1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00

rename ClassifyExpression -> ClassifyExpr

llvm-svn: 10592
This commit is contained in:
Chris Lattner 2003-12-23 08:04:08 +00:00
parent 6ecac445aa
commit 099e1f16b8
4 changed files with 19 additions and 19 deletions

View File

@ -233,13 +233,13 @@ static inline ExprType negate(const ExprType &E, Value *V) {
}
// ClassifyExpression: Analyze an expression to determine the complexity of the
// expression, and which other values it depends on.
// ClassifyExpr: Analyze an expression to determine the complexity of the
// expression, and which other values it depends on.
//
// Note that this analysis cannot get into infinite loops because it treats PHI
// nodes as being an unknown linear expression.
//
ExprType llvm::ClassifyExpression(Value *Expr) {
ExprType llvm::ClassifyExpr(Value *Expr) {
assert(Expr != 0 && "Can't classify a null expression!");
if (Expr->getType() == Type::FloatTy || Expr->getType() == Type::DoubleTy)
return Expr; // FIXME: Can't handle FP expressions
@ -266,14 +266,14 @@ ExprType llvm::ClassifyExpression(Value *Expr) {
switch (I->getOpcode()) { // Handle each instruction type separately
case Instruction::Add: {
ExprType Left (ClassifyExpression(I->getOperand(0)));
ExprType Right(ClassifyExpression(I->getOperand(1)));
ExprType Left (ClassifyExpr(I->getOperand(0)));
ExprType Right(ClassifyExpr(I->getOperand(1)));
return handleAddition(Left, Right, I);
} // end case Instruction::Add
case Instruction::Sub: {
ExprType Left (ClassifyExpression(I->getOperand(0)));
ExprType Right(ClassifyExpression(I->getOperand(1)));
ExprType Left (ClassifyExpr(I->getOperand(0)));
ExprType Right(ClassifyExpr(I->getOperand(1)));
ExprType RightNeg = negate(Right, I);
if (RightNeg.Var == I && !RightNeg.Offset && !RightNeg.Scale)
return I; // Could not negate value...
@ -281,9 +281,9 @@ ExprType llvm::ClassifyExpression(Value *Expr) {
} // end case Instruction::Sub
case Instruction::Shl: {
ExprType Right(ClassifyExpression(I->getOperand(1)));
ExprType Right(ClassifyExpr(I->getOperand(1)));
if (Right.ExprTy != ExprType::Constant) break;
ExprType Left(ClassifyExpression(I->getOperand(0)));
ExprType Left(ClassifyExpr(I->getOperand(0)));
if (Right.Offset == 0) return Left; // shl x, 0 = x
assert(Right.Offset->getType() == Type::UByteTy &&
"Shift amount must always be a unsigned byte!");
@ -308,8 +308,8 @@ ExprType llvm::ClassifyExpression(Value *Expr) {
} // end case Instruction::Shl
case Instruction::Mul: {
ExprType Left (ClassifyExpression(I->getOperand(0)));
ExprType Right(ClassifyExpression(I->getOperand(1)));
ExprType Left (ClassifyExpr(I->getOperand(0)));
ExprType Right(ClassifyExpr(I->getOperand(1)));
if (Left.ExprTy > Right.ExprTy)
std::swap(Left, Right); // Make left be simpler than right
@ -323,7 +323,7 @@ ExprType llvm::ClassifyExpression(Value *Expr) {
} // end case Instruction::Mul
case Instruction::Cast: {
ExprType Src(ClassifyExpression(I->getOperand(0)));
ExprType Src(ClassifyExpr(I->getOperand(0)));
const Type *DestTy = I->getType();
if (isa<PointerType>(DestTy))
DestTy = Type::ULongTy; // Pointer types are represented as ulong

View File

@ -89,8 +89,8 @@ InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo): End(0) {
Value *V2 = Phi->getIncomingValue(1);
if (L == 0) { // No loop information? Base everything on expression analysis
ExprType E1 = ClassifyExpression(V1);
ExprType E2 = ClassifyExpression(V2);
ExprType E1 = ClassifyExpr(V1);
ExprType E2 = ClassifyExpr(V2);
if (E1.ExprTy > E2.ExprTy) // Make E1 be the simpler expression
std::swap(E1, E2);
@ -152,7 +152,7 @@ InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo): End(0) {
}
if (Step == 0) { // Unrecognized step value...
ExprType StepE = ClassifyExpression(V2);
ExprType StepE = ClassifyExpr(V2);
if (StepE.ExprTy != ExprType::Linear ||
StepE.Var != Phi) return;
@ -160,7 +160,7 @@ InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo): End(0) {
if (isa<PointerType>(ETy)) ETy = Type::ULongTy;
Step = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy, 0));
} else { // We were able to get a step value, simplify with expr analysis
ExprType StepE = ClassifyExpression(Step);
ExprType StepE = ClassifyExpr(Step);
if (StepE.ExprTy == ExprType::Linear && StepE.Offset == 0) {
// No offset from variable? Grab the variable
Step = StepE.Var;

View File

@ -52,7 +52,7 @@ static bool MallocConvertibleToType(MallocInst *MI, const Type *Ty,
if (!Ty->isSized()) return false; // Can only alloc something with a size
// Analyze the number of bytes allocated...
ExprType Expr = ClassifyExpression(MI->getArraySize());
ExprType Expr = ClassifyExpr(MI->getArraySize());
// Get information about the base datatype being allocated, before & after
int ReqTypeSize = TD.getTypeSize(Ty);
@ -89,7 +89,7 @@ static Instruction *ConvertMallocToType(MallocInst *MI, const Type *Ty,
BasicBlock::iterator It = BB->end();
// Analyze the number of bytes allocated...
ExprType Expr = ClassifyExpression(MI->getArraySize());
ExprType Expr = ClassifyExpr(MI->getArraySize());
const PointerType *AllocTy = cast<PointerType>(Ty);
const Type *ElType = AllocTy->getElementType();

View File

@ -104,7 +104,7 @@ const Type *ConvertibleToGEP(const Type *Ty, Value *OffsetVal,
// See if the cast is of an integer expression that is either a constant,
// or a value scaled by some amount with a possible offset.
//
ExprType Expr = ClassifyExpression(OffsetVal);
ExprType Expr = ClassifyExpr(OffsetVal);
// Get the offset and scale values if they exists...
// A scale of zero with Expr.Var != 0 means a scale of 1.