1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2025-01-31 20:51:52 +01:00

[AArch32] Armv8.6-a Matrix Mult Assembly + Intrinsics

This patch upstreams support for the Armv8.6-a Matrix Multiplication
Extension. A summary of the features can be found here:

https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a

This patch includes:

- Assembly support for AArch32
- Intrinsics Support for AArch32 Neon Intrinsics for Matrix
  Multiplication

Note: these extensions are optional in the 8.6a architecture and so have
to be enabled by default

No additional IR types or C Types are needed for this extension.

This is part of a patch series, starting with BFloat16 support and
the other components in the armv8.6a extension (in previous patches
linked in phabricator)

Based on work by:
- Luke Geeson
- Oliver Stannard
- Luke Cheeseman

Reviewers: t.p.northover, miyuki

Reviewed By: miyuki

Subscribers: miyuki, ostannard, kristof.beyls, hiraditya, danielkiss,
cfe-commits

Tags: #clang

Differential Revision: https://reviews.llvm.org/D77872
This commit is contained in:
Luke Geeson 2020-04-09 19:29:19 +01:00
parent 2ce0a5d73d
commit 09ef958be1
6 changed files with 188 additions and 8 deletions

View File

@ -773,6 +773,19 @@ class Neon_Dot_Intrinsic
def int_arm_neon_udot : Neon_Dot_Intrinsic;
def int_arm_neon_sdot : Neon_Dot_Intrinsic;
// v8.6-A Matrix Multiply Intrinsics
class Neon_MatMul_Intrinsic
: Intrinsic<[llvm_anyvector_ty],
[LLVMMatchType<0>, llvm_anyvector_ty,
LLVMMatchType<1>],
[IntrNoMem]>;
def int_arm_neon_ummla : Neon_MatMul_Intrinsic;
def int_arm_neon_smmla : Neon_MatMul_Intrinsic;
def int_arm_neon_usmmla : Neon_MatMul_Intrinsic;
def int_arm_neon_usdot : Neon_Dot_Intrinsic;
// v8.6-A Bfloat Intrinsics
def int_arm_cls: Intrinsic<[llvm_i32_ty], [llvm_i32_ty], [IntrNoMem]>;
def int_arm_cls64: Intrinsic<[llvm_i32_ty], [llvm_i64_ty], [IntrNoMem]>;

View File

@ -428,6 +428,9 @@ def FeatureSB : SubtargetFeature<"sb", "HasSB", "true",
def FeatureBF16 : SubtargetFeature<"bf16", "HasBF16", "true",
"Enable support for BFloat16 instructions", [FeatureNEON]>;
def FeatureMatMulInt8 : SubtargetFeature<"i8mm", "HasMatMulInt8",
"true", "Enable Matrix Multiply Int8 Extension", [FeatureNEON]>;
// Armv8.1-M extensions
def FeatureLOB : SubtargetFeature<"lob", "HasLOB", "true",
@ -529,7 +532,8 @@ def HasV8_5aOps : SubtargetFeature<"v8.5a", "HasV8_5aOps", "true",
def HasV8_6aOps : SubtargetFeature<"v8.6a", "HasV8_6aOps", "true",
"Support ARM v8.6a instructions",
[HasV8_5aOps, FeatureBF16]>;
[HasV8_5aOps, FeatureBF16,
FeatureMatMulInt8]>;
def HasV8_1MMainlineOps : SubtargetFeature<
"v8.1m.main", "HasV8_1MMainlineOps", "true",

View File

@ -4823,10 +4823,10 @@ def : Pat<(v4f32 (fma (fneg QPR:$Vn), QPR:$Vm, QPR:$src1)),
// We put them in the VFPV8 decoder namespace because the ARM and Thumb
// encodings are the same and thus no further bit twiddling is necessary
// in the disassembler.
class VDOT<bit op6, bit op4, RegisterClass RegTy, string Asm, string AsmTy,
ValueType AccumTy, ValueType InputTy,
class VDOT<bit op6, bit op4, bit op23, RegisterClass RegTy, string Asm,
string AsmTy, ValueType AccumTy, ValueType InputTy,
SDPatternOperator OpNode> :
N3Vnp<0b11000, 0b10, 0b1101, op6, op4, (outs RegTy:$dst),
N3Vnp<{0b1100, op23}, 0b10, 0b1101, op6, op4, (outs RegTy:$dst),
(ins RegTy:$Vd, RegTy:$Vn, RegTy:$Vm), N3RegFrm, IIC_VDOTPROD,
Asm, AsmTy,
[(set (AccumTy RegTy:$dst),
@ -4838,10 +4838,19 @@ class VDOT<bit op6, bit op4, RegisterClass RegTy, string Asm, string AsmTy,
let Constraints = "$dst = $Vd";
}
def VUDOTD : VDOT<0, 1, DPR, "vudot", "u8", v2i32, v8i8, int_arm_neon_udot>;
def VSDOTD : VDOT<0, 0, DPR, "vsdot", "s8", v2i32, v8i8, int_arm_neon_sdot>;
def VUDOTQ : VDOT<1, 1, QPR, "vudot", "u8", v4i32, v16i8, int_arm_neon_udot>;
def VSDOTQ : VDOT<1, 0, QPR, "vsdot", "s8", v4i32, v16i8, int_arm_neon_sdot>;
class VUSDOT<bit op6, bit op4, bit op23, RegisterClass RegTy, string Asm,
string AsmTy, ValueType AccumTy, ValueType InputTy,
SDPatternOperator OpNode> :
VDOT<op6, op4, op23, RegTy, Asm, AsmTy, AccumTy, InputTy, OpNode> {
let hasNoSchedulingInfo = 1;
}
def VUDOTD : VDOT<0, 1, 0, DPR, "vudot", "u8", v2i32, v8i8, int_arm_neon_udot>;
def VSDOTD : VDOT<0, 0, 0, DPR, "vsdot", "s8", v2i32, v8i8, int_arm_neon_sdot>;
def VUDOTQ : VDOT<1, 1, 0, QPR, "vudot", "u8", v4i32, v16i8, int_arm_neon_udot>;
def VSDOTQ : VDOT<1, 0, 0, QPR, "vsdot", "s8", v4i32, v16i8, int_arm_neon_sdot>;
// Indexed dot product instructions:
multiclass DOTI<string opc, string dt, bit Q, bit U, RegisterClass Ty,
@ -4876,6 +4885,70 @@ defm VUDOTQI : DOTI<"vudot", "u8", 0b1, 0b1, QPR, v4i32, v16i8,
defm VSDOTQI : DOTI<"vsdot", "s8", 0b1, 0b0, QPR, v4i32, v16i8,
int_arm_neon_sdot, (EXTRACT_SUBREG QPR:$Vm, dsub_0)>;
// v8.6A matrix multiplication extension
let Predicates = [HasMatMulInt8] in {
class N3VMatMul<bit B, bit U, string Asm, string AsmTy,
SDPatternOperator OpNode>
: N3Vnp<{0b1100, B}, 0b10, 0b1100, 1, U, (outs QPR:$dst),
(ins QPR:$Vd, QPR:$Vn, QPR:$Vm), N3RegFrm, NoItinerary,
Asm, AsmTy,
[(set (v4i32 QPR:$dst), (OpNode (v4i32 QPR:$Vd),
(v16i8 QPR:$Vn),
(v16i8 QPR:$Vm)))]> {
let DecoderNamespace = "VFPV8";
let Constraints = "$dst = $Vd";
let hasNoSchedulingInfo = 1;
}
multiclass N3VMixedDotLane<bit Q, bit U, string Asm, string AsmTy, RegisterClass RegTy,
ValueType AccumTy, ValueType InputTy, SDPatternOperator OpNode,
dag RHS> {
def "" : N3Vnp<0b11101, 0b00, 0b1101, Q, U, (outs RegTy:$dst),
(ins RegTy:$Vd, RegTy:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane), N3RegFrm,
NoItinerary, Asm, AsmTy, []> {
bit lane;
let hasNoSchedulingInfo = 1;
let Inst{5} = lane;
let AsmString = !strconcat(Asm, ".", AsmTy, "\t$Vd, $Vn, $Vm$lane");
let DecoderNamespace = "VFPV8";
let Constraints = "$dst = $Vd";
}
def : Pat<
(AccumTy (OpNode (AccumTy RegTy:$Vd),
(InputTy RegTy:$Vn),
(InputTy (bitconvert (AccumTy
(ARMvduplane (AccumTy RegTy:$Vm),
VectorIndex32:$lane)))))),
(!cast<Instruction>(NAME) RegTy:$Vd, RegTy:$Vn, RHS, VectorIndex32:$lane)>;
}
multiclass SUDOTLane<bit Q, RegisterClass RegTy, ValueType AccumTy, ValueType InputTy, dag RHS>
: N3VMixedDotLane<Q, 1, "vsudot", "u8", RegTy, AccumTy, InputTy, null_frag, null_frag> {
def : Pat<
(AccumTy (int_arm_neon_usdot (AccumTy RegTy:$Vd),
(InputTy (bitconvert (AccumTy
(ARMvduplane (AccumTy RegTy:$Vm),
VectorIndex32:$lane)))),
(InputTy RegTy:$Vn))),
(!cast<Instruction>(NAME) RegTy:$Vd, RegTy:$Vn, RHS, VectorIndex32:$lane)>;
}
def VSMMLA : N3VMatMul<0, 0, "vsmmla", "s8", int_arm_neon_smmla>;
def VUMMLA : N3VMatMul<0, 1, "vummla", "u8", int_arm_neon_ummla>;
def VUSMMLA : N3VMatMul<1, 0, "vusmmla", "s8", int_arm_neon_usmmla>;
def VUSDOTD : VUSDOT<0, 0, 1, DPR, "vusdot", "s8", v2i32, v8i8, int_arm_neon_usdot>;
def VUSDOTQ : VUSDOT<1, 0, 1, QPR, "vusdot", "s8", v4i32, v16i8, int_arm_neon_usdot>;
defm VUSDOTDI : N3VMixedDotLane<0, 0, "vusdot", "s8", DPR, v2i32, v8i8,
int_arm_neon_usdot, (v2i32 DPR_VFP2:$Vm)>;
defm VUSDOTQI : N3VMixedDotLane<1, 0, "vusdot", "s8", QPR, v4i32, v16i8,
int_arm_neon_usdot, (EXTRACT_SUBREG QPR:$Vm, dsub_0)>;
defm VSUDOTDI : SUDOTLane<0, DPR, v2i32, v8i8, (v2i32 DPR_VFP2:$Vm)>;
defm VSUDOTQI : SUDOTLane<1, QPR, v4i32, v16i8, (EXTRACT_SUBREG QPR:$Vm, dsub_0)>;
}
// ARMv8.3 complex operations
class BaseN3VCP8ComplexTied<bit op21, bit op4, bit s, bit q,

View File

@ -110,6 +110,8 @@ def HasFP16FML : Predicate<"Subtarget->hasFP16FML()">,
AssemblerPredicate<(all_of FeatureFP16FML),"full half-float fml">;
def HasBF16 : Predicate<"Subtarget->hasBF16()">,
AssemblerPredicate<(all_of FeatureBF16),"BFloat16 floating point extension">;
def HasMatMulInt8 : Predicate<"Subtarget->hasMatMulInt8()">,
AssemblerPredicate<(all_of FeatureMatMulInt8),"8-bit integer matrix multiply">;
def HasDivideInThumb : Predicate<"Subtarget->hasDivideInThumbMode()">,
AssemblerPredicate<(all_of FeatureHWDivThumb), "divide in THUMB">;
def HasDivideInARM : Predicate<"Subtarget->hasDivideInARMMode()">,

View File

@ -260,6 +260,9 @@ protected:
/// HasBF16 - True if subtarget supports BFloat16 floating point operations
bool HasBF16 = false;
/// HasMatMulInt8 - True if subtarget supports 8-bit integer matrix multiply
bool HasMatMulInt8 = false;
/// HasD32 - True if subtarget has the full 32 double precision
/// FP registers for VFPv3.
bool HasD32 = false;
@ -704,6 +707,8 @@ public:
/// Return true if the CPU supports any kind of instruction fusion.
bool hasFusion() const { return hasFuseAES() || hasFuseLiterals(); }
bool hasMatMulInt8() const { return HasMatMulInt8; }
const Triple &getTargetTriple() const { return TargetTriple; }
bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }

View File

@ -0,0 +1,83 @@
; RUN: llc -mtriple=arm-none-linux-gnu -mattr=+neon,+i8mm -float-abi=hard < %s -o -| FileCheck %s
define <4 x i32> @smmla.v4i32.v16i8(<4 x i32> %r, <16 x i8> %a, <16 x i8> %b) {
entry:
; CHECK-LABEL: smmla.v4i32.v16i8
; CHECK: vsmmla.s8 q0, q1, q2
%vmmla1.i = tail call <4 x i32> @llvm.arm.neon.smmla.v4i32.v16i8(<4 x i32> %r, <16 x i8> %a, <16 x i8> %b) #3
ret <4 x i32> %vmmla1.i
}
define <4 x i32> @ummla.v4i32.v16i8(<4 x i32> %r, <16 x i8> %a, <16 x i8> %b) {
entry:
; CHECK-LABEL: ummla.v4i32.v16i8
; CHECK: vummla.u8 q0, q1, q2
%vmmla1.i = tail call <4 x i32> @llvm.arm.neon.ummla.v4i32.v16i8(<4 x i32> %r, <16 x i8> %a, <16 x i8> %b) #3
ret <4 x i32> %vmmla1.i
}
define <4 x i32> @usmmla.v4i32.v16i8(<4 x i32> %r, <16 x i8> %a, <16 x i8> %b) {
entry:
; CHECK-LABEL: usmmla.v4i32.v16i8
; CHECK: vusmmla.s8 q0, q1, q2
%vusmmla1.i = tail call <4 x i32> @llvm.arm.neon.usmmla.v4i32.v16i8(<4 x i32> %r, <16 x i8> %a, <16 x i8> %b) #3
ret <4 x i32> %vusmmla1.i
}
define <2 x i32> @usdot.v2i32.v8i8(<2 x i32> %r, <8 x i8> %a, <8 x i8> %b) {
entry:
; CHECK-LABEL: usdot.v2i32.v8i8
; CHECK: vusdot.s8 d0, d1, d2
%vusdot1.i = tail call <2 x i32> @llvm.arm.neon.usdot.v2i32.v8i8(<2 x i32> %r, <8 x i8> %a, <8 x i8> %b) #3
ret <2 x i32> %vusdot1.i
}
define <2 x i32> @usdot_lane.v2i32.v8i8(<2 x i32> %r, <8 x i8> %a, <8 x i8> %b) {
entry:
; CHECK-LABEL: usdot_lane.v2i32.v8i8
; CHECK: vusdot.s8 d0, d1, d2[0]
%0 = bitcast <8 x i8> %b to <2 x i32>
%shuffle = shufflevector <2 x i32> %0, <2 x i32> undef, <2 x i32> zeroinitializer
%1 = bitcast <2 x i32> %shuffle to <8 x i8>
%vusdot1.i = tail call <2 x i32> @llvm.arm.neon.usdot.v2i32.v8i8(<2 x i32> %r, <8 x i8> %a, <8 x i8> %1) #3
ret <2 x i32> %vusdot1.i
}
define <2 x i32> @sudot_lane.v2i32.v8i8(<2 x i32> %r, <8 x i8> %a, <8 x i8> %b) {
entry:
; CHECK-LABEL: sudot_lane.v2i32.v8i8
; CHECK: vsudot.u8 d0, d1, d2[0]
%0 = bitcast <8 x i8> %b to <2 x i32>
%shuffle = shufflevector <2 x i32> %0, <2 x i32> undef, <2 x i32> zeroinitializer
%1 = bitcast <2 x i32> %shuffle to <8 x i8>
%vusdot1.i = tail call <2 x i32> @llvm.arm.neon.usdot.v2i32.v8i8(<2 x i32> %r, <8 x i8> %1, <8 x i8> %a) #3
ret <2 x i32> %vusdot1.i
}
define <4 x i32> @usdotq_lane.v4i32.v16i8(<4 x i32> %r, <16 x i8> %a, <8 x i8> %b) {
entry:
; CHECK-LABEL: usdotq_lane.v4i32.v16i8
; CHECK: vusdot.s8 q0, q1, d4[0]
%0 = bitcast <8 x i8> %b to <2 x i32>
%shuffle = shufflevector <2 x i32> %0, <2 x i32> undef, <4 x i32> zeroinitializer
%1 = bitcast <4 x i32> %shuffle to <16 x i8>
%vusdot1.i = tail call <4 x i32> @llvm.arm.neon.usdot.v4i32.v16i8(<4 x i32> %r, <16 x i8> %a, <16 x i8> %1) #3
ret <4 x i32> %vusdot1.i
}
define <4 x i32> @sudotq_lane.v4i32.v16i8(<4 x i32> %r, <16 x i8> %a, <8 x i8> %b) {
entry:
; CHECK-LABEL: sudotq_lane.v4i32.v16i8
; CHECK: vsudot.u8 q0, q1, d4[0]
%0 = bitcast <8 x i8> %b to <2 x i32>
%shuffle = shufflevector <2 x i32> %0, <2 x i32> undef, <4 x i32> zeroinitializer
%1 = bitcast <4 x i32> %shuffle to <16 x i8>
%vusdot1.i = tail call <4 x i32> @llvm.arm.neon.usdot.v4i32.v16i8(<4 x i32> %r, <16 x i8> %1, <16 x i8> %a) #3
ret <4 x i32> %vusdot1.i
}
declare <4 x i32> @llvm.arm.neon.smmla.v4i32.v16i8(<4 x i32>, <16 x i8>, <16 x i8>) #2
declare <4 x i32> @llvm.arm.neon.ummla.v4i32.v16i8(<4 x i32>, <16 x i8>, <16 x i8>) #2
declare <4 x i32> @llvm.arm.neon.usmmla.v4i32.v16i8(<4 x i32>, <16 x i8>, <16 x i8>) #2
declare <2 x i32> @llvm.arm.neon.usdot.v2i32.v8i8(<2 x i32>, <8 x i8>, <8 x i8>) #2
declare <4 x i32> @llvm.arm.neon.usdot.v4i32.v16i8(<4 x i32>, <16 x i8>, <16 x i8>) #2