1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 11:42:57 +01:00

AArch64: Use CMP;CCMP sequences for and/or/setcc trees.

Previously CCMP/FCCMP instructions were only used by the
AArch64ConditionalCompares pass for control flow. This patch uses them
for SELECT like instructions as well by matching patterns in ISelLowering.

PR20927, rdar://18326194

Differential Revision: http://reviews.llvm.org/D8232

llvm-svn: 238793
This commit is contained in:
Matthias Braun 2015-06-01 22:31:17 +00:00
parent fc64519bf8
commit 0c511ee9db
5 changed files with 295 additions and 72 deletions

View File

@ -76,6 +76,9 @@ cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
cl::init(false));
/// Value type used for condition codes.
static const MVT MVT_CC = MVT::i32;
AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
const AArch64Subtarget &STI)
: TargetLowering(TM), Subtarget(&STI) {
@ -807,6 +810,9 @@ const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
case AArch64ISD::CCMP: return "AArch64ISD::CCMP";
case AArch64ISD::CCMN: return "AArch64ISD::CCMN";
case AArch64ISD::FCCMP: return "AArch64ISD::FCCMP";
case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
case AArch64ISD::FMIN: return "AArch64ISD::FMIN";
case AArch64ISD::FMAX: return "AArch64ISD::FMAX";
@ -1165,10 +1171,133 @@ static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
LHS = LHS.getOperand(0);
}
return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS)
return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
.getValue(1);
}
static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
ISD::CondCode CC, SDValue CCOp,
SDValue Condition, unsigned NZCV,
SDLoc DL, SelectionDAG &DAG) {
unsigned Opcode = 0;
if (LHS.getValueType().isFloatingPoint())
Opcode = AArch64ISD::FCCMP;
else if (RHS.getOpcode() == ISD::SUB) {
SDValue SubOp0 = RHS.getOperand(0);
if (const ConstantSDNode *SubOp0C = dyn_cast<ConstantSDNode>(SubOp0))
if (SubOp0C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
// See emitComparison() on why we can only do this for SETEQ and SETNE.
Opcode = AArch64ISD::CCMN;
RHS = RHS.getOperand(1);
}
}
if (Opcode == 0)
Opcode = AArch64ISD::CCMP;
SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
}
/// Returns true if @p Val is a tree of AND/OR/SETCC operations.
static bool isConjunctionDisjunctionTree(const SDValue Val, unsigned Depth) {
if (!Val.hasOneUse())
return false;
if (Val->getOpcode() == ISD::SETCC)
return true;
// Protect against stack overflow.
if (Depth > 1000)
return false;
if (Val->getOpcode() == ISD::AND || Val->getOpcode() == ISD::OR) {
SDValue O0 = Val->getOperand(0);
SDValue O1 = Val->getOperand(1);
return isConjunctionDisjunctionTree(O0, Depth+1) &&
isConjunctionDisjunctionTree(O1, Depth+1);
}
return false;
}
/// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
/// of CCMP/CFCMP ops. For example (SETCC_0 & SETCC_1) with condition cond0 and
/// cond1 can be transformed into "CMP; CCMP" with CCMP executing on cond_0
/// and setting flags to inversed(cond_1) otherwise.
/// This recursive function produces DAG nodes that produce condition flags
/// suitable to determine the truth value of @p Val (which is AND/OR/SETCC)
/// by testing the result for the condition set to @p OutCC. If @p Negate is
/// set the opposite truth value is produced. If @p CCOp and @p Condition are
/// given then conditional comparison are created so that false is reported
/// when they are false.
static SDValue emitConjunctionDisjunctionTree(
SelectionDAG &DAG, SDValue Val, AArch64CC::CondCode &OutCC, bool Negate,
SDValue CCOp = SDValue(), AArch64CC::CondCode Condition = AArch64CC::AL) {
assert(isConjunctionDisjunctionTree(Val, 0));
// We're at a tree leaf, produce a c?f?cmp.
unsigned Opcode = Val->getOpcode();
if (Opcode == ISD::SETCC) {
SDValue LHS = Val->getOperand(0);
SDValue RHS = Val->getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
bool isInteger = LHS.getValueType().isInteger();
if (Negate)
CC = getSetCCInverse(CC, isInteger);
SDLoc DL(Val);
// Determine OutCC and handle FP special case.
if (isInteger) {
OutCC = changeIntCCToAArch64CC(CC);
} else {
assert(LHS.getValueType().isFloatingPoint());
AArch64CC::CondCode ExtraCC;
changeFPCCToAArch64CC(CC, OutCC, ExtraCC);
// Surpisingly some floating point conditions can't be tested with a
// single condition code. Construct an additional comparison in this case.
// See comment below on how we deal with OR conditions.
if (ExtraCC != AArch64CC::AL) {
SDValue ExtraCmp;
if (!CCOp.getNode())
ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
else {
SDValue ConditionOp = DAG.getConstant(Condition, DL, MVT_CC);
// Note that we want the inverse of ExtraCC, so NZCV is not inversed.
unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(ExtraCC);
ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, ConditionOp,
NZCV, DL, DAG);
}
CCOp = ExtraCmp;
Condition = AArch64CC::getInvertedCondCode(ExtraCC);
OutCC = AArch64CC::getInvertedCondCode(OutCC);
}
}
// Produce a normal comparison if we are first in the chain
if (!CCOp.getNode())
return emitComparison(LHS, RHS, CC, DL, DAG);
// Otherwise produce a ccmp.
SDValue ConditionOp = DAG.getConstant(Condition, DL, MVT_CC);
AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
return emitConditionalComparison(LHS, RHS, CC, CCOp, ConditionOp, NZCV, DL,
DAG);
}
// Construct comparison sequence for the left hand side.
SDValue LHS = Val->getOperand(0);
SDValue RHS = Val->getOperand(1);
// We can only implement AND-like behaviour here, but negation is free. So we
// use (not (and (not x) (not y))) to implement (or x y).
bool isOr = Val->getOpcode() == ISD::OR;
assert((isOr || Val->getOpcode() == ISD::AND) && "Should have AND or OR.");
Negate ^= isOr;
AArch64CC::CondCode RHSCC;
SDValue CmpR =
emitConjunctionDisjunctionTree(DAG, RHS, RHSCC, isOr, CCOp, Condition);
SDValue CmpL =
emitConjunctionDisjunctionTree(DAG, LHS, OutCC, isOr, CmpR, RHSCC);
if (Negate)
OutCC = AArch64CC::getInvertedCondCode(OutCC);
return CmpL;
}
static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
SDValue Cmp;
@ -1227,47 +1356,55 @@ static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
}
}
}
// The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
// For the i8 operand, the largest immediate is 255, so this can be easily
// encoded in the compare instruction. For the i16 operand, however, the
// largest immediate cannot be encoded in the compare.
// Therefore, use a sign extending load and cmn to avoid materializing the -1
// constant. For example,
// movz w1, #65535
// ldrh w0, [x0, #0]
// cmp w0, w1
// >
// ldrsh w0, [x0, #0]
// cmn w0, #1
// Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
// if and only if (sext LHS) == (sext RHS). The checks are in place to ensure
// both the LHS and RHS are truely zero extended and to make sure the
// transformation is profitable.
if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
if ((cast<ConstantSDNode>(RHS)->getZExtValue() >> 16 == 0) &&
isa<LoadSDNode>(LHS)) {
if (cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
LHS.getNode()->hasNUsesOfValue(1, 0)) {
int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
SDValue SExt =
DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
DAG.getValueType(MVT::i16));
Cmp = emitComparison(SExt,
DAG.getConstant(ValueofRHS, dl,
RHS.getValueType()),
CC, dl, DAG);
AArch64CC = changeIntCCToAArch64CC(CC);
AArch64cc = DAG.getConstant(AArch64CC, dl, MVT::i32);
return Cmp;
}
const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);
// The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
// For the i8 operand, the largest immediate is 255, so this can be easily
// encoded in the compare instruction. For the i16 operand, however, the
// largest immediate cannot be encoded in the compare.
// Therefore, use a sign extending load and cmn to avoid materializing the
// -1 constant. For example,
// movz w1, #65535
// ldrh w0, [x0, #0]
// cmp w0, w1
// >
// ldrsh w0, [x0, #0]
// cmn w0, #1
// Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
// if and only if (sext LHS) == (sext RHS). The checks are in place to
// ensure both the LHS and RHS are truely zero extended and to make sure the
// transformation is profitable.
if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
LHS.getNode()->hasNUsesOfValue(1, 0)) {
int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
SDValue SExt =
DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
DAG.getValueType(MVT::i16));
Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl,
RHS.getValueType()),
CC, dl, DAG);
AArch64CC = changeIntCCToAArch64CC(CC);
goto CreateCCNode;
}
}
if ((RHSC->isNullValue() || RHSC->isOne()) &&
isConjunctionDisjunctionTree(LHS, 0)) {
bool Negate = (CC == ISD::SETNE) ^ RHSC->isNullValue();
Cmp = emitConjunctionDisjunctionTree(DAG, LHS, AArch64CC, Negate);
goto CreateCCNode;
}
}
Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
AArch64CC = changeIntCCToAArch64CC(CC);
AArch64cc = DAG.getConstant(AArch64CC, dl, MVT::i32);
CreateCCNode:
AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
return Cmp;
}
@ -9123,3 +9260,8 @@ bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
return Ty->isArrayTy();
}
bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
EVT) const {
return false;
}

View File

@ -58,6 +58,11 @@ enum NodeType : unsigned {
SBCS,
ANDS,
// Conditional compares. Operands: left,right,falsecc,cc,flags
CCMP,
CCMN,
FCCMP,
// Floating point comparison
FCMP,
@ -508,6 +513,8 @@ private:
bool functionArgumentNeedsConsecutiveRegisters(Type *Ty,
CallingConv::ID CallConv,
bool isVarArg) const override;
bool shouldNormalizeToSelectSequence(LLVMContext &, EVT) const override;
};
namespace AArch64 {

View File

@ -525,6 +525,13 @@ def imm0_31 : Operand<i64>, ImmLeaf<i64, [{
let ParserMatchClass = Imm0_31Operand;
}
// True if the 32-bit immediate is in the range [0,31]
def imm32_0_31 : Operand<i32>, ImmLeaf<i32, [{
return ((uint64_t)Imm) < 32;
}]> {
let ParserMatchClass = Imm0_31Operand;
}
// imm0_15 predicate - True if the immediate is in the range [0,15]
def imm0_15 : Operand<i64>, ImmLeaf<i64, [{
return ((uint64_t)Imm) < 16;
@ -542,7 +549,9 @@ def imm0_7 : Operand<i64>, ImmLeaf<i64, [{
// imm32_0_15 predicate - True if the 32-bit immediate is in the range [0,15]
def imm32_0_15 : Operand<i32>, ImmLeaf<i32, [{
return ((uint32_t)Imm) < 16;
}]>;
}]> {
let ParserMatchClass = Imm0_15Operand;
}
// An arithmetic shifter operand:
// {7-6} - shift type: 00 = lsl, 01 = lsr, 10 = asr
@ -2068,9 +2077,12 @@ multiclass LogicalRegS<bits<2> opc, bit N, string mnemonic,
//---
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseCondSetFlagsImm<bit op, RegisterClass regtype, string asm>
: I<(outs), (ins regtype:$Rn, imm0_31:$imm, imm0_15:$nzcv, ccode:$cond),
asm, "\t$Rn, $imm, $nzcv, $cond", "", []>,
class BaseCondComparisonImm<bit op, RegisterClass regtype, ImmLeaf immtype,
string mnemonic, SDNode OpNode>
: I<(outs), (ins regtype:$Rn, immtype:$imm, imm32_0_15:$nzcv, ccode:$cond),
mnemonic, "\t$Rn, $imm, $nzcv, $cond", "",
[(set NZCV, (OpNode regtype:$Rn, immtype:$imm, (i32 imm:$nzcv),
(i32 imm:$cond), NZCV))]>,
Sched<[WriteI, ReadI]> {
let Uses = [NZCV];
let Defs = [NZCV];
@ -2090,19 +2102,13 @@ class BaseCondSetFlagsImm<bit op, RegisterClass regtype, string asm>
let Inst{3-0} = nzcv;
}
multiclass CondSetFlagsImm<bit op, string asm> {
def Wi : BaseCondSetFlagsImm<op, GPR32, asm> {
let Inst{31} = 0;
}
def Xi : BaseCondSetFlagsImm<op, GPR64, asm> {
let Inst{31} = 1;
}
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseCondSetFlagsReg<bit op, RegisterClass regtype, string asm>
: I<(outs), (ins regtype:$Rn, regtype:$Rm, imm0_15:$nzcv, ccode:$cond),
asm, "\t$Rn, $Rm, $nzcv, $cond", "", []>,
class BaseCondComparisonReg<bit op, RegisterClass regtype, string mnemonic,
SDNode OpNode>
: I<(outs), (ins regtype:$Rn, regtype:$Rm, imm32_0_15:$nzcv, ccode:$cond),
mnemonic, "\t$Rn, $Rm, $nzcv, $cond", "",
[(set NZCV, (OpNode regtype:$Rn, regtype:$Rm, (i32 imm:$nzcv),
(i32 imm:$cond), NZCV))]>,
Sched<[WriteI, ReadI, ReadI]> {
let Uses = [NZCV];
let Defs = [NZCV];
@ -2122,11 +2128,19 @@ class BaseCondSetFlagsReg<bit op, RegisterClass regtype, string asm>
let Inst{3-0} = nzcv;
}
multiclass CondSetFlagsReg<bit op, string asm> {
def Wr : BaseCondSetFlagsReg<op, GPR32, asm> {
multiclass CondComparison<bit op, string mnemonic, SDNode OpNode> {
// immediate operand variants
def Wi : BaseCondComparisonImm<op, GPR32, imm32_0_31, mnemonic, OpNode> {
let Inst{31} = 0;
}
def Xr : BaseCondSetFlagsReg<op, GPR64, asm> {
def Xi : BaseCondComparisonImm<op, GPR64, imm0_31, mnemonic, OpNode> {
let Inst{31} = 1;
}
// register operand variants
def Wr : BaseCondComparisonReg<op, GPR32, mnemonic, OpNode> {
let Inst{31} = 0;
}
def Xr : BaseCondComparisonReg<op, GPR64, mnemonic, OpNode> {
let Inst{31} = 1;
}
}
@ -3934,11 +3948,14 @@ multiclass FPComparison<bit signalAllNans, string asm,
//---
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseFPCondComparison<bit signalAllNans,
RegisterClass regtype, string asm>
: I<(outs), (ins regtype:$Rn, regtype:$Rm, imm0_15:$nzcv, ccode:$cond),
asm, "\t$Rn, $Rm, $nzcv, $cond", "", []>,
class BaseFPCondComparison<bit signalAllNans, RegisterClass regtype,
string mnemonic, list<dag> pat>
: I<(outs), (ins regtype:$Rn, regtype:$Rm, imm32_0_15:$nzcv, ccode:$cond),
mnemonic, "\t$Rn, $Rm, $nzcv, $cond", "", pat>,
Sched<[WriteFCmp]> {
let Uses = [NZCV];
let Defs = [NZCV];
bits<5> Rn;
bits<5> Rm;
bits<4> nzcv;
@ -3954,16 +3971,18 @@ class BaseFPCondComparison<bit signalAllNans,
let Inst{3-0} = nzcv;
}
multiclass FPCondComparison<bit signalAllNans, string asm> {
let Defs = [NZCV], Uses = [NZCV] in {
def Srr : BaseFPCondComparison<signalAllNans, FPR32, asm> {
multiclass FPCondComparison<bit signalAllNans, string mnemonic,
SDPatternOperator OpNode = null_frag> {
def Srr : BaseFPCondComparison<signalAllNans, FPR32, mnemonic,
[(set NZCV, (OpNode (f32 FPR32:$Rn), (f32 FPR32:$Rm), (i32 imm:$nzcv),
(i32 imm:$cond), NZCV))]> {
let Inst{22} = 0;
}
def Drr : BaseFPCondComparison<signalAllNans, FPR64, asm> {
def Drr : BaseFPCondComparison<signalAllNans, FPR64, mnemonic,
[(set NZCV, (OpNode (f64 FPR64:$Rn), (f64 FPR64:$Rm), (i32 imm:$nzcv),
(i32 imm:$cond), NZCV))]> {
let Inst{22} = 1;
}
} // Defs = [NZCV], Uses = [NZCV]
}
//---

View File

@ -66,6 +66,20 @@ def SDT_AArch64CSel : SDTypeProfile<1, 4,
SDTCisSameAs<0, 2>,
SDTCisInt<3>,
SDTCisVT<4, i32>]>;
def SDT_AArch64CCMP : SDTypeProfile<1, 5,
[SDTCisVT<0, i32>,
SDTCisInt<1>,
SDTCisSameAs<1, 2>,
SDTCisInt<3>,
SDTCisInt<4>,
SDTCisVT<5, i32>]>;
def SDT_AArch64FCCMP : SDTypeProfile<1, 5,
[SDTCisVT<0, i32>,
SDTCisFP<1>,
SDTCisSameAs<1, 2>,
SDTCisInt<3>,
SDTCisInt<4>,
SDTCisVT<5, i32>]>;
def SDT_AArch64FCmp : SDTypeProfile<0, 2,
[SDTCisFP<0>,
SDTCisSameAs<0, 1>]>;
@ -160,6 +174,10 @@ def AArch64and_flag : SDNode<"AArch64ISD::ANDS", SDTBinaryArithWithFlagsOut,
def AArch64adc_flag : SDNode<"AArch64ISD::ADCS", SDTBinaryArithWithFlagsInOut>;
def AArch64sbc_flag : SDNode<"AArch64ISD::SBCS", SDTBinaryArithWithFlagsInOut>;
def AArch64ccmp : SDNode<"AArch64ISD::CCMP", SDT_AArch64CCMP>;
def AArch64ccmn : SDNode<"AArch64ISD::CCMN", SDT_AArch64CCMP>;
def AArch64fccmp : SDNode<"AArch64ISD::FCCMP", SDT_AArch64FCCMP>;
def AArch64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>;
def AArch64fcmp : SDNode<"AArch64ISD::FCMP", SDT_AArch64FCmp>;
@ -950,13 +968,10 @@ def : InstAlias<"uxth $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
def : InstAlias<"uxtw $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
//===----------------------------------------------------------------------===//
// Conditionally set flags instructions.
// Conditional comparison instructions.
//===----------------------------------------------------------------------===//
defm CCMN : CondSetFlagsImm<0, "ccmn">;
defm CCMP : CondSetFlagsImm<1, "ccmp">;
defm CCMN : CondSetFlagsReg<0, "ccmn">;
defm CCMP : CondSetFlagsReg<1, "ccmp">;
defm CCMN : CondComparison<0, "ccmn", AArch64ccmn>;
defm CCMP : CondComparison<1, "ccmp", AArch64ccmp>;
//===----------------------------------------------------------------------===//
// Conditional select instructions.
@ -2486,7 +2501,7 @@ defm FCMP : FPComparison<0, "fcmp", AArch64fcmp>;
//===----------------------------------------------------------------------===//
defm FCCMPE : FPCondComparison<1, "fccmpe">;
defm FCCMP : FPCondComparison<0, "fccmp">;
defm FCCMP : FPCondComparison<0, "fccmp", AArch64fccmp>;
//===----------------------------------------------------------------------===//
// Floating point conditional select instruction.

View File

@ -287,3 +287,43 @@ sw.bb.i.i:
%code1.i.i.phi.trans.insert = getelementptr inbounds %str1, %str1* %0, i64 0, i32 0, i32 0, i64 16
br label %sw.bb.i.i
}
; CHECK-LABEL: select_and
define i64 @select_and(i32 %v1, i32 %v2, i64 %a, i64 %b) {
; CHECK: cmp
; CHECK: ccmp{{.*}}, #0, ne
; CHECK: csel{{.*}}, lt
%1 = icmp slt i32 %v1, %v2
%2 = icmp ne i32 5, %v2
%3 = and i1 %1, %2
%sel = select i1 %3, i64 %a, i64 %b
ret i64 %sel
}
; CHECK-LABEL: select_or
define i64 @select_or(i32 %v1, i32 %v2, i64 %a, i64 %b) {
; CHECK: cmp
; CHECK: ccmp{{.*}}, #8, eq
; CHECK: csel{{.*}}, lt
%1 = icmp slt i32 %v1, %v2
%2 = icmp ne i32 5, %v2
%3 = or i1 %1, %2
%sel = select i1 %3, i64 %a, i64 %b
ret i64 %sel
}
; CHECK-LABEL: select_complicated
define i16 @select_complicated(double %v1, double %v2, i16 %a, i16 %b) {
; CHECK: fcmp
; CHECK: fccmp{{.*}}, #4, ne
; CHECK: fccmp{{.*}}, #1, ne
; CHECK: fccmp{{.*}}, #4, vc
; CEHCK: csel{{.*}}, eq
%1 = fcmp one double %v1, %v2
%2 = fcmp oeq double %v2, 13.0
%3 = fcmp oeq double %v1, 42.0
%or0 = or i1 %2, %3
%or1 = or i1 %1, %or0
%sel = select i1 %or1, i16 %a, i16 %b
ret i16 %sel
}