLANHCFGBUILDER_H
#include "VPlan.h"
#include "VPlanDominatorTree.h"
#include "VPlanVerifier.h"
namespace llvm {
class Loop;
class VPlanTestBase;
/// Main class to build the VPlan H-CFG for an incoming IR.
class VPlanHCFGBuilder {
friend VPlanTestBase;
private:
// The outermost loop of the input loop nest considered for vectorization.
Loop *TheLoop;
@ -41,14 +45,27 @@ private:
// Loop Info analysis.
LoopInfo *LI;
// The VPlan that will contain the H-CFG we are building.
VPlan &Plan;
// VPlan verifier utility.
VPlanVerifier Verifier;
public:
VPlanHCFGBuilder(Loop *Lp, LoopInfo *LI) : TheLoop(Lp), LI(LI) {}
// Dominator analysis for VPlan plain CFG to be used in the
// construction of the H-CFG. This analysis is no longer valid once regions
// are introduced.
VPDominatorTree VPDomTree;
/// Build H-CFG for TheLoop and update \p Plan accordingly.
void buildHierarchicalCFG(VPlan &Plan);
/// Build plain CFG for TheLoop. Return a new VPRegionBlock (TopRegion)
/// enclosing the plain CFG.
VPRegionBlock *buildPlainCFG();
public:
VPlanHCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P)
: TheLoop(Lp), LI(LI), Plan(P) {}
/// Build H-CFG for TheLoop and update Plan accordingly.
void buildHierarchicalCFG();
};
} // namespace llvm

View File

@ -6,6 +6,7 @@ set(LLVM_LINK_COMPONENTS
)
add_llvm_unittest(VectorizeTests
VPlanDominatorTreeTest.cpp
VPlanTest.cpp
VPlanHCFGTest.cpp
)

View File

@ -0,0 +1,196 @@
//===- llvm/unittests/Transforms/Vectorize/VPlanDominatorTreeTest.cpp -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "../lib/Transforms/Vectorize/VPlanHCFGBuilder.h"
#include "VPlanTestBase.h"
#include "gtest/gtest.h"
namespace llvm {
namespace {
class VPlanDominatorTreeTest : public VPlanTestBase {};
TEST_F(VPlanDominatorTreeTest, BasicVPBBDomination) {
const char *ModuleString =
"define void @f(i32* %a, i32* %b, i32* %c, i32 %N, i32 %M, i32 %K) {\n"
"entry:\n"
" br label %for.body\n"
"for.body:\n"
" %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.inc ]\n"
" br i1 true, label %if.then, label %if.else\n"
"if.then:\n"
" br label %for.inc\n"
"if.else:\n"
" br label %for.inc\n"
"for.inc:\n"
" %iv.next = add nuw nsw i64 %iv, 1\n"
" %exitcond = icmp eq i64 %iv.next, 300\n"
" br i1 %exitcond, label %for.end, label %for.body\n"
"for.end:\n"
" ret void\n"
"}\n";
Module &M = parseModule(ModuleString);
Function *F = M.getFunction("f");
BasicBlock *LoopHeader = F->getEntryBlock().getSingleSuccessor();
auto Plan = buildPlainCFG(LoopHeader);
// Build VPlan domination tree analysis.
VPRegionBlock *TopRegion = cast<VPRegionBlock>(Plan->getEntry());
VPDominatorTree VPDT;
VPDT.recalculate(*TopRegion);
VPBlockBase *PH = TopRegion->getEntry();
VPBlockBase *H = PH->getSingleSuccessor();
VPBlockBase *IfThen = H->getSuccessors()[0];
VPBlockBase *IfElse = H->getSuccessors()[1];
VPBlockBase *Latch = IfThen->getSingleSuccessor();
VPBlockBase *Exit = Latch->getSuccessors()[0] != H
? Latch->getSuccessors()[0]
: Latch->getSuccessors()[1];
// Reachability.
EXPECT_TRUE(VPDT.isReachableFromEntry(PH));
EXPECT_TRUE(VPDT.isReachableFromEntry(H));
EXPECT_TRUE(VPDT.isReachableFromEntry(IfThen));
EXPECT_TRUE(VPDT.isReachableFromEntry(IfElse));
EXPECT_TRUE(VPDT.isReachableFromEntry(Latch));
EXPECT_TRUE(VPDT.isReachableFromEntry(Exit));
// VPBB dominance.
EXPECT_TRUE(VPDT.dominates(PH, PH));
EXPECT_TRUE(VPDT.dominates(PH, H));
EXPECT_TRUE(VPDT.dominates(PH, IfThen));
EXPECT_TRUE(VPDT.dominates(PH, IfElse));
EXPECT_TRUE(VPDT.dominates(PH, Latch));
EXPECT_TRUE(VPDT.dominates(PH, Exit));
EXPECT_FALSE(VPDT.dominates(H, PH));
EXPECT_TRUE(VPDT.dominates(H, H));
EXPECT_TRUE(VPDT.dominates(H, IfThen));
EXPECT_TRUE(VPDT.dominates(H, IfElse));
EXPECT_TRUE(VPDT.dominates(H, Latch));
EXPECT_TRUE(VPDT.dominates(H, Exit));
EXPECT_FALSE(VPDT.dominates(IfThen, PH));
EXPECT_FALSE(VPDT.dominates(IfThen, H));
EXPECT_TRUE(VPDT.dominates(IfThen, IfThen));
EXPECT_FALSE(VPDT.dominates(IfThen, IfElse));
EXPECT_FALSE(VPDT.dominates(IfThen, Latch));
EXPECT_FALSE(VPDT.dominates(IfThen, Exit));
EXPECT_FALSE(VPDT.dominates(IfElse, PH));
EXPECT_FALSE(VPDT.dominates(IfElse, H));
EXPECT_FALSE(VPDT.dominates(IfElse, IfThen));
EXPECT_TRUE(VPDT.dominates(IfElse, IfElse));
EXPECT_FALSE(VPDT.dominates(IfElse, Latch));
EXPECT_FALSE(VPDT.dominates(IfElse, Exit));
EXPECT_FALSE(VPDT.dominates(Latch, PH));
EXPECT_FALSE(VPDT.dominates(Latch, H));
EXPECT_FALSE(VPDT.dominates(Latch, IfThen));
EXPECT_FALSE(VPDT.dominates(Latch, IfElse));
EXPECT_TRUE(VPDT.dominates(Latch, Latch));
EXPECT_TRUE(VPDT.dominates(Latch, Exit));
EXPECT_FALSE(VPDT.dominates(Exit, PH));
EXPECT_FALSE(VPDT.dominates(Exit, H));
EXPECT_FALSE(VPDT.dominates(Exit, IfThen));
EXPECT_FALSE(VPDT.dominates(Exit, IfElse));
EXPECT_FALSE(VPDT.dominates(Exit, Latch));
EXPECT_TRUE(VPDT.dominates(Exit, Exit));
// VPBB proper dominance.
EXPECT_FALSE(VPDT.properlyDominates(PH, PH));
EXPECT_TRUE(VPDT.properlyDominates(PH, H));
EXPECT_TRUE(VPDT.properlyDominates(PH, IfThen));
EXPECT_TRUE(VPDT.properlyDominates(PH, IfElse));
EXPECT_TRUE(VPDT.properlyDominates(PH, Latch));
EXPECT_TRUE(VPDT.properlyDominates(PH, Exit));
EXPECT_FALSE(VPDT.properlyDominates(H, PH));
EXPECT_FALSE(VPDT.properlyDominates(H, H));
EXPECT_TRUE(VPDT.properlyDominates(H, IfThen));
EXPECT_TRUE(VPDT.properlyDominates(H, IfElse));
EXPECT_TRUE(VPDT.properlyDominates(H, Latch));
EXPECT_TRUE(VPDT.properlyDominates(H, Exit));
EXPECT_FALSE(VPDT.properlyDominates(IfThen, PH));
EXPECT_FALSE(VPDT.properlyDominates(IfThen, H));
EXPECT_FALSE(VPDT.properlyDominates(IfThen, IfThen));
EXPECT_FALSE(VPDT.properlyDominates(IfThen, IfElse));
EXPECT_FALSE(VPDT.properlyDominates(IfThen, Latch));
EXPECT_FALSE(VPDT.properlyDominates(IfThen, Exit));
EXPECT_FALSE(VPDT.properlyDominates(IfElse, PH));
EXPECT_FALSE(VPDT.properlyDominates(IfElse, H));
EXPECT_FALSE(VPDT.properlyDominates(IfElse, IfThen));
EXPECT_FALSE(VPDT.properlyDominates(IfElse, IfElse));
EXPECT_FALSE(VPDT.properlyDominates(IfElse, Latch));
EXPECT_FALSE(VPDT.properlyDominates(IfElse, Exit));
EXPECT_FALSE(VPDT.properlyDominates(Latch, PH));
EXPECT_FALSE(VPDT.properlyDominates(Latch, H));
EXPECT_FALSE(VPDT.properlyDominates(Latch, IfThen));
EXPECT_FALSE(VPDT.properlyDominates(Latch, IfElse));
EXPECT_FALSE(VPDT.properlyDominates(Latch, Latch));
EXPECT_TRUE(VPDT.properlyDominates(Latch, Exit));
EXPECT_FALSE(VPDT.properlyDominates(Exit, PH));
EXPECT_FALSE(VPDT.properlyDominates(Exit, H));
EXPECT_FALSE(VPDT.properlyDominates(Exit, IfThen));
EXPECT_FALSE(VPDT.properlyDominates(Exit, IfElse));
EXPECT_FALSE(VPDT.properlyDominates(Exit, Latch));
EXPECT_FALSE(VPDT.properlyDominates(Exit, Exit));
// VPBB nearest common dominator.
EXPECT_EQ(PH, VPDT.findNearestCommonDominator(PH, PH));
EXPECT_EQ(PH, VPDT.findNearestCommonDominator(PH, H));
EXPECT_EQ(PH, VPDT.findNearestCommonDominator(PH, IfThen));
EXPECT_EQ(PH, VPDT.findNearestCommonDominator(PH, IfElse));
EXPECT_EQ(PH, VPDT.findNearestCommonDominator(PH, Latch));
EXPECT_EQ(PH, VPDT.findNearestCommonDominator(PH, Exit));
EXPECT_EQ(PH, VPDT.findNearestCommonDominator(H, PH));
EXPECT_EQ(H, VPDT.findNearestCommonDominator(H, H));
EXPECT_EQ(H, VPDT.findNearestCommonDominator(H, IfThen));
EXPECT_EQ(H, VPDT.findNearestCommonDominator(H, IfElse));
EXPECT_EQ(H, VPDT.findNearestCommonDominator(H, Latch));
EXPECT_EQ(H, VPDT.findNearestCommonDominator(H, Exit));
EXPECT_EQ(PH, VPDT.findNearestCommonDominator(IfThen, PH));
EXPECT_EQ(H, VPDT.findNearestCommonDominator(IfThen, H));
EXPECT_EQ(IfThen, VPDT.findNearestCommonDominator(IfThen, IfThen));
EXPECT_EQ(H, VPDT.findNearestCommonDominator(IfThen, IfElse));
EXPECT_EQ(H, VPDT.findNearestCommonDominator(IfThen, Latch));
EXPECT_EQ(H, VPDT.findNearestCommonDominator(IfThen, Exit));
EXPECT_EQ(PH, VPDT.findNearestCommonDominator(IfElse, PH));
EXPECT_EQ(H, VPDT.findNearestCommonDominator(IfElse, H));
EXPECT_EQ(H, VPDT.findNearestCommonDominator(IfElse, IfThen));
EXPECT_EQ(IfElse, VPDT.findNearestCommonDominator(IfElse, IfElse));
EXPECT_EQ(H, VPDT.findNearestCommonDominator(IfElse, Latch));
EXPECT_EQ(H, VPDT.findNearestCommonDominator(IfElse, Exit));
EXPECT_EQ(PH, VPDT.findNearestCommonDominator(Latch, PH));
EXPECT_EQ(H, VPDT.findNearestCommonDominator(Latch, H));
EXPECT_EQ(H, VPDT.findNearestCommonDominator(Latch, IfThen));
EXPECT_EQ(H, VPDT.findNearestCommonDominator(Latch, IfElse));
EXPECT_EQ(Latch, VPDT.findNearestCommonDominator(Latch, Latch));
EXPECT_EQ(Latch, VPDT.findNearestCommonDominator(Latch, Exit));
EXPECT_EQ(PH, VPDT.findNearestCommonDominator(Exit, PH));
EXPECT_EQ(H, VPDT.findNearestCommonDominator(Exit, H));
EXPECT_EQ(H, VPDT.findNearestCommonDominator(Exit, IfThen));
EXPECT_EQ(H, VPDT.findNearestCommonDominator(Exit, IfElse));
EXPECT_EQ(Latch, VPDT.findNearestCommonDominator(Exit, Latch));
EXPECT_EQ(Exit, VPDT.findNearestCommonDominator(Exit, Exit));
}
} // namespace
} // namespace llvm

View File

@ -50,8 +50,19 @@ protected:
doAnalysis(*LoopHeader->getParent());
auto Plan = llvm::make_unique<VPlan>();
VPlanHCFGBuilder HCFGBuilder(LI->getLoopFor(LoopHeader), LI.get());
HCFGBuilder.buildHierarchicalCFG(*Plan.get());
VPlanHCFGBuilder HCFGBuilder(LI->getLoopFor(LoopHeader), LI.get(), *Plan);
HCFGBuilder.buildHierarchicalCFG();
return Plan;
}
/// Build the VPlan plain CFG for the loop starting from \p LoopHeader.
VPlanPtr buildPlainCFG(BasicBlock *LoopHeader) {
doAnalysis(*LoopHeader->getParent());
auto Plan = llvm::make_unique<VPlan>();
VPlanHCFGBuilder HCFGBuilder(LI->getLoopFor(LoopHeader), LI.get(), *Plan);
VPRegionBlock *TopRegion = HCFGBuilder.buildPlainCFG();
Plan->setEntry(TopRegion);
return Plan;
}
};