1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 02:52:53 +02:00

Temporarily Revert "[DataLayout] Fix occurrences that size and range of pointers are assumed to be the same."

This reverts commit 5f6208778ff92567c57d7c1e2e740c284d7e69a5.

This caused failures in Transforms/PhaseOrdering/scev-custom-dl.ll
const: Assertion `getBitWidth() == CR.getBitWidth() && "ConstantRange types don't agree!"' failed.
This commit is contained in:
Nicola Zaghen 2019-12-12 10:25:14 +00:00
parent 68c2c66be0
commit 07073d8479
22 changed files with 79 additions and 232 deletions

View File

@ -222,9 +222,9 @@ public:
// offsets on this pointer.
// FIXME: Support a vector of pointers.
assert(I.getType()->isPointerTy());
IntegerType *IntIdxTy = cast<IntegerType>(DL.getIndexType(I.getType()));
IntegerType *IntPtrTy = cast<IntegerType>(DL.getIntPtrType(I.getType()));
IsOffsetKnown = true;
Offset = APInt(IntIdxTy->getBitWidth(), 0);
Offset = APInt(IntPtrTy->getBitWidth(), 0);
PI.reset();
// Enqueue the uses of this pointer.

View File

@ -29,15 +29,15 @@ template <typename IRBuilderTy>
Value *EmitGEPOffset(IRBuilderTy *Builder, const DataLayout &DL, User *GEP,
bool NoAssumptions = false) {
GEPOperator *GEPOp = cast<GEPOperator>(GEP);
Type *IntIdxTy = DL.getIndexType(GEP->getType());
Value *Result = Constant::getNullValue(IntIdxTy);
Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
Value *Result = Constant::getNullValue(IntPtrTy);
// If the GEP is inbounds, we know that none of the addressing operations will
// overflow in a signed sense.
bool isInBounds = GEPOp->isInBounds() && !NoAssumptions;
// Build a mask for high order bits.
unsigned IntPtrWidth = IntIdxTy->getScalarType()->getIntegerBitWidth();
unsigned IntPtrWidth = IntPtrTy->getScalarType()->getIntegerBitWidth();
uint64_t PtrSizeMask =
std::numeric_limits<uint64_t>::max() >> (64 - IntPtrWidth);
@ -56,17 +56,17 @@ Value *EmitGEPOffset(IRBuilderTy *Builder, const DataLayout &DL, User *GEP,
Size = DL.getStructLayout(STy)->getElementOffset(OpValue);
if (Size)
Result = Builder->CreateAdd(Result, ConstantInt::get(IntIdxTy, Size),
Result = Builder->CreateAdd(Result, ConstantInt::get(IntPtrTy, Size),
GEP->getName()+".offs");
continue;
}
// Splat the constant if needed.
if (IntIdxTy->isVectorTy() && !OpC->getType()->isVectorTy())
OpC = ConstantVector::getSplat(IntIdxTy->getVectorNumElements(), OpC);
if (IntPtrTy->isVectorTy() && !OpC->getType()->isVectorTy())
OpC = ConstantVector::getSplat(IntPtrTy->getVectorNumElements(), OpC);
Constant *Scale = ConstantInt::get(IntIdxTy, Size);
Constant *OC = ConstantExpr::getIntegerCast(OpC, IntIdxTy, true /*SExt*/);
Constant *Scale = ConstantInt::get(IntPtrTy, Size);
Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
Scale =
ConstantExpr::getMul(OC, Scale, false /*NUW*/, isInBounds /*NSW*/);
// Emit an add instruction.
@ -75,15 +75,15 @@ Value *EmitGEPOffset(IRBuilderTy *Builder, const DataLayout &DL, User *GEP,
}
// Splat the index if needed.
if (IntIdxTy->isVectorTy() && !Op->getType()->isVectorTy())
Op = Builder->CreateVectorSplat(IntIdxTy->getVectorNumElements(), Op);
if (IntPtrTy->isVectorTy() && !Op->getType()->isVectorTy())
Op = Builder->CreateVectorSplat(IntPtrTy->getVectorNumElements(), Op);
// Convert to correct type.
if (Op->getType() != IntIdxTy)
Op = Builder->CreateIntCast(Op, IntIdxTy, true, Op->getName()+".c");
if (Op->getType() != IntPtrTy)
Op = Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c");
if (Size != 1) {
// We'll let instcombine(mul) convert this to a shl if possible.
Op = Builder->CreateMul(Op, ConstantInt::get(IntIdxTy, Size),
Op = Builder->CreateMul(Op, ConstantInt::get(IntPtrTy, Size),
GEP->getName() + ".idx", false /*NUW*/,
isInBounds /*NSW*/);
}

View File

@ -766,8 +766,8 @@ Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
Type *ResultTy, Optional<unsigned> InRangeIndex,
const DataLayout &DL, const TargetLibraryInfo *TLI) {
Type *IntIdxTy = DL.getIndexType(ResultTy);
Type *IntIdxScalarTy = IntIdxTy->getScalarType();
Type *IntPtrTy = DL.getIntPtrType(ResultTy);
Type *IntPtrScalarTy = IntPtrTy->getScalarType();
bool Any = false;
SmallVector<Constant*, 32> NewIdxs;
@ -775,11 +775,11 @@ Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
if ((i == 1 ||
!isa<StructType>(GetElementPtrInst::getIndexedType(
SrcElemTy, Ops.slice(1, i - 1)))) &&
Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
Ops[i]->getType()->getScalarType() != IntPtrScalarTy) {
Any = true;
Type *NewType = Ops[i]->getType()->isVectorTy()
? IntIdxTy
: IntIdxScalarTy;
? IntPtrTy
: IntPtrTy->getScalarType();
NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
true,
NewType,
@ -839,7 +839,7 @@ Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
if (!Ptr->getType()->isPointerTy())
return nullptr;
Type *IntIdxTy = DL.getIndexType(Ptr->getType());
Type *IntPtrTy = DL.getIntPtrType(Ptr->getType());
// If this is a constant expr gep that is effectively computing an
// "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
@ -850,7 +850,7 @@ Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
// "inttoptr (sub (ptrtoint Ptr), V)"
if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) {
auto *CE = dyn_cast<ConstantExpr>(Ops[1]);
assert((!CE || CE->getType() == IntIdxTy) &&
assert((!CE || CE->getType() == IntPtrTy) &&
"CastGEPIndices didn't canonicalize index types!");
if (CE && CE->getOpcode() == Instruction::Sub &&
CE->getOperand(0)->isNullValue()) {
@ -865,7 +865,7 @@ Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
return nullptr;
}
unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
unsigned BitWidth = DL.getTypeSizeInBits(IntPtrTy);
APInt Offset =
APInt(BitWidth,
DL.getIndexedOffsetInType(
@ -945,7 +945,7 @@ Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
// The element size is 0. This may be [0 x Ty]*, so just use a zero
// index for this level and proceed to the next level to see if it can
// accommodate the offset.
NewIdxs.push_back(ConstantInt::get(IntIdxTy, 0));
NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
} else {
// The element size is non-zero divide the offset by the element
// size (rounding down), to compute the index at this level.
@ -954,7 +954,7 @@ Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
if (Overflow)
break;
Offset -= NewIdx * ElemSize;
NewIdxs.push_back(ConstantInt::get(IntIdxTy, NewIdx));
NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
}
} else {
auto *STy = cast<StructType>(Ty);

View File

@ -1678,8 +1678,8 @@ ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
assert(V->getType()->isPointerTy() && "Unexpected operand type!");
} while (Visited.insert(V).second);
Type *IdxPtrTy = DL.getIndexType(V->getType());
return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset));
Type *IntPtrTy = DL.getIntPtrType(V->getContext(), AS);
return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
}
/// Find dead blocks due to deleted CFG edges during inlining.

View File

@ -662,16 +662,16 @@ static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
bool AllowNonInbounds = false) {
assert(V->getType()->isPtrOrPtrVectorTy());
Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
APInt Offset = APInt::getNullValue(IntIdxTy->getIntegerBitWidth());
Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
// As that strip may trace through `addrspacecast`, need to sext or trunc
// the offset calculated.
IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth());
IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
Offset = Offset.sextOrTrunc(IntPtrTy->getIntegerBitWidth());
Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset);
Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
if (V->getType()->isVectorTy())
return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
OffsetIntPtr);
@ -4032,7 +4032,7 @@ static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
// The following transforms are only safe if the ptrtoint cast
// doesn't truncate the pointers.
if (Ops[1]->getType()->getScalarSizeInBits() ==
Q.DL.getPointerSizeInBits(AS)) {
Q.DL.getIndexSizeInBits(AS)) {
auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
if (match(P, m_Zero()))
return Constant::getNullValue(GEPTy);

View File

@ -150,7 +150,7 @@ bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty,
// Require ABI alignment for loads without alignment specification
const Align Alignment = DL.getValueOrABITypeAlignment(MA, Ty);
APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()),
APInt AccessSize(DL.getIndexTypeSizeInBits(V->getType()),
DL.getTypeStoreSize(Ty));
return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI,
DT);

View File

@ -544,7 +544,6 @@ Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second);
Value *UseZero =
Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second);
ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType);
return Builder.CreateSelect(UseZero, ConstantInt::get(ResultType, 0),
ResultSize);
}
@ -577,7 +576,7 @@ ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
}
SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
IntTyBits = DL.getIndexTypeSizeInBits(V->getType());
IntTyBits = DL.getPointerTypeSizeInBits(V->getType());
Zero = APInt::getNullValue(IntTyBits);
V = V->stripPointerCasts();
@ -747,7 +746,7 @@ ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
SizeOffsetType PtrData = compute(GEP.getPointerOperand());
APInt Offset(DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()), 0);
APInt Offset(IntTyBits, 0);
if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
return unknown();
@ -835,7 +834,7 @@ ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
// XXX - Are vectors of pointers possible here?
IntTy = cast<IntegerType>(DL.getIndexType(V->getType()));
IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
Zero = ConstantInt::get(IntTy, 0);
SizeOffsetEvalType Result = compute_(V);
@ -939,12 +938,12 @@ SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) {
}
Value *FirstArg = CS.getArgument(FnData->FstParam);
FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy);
FirstArg = Builder.CreateZExt(FirstArg, IntTy);
if (FnData->SndParam < 0)
return std::make_pair(FirstArg, Zero);
Value *SecondArg = CS.getArgument(FnData->SndParam);
SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy);
SecondArg = Builder.CreateZExt(SecondArg, IntTy);
Value *Size = Builder.CreateMul(FirstArg, SecondArg);
return std::make_pair(Size, Zero);

View File

@ -3495,7 +3495,7 @@ ScalarEvolution::getGEPExpr(GEPOperator *GEP,
const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
// getSCEV(Base)->getType() has the same address space as Base->getType()
// because SCEV::getType() preserves the address space.
Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
// FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
// instruction to its SCEV, because the Instruction may be guarded by control
// flow and the no-overflow bits may not be valid for the expression in any
@ -3504,7 +3504,7 @@ ScalarEvolution::getGEPExpr(GEPOperator *GEP,
SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
: SCEV::FlagAnyWrap;
const SCEV *TotalOffset = getZero(IntIdxTy);
const SCEV *TotalOffset = getZero(IntPtrTy);
// The array size is unimportant. The first thing we do on CurTy is getting
// its element type.
Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0);
@ -3514,7 +3514,7 @@ ScalarEvolution::getGEPExpr(GEPOperator *GEP,
// For a struct, add the member offset.
ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
unsigned FieldNo = Index->getZExtValue();
const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
// Add the field offset to the running total offset.
TotalOffset = getAddExpr(TotalOffset, FieldOffset);
@ -3525,9 +3525,9 @@ ScalarEvolution::getGEPExpr(GEPOperator *GEP,
// Update CurTy to its element type.
CurTy = cast<SequentialType>(CurTy)->getElementType();
// For an array, add the element offset, explicitly scaled.
const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
// Getelementptr indices are signed.
IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
// Multiply the index by the element size to compute the element offset.
const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
@ -3786,7 +3786,7 @@ uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
/// Return a type with the same bitwidth as the given type and which represents
/// how SCEV will treat the given type, for which isSCEVable must return
/// true. For pointer types, this is the pointer index sized integer type.
/// true. For pointer types, this is the pointer-sized integer type.
Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
assert(isSCEVable(Ty) && "Type is not SCEVable!");
@ -3795,7 +3795,7 @@ Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
// The only other support type is pointer.
assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
return getDataLayout().getIndexType(Ty);
return getDataLayout().getIntPtrType(Ty);
}
Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
@ -5726,15 +5726,6 @@ ScalarEvolution::getRangeRef(const SCEV *S,
assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
"generalize as needed!");
unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
// If the pointer size is larger than the index size type, this can cause
// NS to be larger than BitWidth. So compensate for this.
if (U->getType()->isPointerTy()) {
unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
int ptrIdxDiff = ptrSize - BitWidth;
if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
NS -= ptrIdxDiff;
}
if (NS > 1)
ConservativeResult = ConservativeResult.intersectWith(
ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),

View File

@ -414,7 +414,7 @@ Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
// without the other.
SplitAddRecs(Ops, Ty, SE);
Type *IntIdxTy = DL.getIndexType(PTy);
Type *IntPtrTy = DL.getIntPtrType(PTy);
// Descend down the pointer's type and attempt to convert the other
// operands into GEP indices, at each level. The first index in a GEP
@ -426,7 +426,7 @@ Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
// array indexing.
SmallVector<const SCEV *, 8> ScaledOps;
if (ElTy->isSized()) {
const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy);
const SCEV *ElSize = SE.getSizeOfExpr(IntPtrTy, ElTy);
if (!ElSize->isZero()) {
SmallVector<const SCEV *, 8> NewOps;
for (const SCEV *Op : Ops) {

View File

@ -90,7 +90,7 @@ static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
if (unsigned BitWidth = Ty->getScalarSizeInBits())
return BitWidth;
return DL.getPointerTypeSizeInBits(Ty);
return DL.getIndexTypeSizeInBits(Ty);
}
namespace {
@ -1137,7 +1137,7 @@ static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
// which fall through here.
Type *ScalarTy = SrcTy->getScalarType();
SrcBitWidth = ScalarTy->isPointerTy() ?
Q.DL.getPointerTypeSizeInBits(ScalarTy) :
Q.DL.getIndexTypeSizeInBits(ScalarTy) :
Q.DL.getTypeSizeInBits(ScalarTy);
assert(SrcBitWidth && "SrcBitWidth can't be zero");
@ -1664,7 +1664,7 @@ void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
Type *ScalarTy = V->getType()->getScalarType();
unsigned ExpectedWidth = ScalarTy->isPointerTy() ?
Q.DL.getPointerTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy);
Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy);
assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth");
(void)BitWidth;
(void)ExpectedWidth;
@ -2409,7 +2409,7 @@ static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
Type *ScalarTy = V->getType()->getScalarType();
unsigned TyBits = ScalarTy->isPointerTy() ?
Q.DL.getPointerTypeSizeInBits(ScalarTy) :
Q.DL.getIndexTypeSizeInBits(ScalarTy) :
Q.DL.getTypeSizeInBits(ScalarTy);
unsigned Tmp, Tmp2;

View File

@ -9322,8 +9322,8 @@ unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
const GlobalValue *GV = nullptr;
int64_t GVOffset = 0;
if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
KnownBits Known(PtrWidth);
unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType());
KnownBits Known(IdxWidth);
llvm::computeKnownBits(GV, Known, getDataLayout());
unsigned AlignBits = Known.countMinTrailingZeros();
unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;

View File

@ -768,13 +768,13 @@ unsigned DataLayout::getPrefTypeAlignment(Type *Ty) const {
IntegerType *DataLayout::getIntPtrType(LLVMContext &C,
unsigned AddressSpace) const {
return IntegerType::get(C, getPointerSizeInBits(AddressSpace));
return IntegerType::get(C, getIndexSizeInBits(AddressSpace));
}
Type *DataLayout::getIntPtrType(Type *Ty) const {
assert(Ty->isPtrOrPtrVectorTy() &&
"Expected a pointer or pointer vector type.");
unsigned NumBits = getPointerTypeSizeInBits(Ty);
unsigned NumBits = getIndexTypeSizeInBits(Ty);
IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits);
if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
return VectorType::get(IntTy, VecTy->getNumElements());

View File

@ -1832,7 +1832,7 @@ Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
Type *Ty = CI.getType();
unsigned AS = CI.getPointerAddressSpace();
if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS))
if (Ty->getScalarSizeInBits() == DL.getIndexSizeInBits(AS))
return commonPointerCastTransforms(CI);
Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);

View File

@ -4930,7 +4930,7 @@ Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
// Get scalar or pointer size.
unsigned BitWidth = Ty->isIntOrIntVectorTy()
? Ty->getScalarSizeInBits()
: DL.getPointerTypeSizeInBits(Ty->getScalarType());
: DL.getIndexTypeSizeInBits(Ty->getScalarType());
if (!BitWidth)
return nullptr;

View File

@ -901,12 +901,12 @@ bool LoopIdiomRecognize::processLoopStridedStore(
SCEVExpander Expander(*SE, *DL, "loop-idiom");
Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
Type *IntIdxTy = DL->getIndexType(DestPtr->getType());
Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS);
const SCEV *Start = Ev->getStart();
// Handle negative strided loops.
if (NegStride)
Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSize, SE);
Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE);
// TODO: ideally we should still be able to generate memset if SCEV expander
// is taught to generate the dependencies at the latest point.
@ -934,7 +934,7 @@ bool LoopIdiomRecognize::processLoopStridedStore(
// Okay, everything looks good, insert the memset.
const SCEV *NumBytesS =
getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE);
getNumBytes(BECount, IntPtr, StoreSize, CurLoop, DL, SE);
// TODO: ideally we should still be able to generate memset if SCEV expander
// is taught to generate the dependencies at the latest point.
@ -942,7 +942,7 @@ bool LoopIdiomRecognize::processLoopStridedStore(
return false;
Value *NumBytes =
Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
CallInst *NewCall;
if (SplatValue) {
@ -955,7 +955,7 @@ bool LoopIdiomRecognize::processLoopStridedStore(
Module *M = TheStore->getModule();
StringRef FuncName = "memset_pattern16";
FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(),
Int8PtrTy, Int8PtrTy, IntIdxTy);
Int8PtrTy, Int8PtrTy, IntPtr);
inferLibFuncAttributes(M, FuncName, *TLI);
// Otherwise we should form a memset_pattern16. PatternValue is known to be
@ -1022,11 +1022,11 @@ bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
const SCEV *StrStart = StoreEv->getStart();
unsigned StrAS = SI->getPointerAddressSpace();
Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS));
Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS);
// Handle negative strided loops.
if (NegStride)
StrStart = getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSize, SE);
StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE);
// Okay, we have a strided store "p[i]" of a loaded value. We can turn
// this into a memcpy in the loop preheader now if we want. However, this
@ -1052,7 +1052,7 @@ bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
// Handle negative strided loops.
if (NegStride)
LdStart = getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSize, SE);
LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE);
// For a memcpy, we have to make sure that the input array is not being
// mutated by the loop.
@ -1074,10 +1074,10 @@ bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
// Okay, everything is safe, we can transform this!
const SCEV *NumBytesS =
getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE);
getNumBytes(BECount, IntPtrTy, StoreSize, CurLoop, DL, SE);
Value *NumBytes =
Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
CallInst *NewCall = nullptr;
// Check whether to generate an unordered atomic memcpy:

View File

@ -2579,7 +2579,7 @@ void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
if (!NewTy->isPointerTy())
return;
unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy);
if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
MDNode *NN = MDNode::get(OldLI.getContext(), None);
NewLI.setMetadata(LLVMContext::MD_nonnull, NN);

View File

@ -1,32 +0,0 @@
; RUN: opt -instcombine -S < %s | FileCheck %s
target datalayout = "e-m:o-p:40:64:64:32-i64:64-f80:128-n8:16:32:64-S128"
; check that memory builtins can be handled.
define i64 @objsize1_custom_idx(i64 %sz) {
entry:
%ptr = call i8* @malloc(i64 %sz)
%ptr2 = getelementptr inbounds i8, i8* %ptr, i32 2
%calc_size = call i64 @llvm.objectsize.i64.p0i8(i8* %ptr2, i1 false, i1 true, i1 true)
ret i64 %calc_size
}
%struct.V = type { [10 x i8], i32, [10 x i8] }
define i32 @objsize2_custom_idx() #0 {
entry:
%var = alloca %struct.V, align 4
%0 = bitcast %struct.V* %var to i8*
call void @llvm.lifetime.start.p0i8(i64 28, i8* %0) #3
%buf1 = getelementptr inbounds %struct.V, %struct.V* %var, i32 0, i32 0
%arrayidx = getelementptr inbounds [10 x i8], [10 x i8]* %buf1, i64 0, i64 1
%1 = call i64 @llvm.objectsize.i64.p0i8(i8* %arrayidx, i1 false, i1 false, i1 false)
%conv = trunc i64 %1 to i32
call void @llvm.lifetime.end.p0i8(i64 28, i8* %0) #3
ret i32 %conv
; CHECK: ret i32 27
}
declare void @llvm.lifetime.start.p0i8(i64, i8* nocapture) #1
declare void @llvm.lifetime.end.p0i8(i64, i8* nocapture) #1
declare i8* @malloc(i64)
declare i64 @llvm.objectsize.i64.p0i8(i8*, i1, i1, i1)

View File

@ -164,22 +164,3 @@ define i32 @test10() {
%B = ptrtoint double* %A to i32
ret i32 %B
}
@X_as1 = addrspace(1) global [1000 x i8] zeroinitializer, align 16
define i16 @constant_fold_custom_dl() {
; CHECK-LABEL: @constant_fold_custom_dl(
; CHECK: ret i16 ptrtoint
entry:
%A = bitcast i8 addrspace(1)* getelementptr inbounds ([1000 x i8], [1000 x i8] addrspace(1)* @X_as1, i64 1, i64 0) to i8 addrspace(1)*
%B = bitcast i8 addrspace(1)* getelementptr inbounds ([1000 x i8], [1000 x i8] addrspace(1)* @X_as1, i64 0, i64 0) to i8 addrspace(1)*
%B2 = ptrtoint i8 addrspace(1)* %B to i16
%C = sub i16 0, %B2
%D = getelementptr i8, i8 addrspace(1)* %A, i16 %C
%E = ptrtoint i8 addrspace(1)* %D to i16
ret i16 %E
}

View File

@ -8,8 +8,8 @@ declare i32 @test58_d(i64 )
define i1 @test59(i8* %foo) {
; CHECK-LABEL: @test59(
; CHECK-NEXT: [[GEP1:%.*]] = getelementptr inbounds i8, i8* [[FOO:%.*]], i32 8
; CHECK-NEXT: [[TMP1:%.*]] = ptrtoint i8* [[GEP1]] to i40
; CHECK-NEXT: [[USE:%.*]] = zext i40 [[TMP1]] to i64
; CHECK-NEXT: [[TMP1:%.*]] = ptrtoint i8* [[GEP1]] to i32
; CHECK-NEXT: [[USE:%.*]] = zext i32 [[TMP1]] to i64
; CHECK-NEXT: [[CALL:%.*]] = call i32 @test58_d(i64 [[USE]])
; CHECK-NEXT: ret i1 true
;

View File

@ -1,22 +0,0 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -instcombine -S -mtriple=x86_64-unknown-linux-gnu | FileCheck %s
target datalayout = "e-m:o-p:40:64:64:32-i64:64-f80:128-n8:16:32:64-S128"
%struct._IO_FILE = type { i32, i8*, i8*, i8*, i8*, i8*, i8*, i8*, i8*, i8*, i8*, i8*, %struct._IO_marker*, %struct._IO_FILE*, i32, i32, i64, i16, i8, [1 x i8], i8*, i64, i8*, i8*, i8*, i8*, i64, i32, [20 x i8] }
%struct._IO_marker = type { %struct._IO_marker*, %struct._IO_FILE*, i32 }
@.str = private unnamed_addr constant [5 x i8] c"file\00", align 1
@.str.1 = private unnamed_addr constant [2 x i8] c"w\00", align 1
@.str.2 = private unnamed_addr constant [4 x i8] c"str\00", align 1
; Check fwrite is generated with arguments of ptr size, not index size
define internal void @fputs_test_custom_dl() {
; CHECK-LABEL: @fputs_test_custom_dl(
; CHECK-NEXT: [[TMP1:%.*]] = call %struct._IO_FILE* @fopen(i8* getelementptr inbounds ([5 x i8], [5 x i8]* @.str, i32 0, i32 0), i8* getelementptr inbounds ([2 x i8], [2 x i8]* @.str.1, i32 0, i32 0))
;
%call = call %struct._IO_FILE* @fopen(i8* getelementptr inbounds ([5 x i8], [5 x i8]* @.str, i64 0, i64 0), i8* getelementptr inbounds ([2 x i8], [2 x i8]* @.str.1, i64 0, i64 0))
%call1 = call i32 @fputs(i8* getelementptr inbounds ([4 x i8], [4 x i8]* @.str.2, i64 0, i64 0), %struct._IO_FILE* %call)
ret void
}
declare %struct._IO_FILE* @fopen(i8*, i8*)
declare i32 @fputs(i8* nocapture readonly, %struct._IO_FILE* nocapture)

View File

@ -65,73 +65,3 @@ for.inc: ; preds = %for.body
for.end: ; preds = %for.cond
ret void
}
@array = weak global [101 x i32] zeroinitializer, align 32 ; <[100 x i32]*> [#uses=1]
; CHECK: Loop %bb: backedge-taken count is 100
define void @test_range_ref1a(i32 %x) {
entry:
br label %bb
bb: ; preds = %bb, %entry
%i.01.0 = phi i32 [ 100, %entry ], [ %tmp4, %bb ] ; <i32> [#uses=2]
%tmp1 = getelementptr [101 x i32], [101 x i32]* @array, i32 0, i32 %i.01.0 ; <i32*> [#uses=1]
store i32 %x, i32* %tmp1
%tmp4 = add i32 %i.01.0, -1 ; <i32> [#uses=2]
%tmp7 = icmp sgt i32 %tmp4, -1 ; <i1> [#uses=1]
br i1 %tmp7, label %bb, label %return
return: ; preds = %bb
ret void
}
define i32 @test_loop_idiom_recogize(i32 %x, i32 %y, i32* %lam, i32* %alp) nounwind {
bb1.thread:
br label %bb1
bb1: ; preds = %bb1, %bb1.thread
%indvar = phi i32 [ 0, %bb1.thread ], [ %indvar.next, %bb1 ] ; <i32> [#uses=4]
%i.0.reg2mem.0 = sub i32 255, %indvar ; <i32> [#uses=2]
%0 = getelementptr i32, i32* %alp, i32 %i.0.reg2mem.0 ; <i32*> [#uses=1]
%1 = load i32, i32* %0, align 4 ; <i32> [#uses=1]
%2 = getelementptr i32, i32* %lam, i32 %i.0.reg2mem.0 ; <i32*> [#uses=1]
store i32 %1, i32* %2, align 4
%3 = sub i32 254, %indvar ; <i32> [#uses=1]
%4 = icmp slt i32 %3, 0 ; <i1> [#uses=1]
%indvar.next = add i32 %indvar, 1 ; <i32> [#uses=1]
br i1 %4, label %bb2, label %bb1
bb2: ; preds = %bb1
%tmp10 = mul i32 %indvar, %x ; <i32> [#uses=1]
%z.0.reg2mem.0 = add i32 %tmp10, %y ; <i32> [#uses=1]
%5 = add i32 %z.0.reg2mem.0, %x ; <i32> [#uses=1]
ret i32 %5
}
declare void @use(i1)
declare void @llvm.experimental.guard(i1, ...)
; This tests getRangeRef acts as intended with different idx size.
; CHECK: max backedge-taken count is 318
define void @test_range_ref1(i8 %t) {
entry:
%t.ptr = inttoptr i8 %t to i8*
%p.42 = inttoptr i8 42 to i8*
%cmp1 = icmp slt i8* %t.ptr, %p.42
call void(i1, ...) @llvm.experimental.guard(i1 %cmp1) [ "deopt"() ]
br label %loop
loop:
%idx = phi i8* [ %t.ptr, %entry ], [ %snext, %loop ]
%snext = getelementptr inbounds i8, i8* %idx, i64 1
%c = icmp slt i8* %idx, %p.42
call void @use(i1 %c)
%be = icmp slt i8* %snext, %p.42
br i1 %be, label %loop, label %exit
exit:
ret void
}

View File

@ -33,10 +33,10 @@ F: ; preds = %0
define void @test1_ptr(i32* %V) {
; CHECK-LABEL: @test1_ptr(
; CHECK-NEXT: [[MAGICPTR:%.*]] = ptrtoint i32* [[V:%.*]] to i40
; CHECK-NEXT: switch i40 [[MAGICPTR]], label [[F:%.*]] [
; CHECK-NEXT: i40 17, label [[T:%.*]]
; CHECK-NEXT: i40 4, label [[T]]
; CHECK-NEXT: [[MAGICPTR:%.*]] = ptrtoint i32* [[V:%.*]] to i32
; CHECK-NEXT: switch i32 [[MAGICPTR]], label [[F:%.*]] [
; CHECK-NEXT: i32 17, label [[T:%.*]]
; CHECK-NEXT: i32 4, label [[T]]
; CHECK-NEXT: ]
; CHECK: T:
; CHECK-NEXT: call void @foo1()
@ -59,10 +59,10 @@ F: ; preds = %0
define void @test1_ptr_as1(i32 addrspace(1)* %V) {
; CHECK-LABEL: @test1_ptr_as1(
; CHECK-NEXT: [[MAGICPTR:%.*]] = ptrtoint i32 addrspace(1)* [[V:%.*]] to i40
; CHECK-NEXT: switch i40 [[MAGICPTR]], label [[F:%.*]] [
; CHECK-NEXT: i40 17, label [[T:%.*]]
; CHECK-NEXT: i40 4, label [[T]]
; CHECK-NEXT: [[MAGICPTR:%.*]] = ptrtoint i32 addrspace(1)* [[V:%.*]] to i32
; CHECK-NEXT: switch i32 [[MAGICPTR]], label [[F:%.*]] [
; CHECK-NEXT: i32 17, label [[T:%.*]]
; CHECK-NEXT: i32 4, label [[T]]
; CHECK-NEXT: ]
; CHECK: T:
; CHECK-NEXT: call void @foo1()