mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 18:54:02 +01:00
[APFloat] Fix fusedMultiplyAdd when this
equals to Addend
Up until now, the arguments to `fusedMultiplyAdd` are passed by reference. We must save the `Addend` value on the beginning of the function, before we modify `this`, as they may be the same reference. To fix this, we now pass the `addend` parameter of `multiplySignificand` by value (instead of by-ref), and have a default value of zero. Fix PR44051. Differential Revision: https://reviews.llvm.org/D70422
This commit is contained in:
parent
95972f8c89
commit
094f071eba
@ -487,7 +487,8 @@ private:
|
||||
integerPart addSignificand(const IEEEFloat &);
|
||||
integerPart subtractSignificand(const IEEEFloat &, integerPart);
|
||||
lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract);
|
||||
lostFraction multiplySignificand(const IEEEFloat &, const IEEEFloat *);
|
||||
lostFraction multiplySignificand(const IEEEFloat &, IEEEFloat);
|
||||
lostFraction multiplySignificand(const IEEEFloat&);
|
||||
lostFraction divideSignificand(const IEEEFloat &);
|
||||
void incrementSignificand();
|
||||
void initialize(const fltSemantics *);
|
||||
|
@ -992,7 +992,7 @@ IEEEFloat::integerPart IEEEFloat::subtractSignificand(const IEEEFloat &rhs,
|
||||
on to the full-precision result of the multiplication. Returns the
|
||||
lost fraction. */
|
||||
lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs,
|
||||
const IEEEFloat *addend) {
|
||||
IEEEFloat addend) {
|
||||
unsigned int omsb; // One, not zero, based MSB.
|
||||
unsigned int partsCount, newPartsCount, precision;
|
||||
integerPart *lhsSignificand;
|
||||
@ -1036,7 +1036,7 @@ lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs,
|
||||
// toward left by two bits, and adjust exponent accordingly.
|
||||
exponent += 2;
|
||||
|
||||
if (addend && addend->isNonZero()) {
|
||||
if (addend.isNonZero()) {
|
||||
// The intermediate result of the multiplication has "2 * precision"
|
||||
// signicant bit; adjust the addend to be consistent with mul result.
|
||||
//
|
||||
@ -1065,19 +1065,18 @@ lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs,
|
||||
significand.parts = fullSignificand;
|
||||
semantics = &extendedSemantics;
|
||||
|
||||
IEEEFloat extendedAddend(*addend);
|
||||
status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
|
||||
status = addend.convert(extendedSemantics, rmTowardZero, &ignored);
|
||||
assert(status == opOK);
|
||||
(void)status;
|
||||
|
||||
// Shift the significand of the addend right by one bit. This guarantees
|
||||
// that the high bit of the significand is zero (same as fullSignificand),
|
||||
// so the addition will overflow (if it does overflow at all) into the top bit.
|
||||
lost_fraction = extendedAddend.shiftSignificandRight(1);
|
||||
lost_fraction = addend.shiftSignificandRight(1);
|
||||
assert(lost_fraction == lfExactlyZero &&
|
||||
"Lost precision while shifting addend for fused-multiply-add.");
|
||||
|
||||
lost_fraction = addOrSubtractSignificand(extendedAddend, false);
|
||||
lost_fraction = addOrSubtractSignificand(addend, false);
|
||||
|
||||
/* Restore our state. */
|
||||
if (newPartsCount == 1)
|
||||
@ -1120,6 +1119,10 @@ lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs,
|
||||
return lost_fraction;
|
||||
}
|
||||
|
||||
lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs) {
|
||||
return multiplySignificand(rhs, IEEEFloat(*semantics));
|
||||
}
|
||||
|
||||
/* Multiply the significands of LHS and RHS to DST. */
|
||||
lostFraction IEEEFloat::divideSignificand(const IEEEFloat &rhs) {
|
||||
unsigned int bit, i, partsCount;
|
||||
@ -1725,7 +1728,7 @@ IEEEFloat::opStatus IEEEFloat::multiply(const IEEEFloat &rhs,
|
||||
fs = multiplySpecials(rhs);
|
||||
|
||||
if (isFiniteNonZero()) {
|
||||
lostFraction lost_fraction = multiplySignificand(rhs, nullptr);
|
||||
lostFraction lost_fraction = multiplySignificand(rhs);
|
||||
fs = normalize(rounding_mode, lost_fraction);
|
||||
if (lost_fraction != lfExactlyZero)
|
||||
fs = (opStatus) (fs | opInexact);
|
||||
@ -1826,7 +1829,7 @@ IEEEFloat::opStatus IEEEFloat::fusedMultiplyAdd(const IEEEFloat &multiplicand,
|
||||
addend.isFinite()) {
|
||||
lostFraction lost_fraction;
|
||||
|
||||
lost_fraction = multiplySignificand(multiplicand, &addend);
|
||||
lost_fraction = multiplySignificand(multiplicand, addend);
|
||||
fs = normalize(rounding_mode, lost_fraction);
|
||||
if (lost_fraction != lfExactlyZero)
|
||||
fs = (opStatus) (fs | opInexact);
|
||||
@ -2449,7 +2452,7 @@ IEEEFloat::roundSignificandWithExponent(const integerPart *decSigParts,
|
||||
|
||||
if (exp >= 0) {
|
||||
/* multiplySignificand leaves the precision-th bit set to 1. */
|
||||
calcLostFraction = decSig.multiplySignificand(pow5, nullptr);
|
||||
calcLostFraction = decSig.multiplySignificand(pow5);
|
||||
powHUerr = powStatus != opOK;
|
||||
} else {
|
||||
calcLostFraction = decSig.divideSignificand(pow5);
|
||||
|
@ -547,6 +547,14 @@ TEST(APFloatTest, FMA) {
|
||||
f1.fusedMultiplyAdd(f2, f3, APFloat::rmNearestTiesToEven);
|
||||
EXPECT_EQ(-8.85242279E-41f, f1.convertToFloat());
|
||||
}
|
||||
|
||||
// Test using only a single instance of APFloat.
|
||||
{
|
||||
APFloat F(1.5);
|
||||
|
||||
F.fusedMultiplyAdd(F, F, APFloat::rmNearestTiesToEven);
|
||||
EXPECT_EQ(3.75, F.convertToDouble());
|
||||
}
|
||||
}
|
||||
|
||||
TEST(APFloatTest, MinNum) {
|
||||
|
Loading…
Reference in New Issue
Block a user