1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 02:52:53 +02:00

[GlobalISel][InlineAsm] Add support for basic output operand constraints

Reviewers: arsenm, dsanders, aemerson, volkan, t.p.northover, paquette

Reviewed By: arsenm

Subscribers: gargaroff, wdng, rovka, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D78318
This commit is contained in:
Konstantin Schwarz 2020-04-08 20:04:13 +02:00
parent b282583726
commit 0f92ec39f7
7 changed files with 637 additions and 37 deletions

View File

@ -14,10 +14,15 @@
#ifndef LLVM_CODEGEN_GLOBALISEL_INLINEASMLOWERING_H
#define LLVM_CODEGEN_GLOBALISEL_INLINEASMLOWERING_H
#include "llvm/ADT/ArrayRef.h"
#include <functional>
namespace llvm {
class CallBase;
class MachineIRBuilder;
class Register;
class TargetLowering;
class Value;
class InlineAsmLowering {
const TargetLowering *TLI;
@ -25,7 +30,9 @@ class InlineAsmLowering {
virtual void anchor();
public:
bool lowerInlineAsm(MachineIRBuilder &MIRBuilder, const CallBase &CB) const;
bool lowerInlineAsm(MachineIRBuilder &MIRBuilder, const CallBase &CB,
std::function<ArrayRef<Register>(const Value &Val)>
GetOrCreateVRegs) const;
protected:
/// Getter for generic TargetLowering class.

View File

@ -1577,7 +1577,8 @@ bool IRTranslator::translateInlineAsm(const CallBase &CB,
return false;
}
return ALI->lowerInlineAsm(MIRBuilder, CB);
return ALI->lowerInlineAsm(
MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); });
}
bool IRTranslator::translateCallBase(const CallBase &CB,

View File

@ -29,36 +29,415 @@ using namespace llvm;
void InlineAsmLowering::anchor() {}
bool InlineAsmLowering::lowerInlineAsm(MachineIRBuilder &MIRBuilder,
const CallBase &Call) const {
namespace {
const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
StringRef ConstraintStr = IA->getConstraintString();
/// GISelAsmOperandInfo - This contains information for each constraint that we
/// are lowering.
class GISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
public:
/// Regs - If this is a register or register class operand, this
/// contains the set of assigned registers corresponding to the operand.
SmallVector<Register, 1> Regs;
bool HasOnlyMemoryClobber = false;
if (!ConstraintStr.empty()) {
// Until we have full inline assembly support, we just try to handle the
// very simple case of just "~{memory}" to avoid falling back so often.
if (ConstraintStr != "~{memory}")
return false;
HasOnlyMemoryClobber = true;
explicit GISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &Info)
: TargetLowering::AsmOperandInfo(Info) {}
};
using GISelAsmOperandInfoVector = SmallVector<GISelAsmOperandInfo, 16>;
class ExtraFlags {
unsigned Flags = 0;
public:
explicit ExtraFlags(const CallBase &CB) {
const InlineAsm *IA = cast<InlineAsm>(CB.getCalledOperand());
if (IA->hasSideEffects())
Flags |= InlineAsm::Extra_HasSideEffects;
if (IA->isAlignStack())
Flags |= InlineAsm::Extra_IsAlignStack;
if (CB.isConvergent())
Flags |= InlineAsm::Extra_IsConvergent;
Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
}
unsigned ExtraInfo = 0;
if (IA->hasSideEffects())
ExtraInfo |= InlineAsm::Extra_HasSideEffects;
if (IA->getDialect() == InlineAsm::AD_Intel)
ExtraInfo |= InlineAsm::Extra_AsmDialect;
void update(const TargetLowering::AsmOperandInfo &OpInfo) {
// Ideally, we would only check against memory constraints. However, the
// meaning of an Other constraint can be target-specific and we can't easily
// reason about it. Therefore, be conservative and set MayLoad/MayStore
// for Other constraints as well.
if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
OpInfo.ConstraintType == TargetLowering::C_Other) {
if (OpInfo.Type == InlineAsm::isInput)
Flags |= InlineAsm::Extra_MayLoad;
else if (OpInfo.Type == InlineAsm::isOutput)
Flags |= InlineAsm::Extra_MayStore;
else if (OpInfo.Type == InlineAsm::isClobber)
Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
}
}
// HACK: special casing for ~memory.
if (HasOnlyMemoryClobber)
ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
unsigned get() const { return Flags; }
};
auto Inst = MIRBuilder.buildInstr(TargetOpcode::INLINEASM)
} // namespace
/// Assign virtual/physical registers for the specified register operand.
static void getRegistersForValue(MachineFunction &MF,
MachineIRBuilder &MIRBuilder,
GISelAsmOperandInfo &OpInfo,
GISelAsmOperandInfo &RefOpInfo) {
const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
// No work to do for memory operations.
if (OpInfo.ConstraintType == TargetLowering::C_Memory)
return;
// If this is a constraint for a single physreg, or a constraint for a
// register class, find it.
Register AssignedReg;
const TargetRegisterClass *RC;
std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
&TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
// RC is unset only on failure. Return immediately.
if (!RC)
return;
// No need to allocate a matching input constraint since the constraint it's
// matching to has already been allocated.
if (OpInfo.isMatchingInputConstraint())
return;
// Initialize NumRegs.
unsigned NumRegs = 1;
if (OpInfo.ConstraintVT != MVT::Other)
NumRegs =
TLI.getNumRegisters(MF.getFunction().getContext(), OpInfo.ConstraintVT);
// If this is a constraint for a specific physical register, but the type of
// the operand requires more than one register to be passed, we allocate the
// required amount of physical registers, starting from the selected physical
// register.
// For this, first retrieve a register iterator for the given register class
TargetRegisterClass::iterator I = RC->begin();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
// Advance the iterator to the assigned register (if set)
if (AssignedReg) {
for (; *I != AssignedReg; ++I)
assert(I != RC->end() && "AssignedReg should be a member of provided RC");
}
// Finally, assign the registers. If the AssignedReg isn't set, create virtual
// registers with the provided register class
for (; NumRegs; --NumRegs, ++I) {
assert(I != RC->end() && "Ran out of registers to allocate!");
Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
OpInfo.Regs.push_back(R);
}
}
/// Return an integer indicating how general CT is.
static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
switch (CT) {
case TargetLowering::C_Immediate:
case TargetLowering::C_Other:
case TargetLowering::C_Unknown:
return 0;
case TargetLowering::C_Register:
return 1;
case TargetLowering::C_RegisterClass:
return 2;
case TargetLowering::C_Memory:
return 3;
}
llvm_unreachable("Invalid constraint type");
}
static void chooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
const TargetLowering *TLI) {
assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
unsigned BestIdx = 0;
TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
int BestGenerality = -1;
// Loop over the options, keeping track of the most general one.
for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
TargetLowering::ConstraintType CType =
TLI->getConstraintType(OpInfo.Codes[i]);
// Indirect 'other' or 'immediate' constraints are not allowed.
if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
CType == TargetLowering::C_Register ||
CType == TargetLowering::C_RegisterClass))
continue;
// If this is an 'other' or 'immediate' constraint, see if the operand is
// valid for it. For example, on X86 we might have an 'rI' constraint. If
// the operand is an integer in the range [0..31] we want to use I (saving a
// load of a register), otherwise we must use 'r'.
if (CType == TargetLowering::C_Other ||
CType == TargetLowering::C_Immediate) {
assert(OpInfo.Codes[i].size() == 1 &&
"Unhandled multi-letter 'other' constraint");
// FIXME: prefer immediate constraints if the target allows it
}
// Things with matching constraints can only be registers, per gcc
// documentation. This mainly affects "g" constraints.
if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
continue;
// This constraint letter is more general than the previous one, use it.
int Generality = getConstraintGenerality(CType);
if (Generality > BestGenerality) {
BestType = CType;
BestIdx = i;
BestGenerality = Generality;
}
}
OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
OpInfo.ConstraintType = BestType;
}
static void computeConstraintToUse(const TargetLowering *TLI,
TargetLowering::AsmOperandInfo &OpInfo) {
assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
// Single-letter constraints ('r') are very common.
if (OpInfo.Codes.size() == 1) {
OpInfo.ConstraintCode = OpInfo.Codes[0];
OpInfo.ConstraintType = TLI->getConstraintType(OpInfo.ConstraintCode);
} else {
chooseConstraint(OpInfo, TLI);
}
// 'X' matches anything.
if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
// Labels and constants are handled elsewhere ('X' is the only thing
// that matches labels). For Functions, the type here is the type of
// the result, which is not what we want to look at; leave them alone.
Value *Val = OpInfo.CallOperandVal;
if (isa<BasicBlock>(Val) || isa<ConstantInt>(Val) || isa<Function>(Val))
return;
// Otherwise, try to resolve it to something we know about by looking at
// the actual operand type.
if (const char *Repl = TLI->LowerXConstraint(OpInfo.ConstraintVT)) {
OpInfo.ConstraintCode = Repl;
OpInfo.ConstraintType = TLI->getConstraintType(OpInfo.ConstraintCode);
}
}
}
bool InlineAsmLowering::lowerInlineAsm(
MachineIRBuilder &MIRBuilder, const CallBase &Call,
std::function<ArrayRef<Register>(const Value &Val)> GetOrCreateVRegs)
const {
const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
/// ConstraintOperands - Information about all of the constraints.
GISelAsmOperandInfoVector ConstraintOperands;
MachineFunction &MF = MIRBuilder.getMF();
const Function &F = MF.getFunction();
const DataLayout &DL = F.getParent()->getDataLayout();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
MachineRegisterInfo *MRI = MIRBuilder.getMRI();
TargetLowering::AsmOperandInfoVector TargetConstraints =
TLI->ParseConstraints(DL, TRI, Call);
ExtraFlags ExtraInfo(Call);
unsigned ResNo = 0; // ResNo - The result number of the next output.
for (auto &T : TargetConstraints) {
ConstraintOperands.push_back(GISelAsmOperandInfo(T));
GISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
// Compute the value type for each operand.
if (OpInfo.Type == InlineAsm::isInput ||
(OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
LLVM_DEBUG(dbgs() << "Input operands and indirect output operands are "
"not supported yet\n");
return false;
} else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
OpInfo.ConstraintVT =
TLI->getSimpleValueType(DL, STy->getElementType(ResNo));
} else {
assert(ResNo == 0 && "Asm only has one result!");
OpInfo.ConstraintVT = TLI->getSimpleValueType(DL, Call.getType());
}
++ResNo;
} else {
OpInfo.ConstraintVT = MVT::Other;
}
// Compute the constraint code and ConstraintType to use.
computeConstraintToUse(TLI, OpInfo);
// The selected constraint type might expose new sideeffects
ExtraInfo.update(OpInfo);
}
// At this point, all operand types are decided.
// Create the MachineInstr, but don't insert it yet since input
// operands still need to insert instructions before this one
auto Inst = MIRBuilder.buildInstrNoInsert(TargetOpcode::INLINEASM)
.addExternalSymbol(IA->getAsmString().c_str())
.addImm(ExtraInfo);
.addImm(ExtraInfo.get());
// Collects the output operands for later processing
GISelAsmOperandInfoVector OutputOperands;
for (auto &OpInfo : ConstraintOperands) {
GISelAsmOperandInfo &RefOpInfo =
OpInfo.isMatchingInputConstraint()
? ConstraintOperands[OpInfo.getMatchedOperand()]
: OpInfo;
// Assign registers for register operands
getRegistersForValue(MF, MIRBuilder, OpInfo, RefOpInfo);
switch (OpInfo.Type) {
case InlineAsm::isOutput:
if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
unsigned ConstraintID =
TLI->getInlineAsmMemConstraint(OpInfo.ConstraintCode);
assert(ConstraintID != InlineAsm::Constraint_Unknown &&
"Failed to convert memory constraint code to constraint id.");
// Add information to the INLINEASM instruction to know about this
// output.
unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
Inst.addImm(OpFlags);
ArrayRef<Register> SourceRegs =
GetOrCreateVRegs(*OpInfo.CallOperandVal);
assert(
SourceRegs.size() == 1 &&
"Expected the memory output to fit into a single virtual register");
Inst.addReg(SourceRegs[0]);
} else {
// Otherwise, this outputs to a register (directly for C_Register /
// C_RegisterClass. Find a register that we can use.
assert(OpInfo.ConstraintType == TargetLowering::C_Register ||
OpInfo.ConstraintType == TargetLowering::C_RegisterClass);
if (OpInfo.Regs.empty()) {
LLVM_DEBUG(dbgs()
<< "Couldn't allocate output register for constraint\n");
return false;
}
// Add information to the INLINEASM instruction to know that this
// register is set.
unsigned Flag = InlineAsm::getFlagWord(
OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
: InlineAsm::Kind_RegDef,
OpInfo.Regs.size());
if (OpInfo.Regs.front().isVirtual()) {
// Put the register class of the virtual registers in the flag word.
// That way, later passes can recompute register class constraints for
// inline assembly as well as normal instructions. Don't do this for
// tied operands that can use the regclass information from the def.
const TargetRegisterClass *RC = MRI->getRegClass(OpInfo.Regs.front());
Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
}
Inst.addImm(Flag);
for (Register Reg : OpInfo.Regs) {
Inst.addReg(Reg,
RegState::Define | getImplRegState(Reg.isPhysical()));
}
// Remember this output operand for later processing
OutputOperands.push_back(OpInfo);
}
break;
case InlineAsm::isInput:
return false;
case InlineAsm::isClobber: {
unsigned NumRegs = OpInfo.Regs.size();
if (NumRegs > 0) {
unsigned Flag =
InlineAsm::getFlagWord(InlineAsm::Kind_Clobber, NumRegs);
Inst.addImm(Flag);
for (Register Reg : OpInfo.Regs) {
Inst.addReg(Reg, RegState::Define | RegState::EarlyClobber |
getImplRegState(Reg.isPhysical()));
}
}
break;
}
}
}
if (const MDNode *SrcLoc = Call.getMetadata("srcloc"))
Inst.addMetadata(SrcLoc);
// All inputs are handled, insert the instruction now
MIRBuilder.insertInstr(Inst);
// Finally, copy the output operands into the output registers
ArrayRef<Register> ResRegs = GetOrCreateVRegs(Call);
if (ResRegs.size() != OutputOperands.size()) {
LLVM_DEBUG(dbgs() << "Expected the number of output registers to match the "
"number of destination registers\n");
return false;
}
for (unsigned int i = 0, e = ResRegs.size(); i < e; i++) {
GISelAsmOperandInfo &OpInfo = OutputOperands[i];
if (OpInfo.Regs.empty())
continue;
switch (OpInfo.ConstraintType) {
case TargetLowering::C_Register:
case TargetLowering::C_RegisterClass: {
if (OpInfo.Regs.size() > 1) {
LLVM_DEBUG(dbgs() << "Output operands with multiple defining "
"registers are not supported yet\n");
return false;
}
Register SrcReg = OpInfo.Regs[0];
unsigned SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
if (MRI->getType(ResRegs[i]).getSizeInBits() < SrcSize) {
// First copy the non-typed virtual register into a generic virtual
// register
Register Tmp1Reg =
MRI->createGenericVirtualRegister(LLT::scalar(SrcSize));
MIRBuilder.buildCopy(Tmp1Reg, SrcReg);
// Need to truncate the result of the register
MIRBuilder.buildTrunc(ResRegs[i], Tmp1Reg);
} else {
MIRBuilder.buildCopy(ResRegs[i], SrcReg);
}
break;
}
case TargetLowering::C_Immediate:
case TargetLowering::C_Other:
LLVM_DEBUG(
dbgs() << "Cannot lower target specific output constraints yet\n");
return false;
case TargetLowering::C_Memory:
break; // Already handled.
case TargetLowering::C_Unknown:
LLVM_DEBUG(dbgs() << "Unexpected unknown constraint\n");
return false;
}
}
return true;
}

View File

@ -693,6 +693,11 @@ bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
if (isTargetSpecificOpcode(MI.getOpcode()) && !MI.isPreISelOpcode())
continue;
// Ignore inline asm instructions: they should use physical
// registers/regclasses
if (MI.isInlineAsm())
continue;
// Ignore debug info.
if (MI.isDebugInstr())
continue;

View File

@ -0,0 +1,134 @@
; NOTE: Assertions have been autogenerated by utils/update_mir_test_checks.py
; RUN: llc -mtriple=aarch64-darwin-ios13 -O0 -global-isel -stop-after=irtranslator -verify-machineinstrs -o - %s | FileCheck %s
define void @asm_simple_memory_clobber() {
; CHECK-LABEL: name: asm_simple_memory_clobber
; CHECK: bb.1 (%ir-block.0):
; CHECK: INLINEASM &"", 25 /* sideeffect mayload maystore attdialect */, !0
; CHECK: INLINEASM &"", 1 /* sideeffect attdialect */, !0
; CHECK: RET_ReallyLR
call void asm sideeffect "", "~{memory}"(), !srcloc !0
call void asm sideeffect "", ""(), !srcloc !0
ret void
}
!0 = !{i32 70}
define void @asm_simple_register_clobber() {
; CHECK-LABEL: name: asm_simple_register_clobber
; CHECK: bb.1 (%ir-block.0):
; CHECK: INLINEASM &"mov x0, 7", 1 /* sideeffect attdialect */, 12 /* clobber */, implicit-def early-clobber $x0, !0
; CHECK: RET_ReallyLR
call void asm sideeffect "mov x0, 7", "~{x0}"(), !srcloc !0
ret void
}
define i32 @test_specific_register_output() nounwind ssp {
; CHECK-LABEL: name: test_specific_register_output
; CHECK: bb.1.entry:
; CHECK: INLINEASM &"mov ${0:w}, 7", 0 /* attdialect */, 10 /* regdef */, implicit-def $w0
; CHECK: [[COPY:%[0-9]+]]:_(s32) = COPY $w0
; CHECK: $w0 = COPY [[COPY]](s32)
; CHECK: RET_ReallyLR implicit $w0
entry:
%0 = tail call i32 asm "mov ${0:w}, 7", "={w0}"() nounwind
ret i32 %0
}
define i32 @test_single_register_output() nounwind ssp {
; CHECK-LABEL: name: test_single_register_output
; CHECK: bb.1.entry:
; CHECK: INLINEASM &"mov ${0:w}, 7", 0 /* attdialect */, 655370 /* regdef:GPR32common */, def %0
; CHECK: [[COPY:%[0-9]+]]:_(s32) = COPY %0
; CHECK: $w0 = COPY [[COPY]](s32)
; CHECK: RET_ReallyLR implicit $w0
entry:
%0 = tail call i32 asm "mov ${0:w}, 7", "=r"() nounwind
ret i32 %0
}
define i64 @test_single_register_output_s64() nounwind ssp {
; CHECK-LABEL: name: test_single_register_output_s64
; CHECK: bb.1.entry:
; CHECK: INLINEASM &"mov $0, 7", 0 /* attdialect */, 1441802 /* regdef:GPR64common */, def %0
; CHECK: [[COPY:%[0-9]+]]:_(s64) = COPY %0
; CHECK: $x0 = COPY [[COPY]](s64)
; CHECK: RET_ReallyLR implicit $x0
entry:
%0 = tail call i64 asm "mov $0, 7", "=r"() nounwind
ret i64 %0
}
; Check support for returning several floats
define float @test_multiple_register_outputs_same() #0 {
; CHECK-LABEL: name: test_multiple_register_outputs_same
; CHECK: bb.1 (%ir-block.0):
; CHECK: INLINEASM &"mov $0, #0; mov $1, #0", 0 /* attdialect */, 655370 /* regdef:GPR32common */, def %0, 655370 /* regdef:GPR32common */, def %1
; CHECK: [[COPY:%[0-9]+]]:_(s32) = COPY %0
; CHECK: [[COPY1:%[0-9]+]]:_(s32) = COPY %1
; CHECK: [[FADD:%[0-9]+]]:_(s32) = G_FADD [[COPY]], [[COPY1]]
; CHECK: $s0 = COPY [[FADD]](s32)
; CHECK: RET_ReallyLR implicit $s0
%1 = call { float, float } asm "mov $0, #0; mov $1, #0", "=r,=r"()
%asmresult = extractvalue { float, float } %1, 0
%asmresult1 = extractvalue { float, float } %1, 1
%add = fadd float %asmresult, %asmresult1
ret float %add
}
; Check support for returning several floats
define double @test_multiple_register_outputs_mixed() #0 {
; CHECK-LABEL: name: test_multiple_register_outputs_mixed
; CHECK: bb.1 (%ir-block.0):
; CHECK: INLINEASM &"mov $0, #0; mov $1, #0", 0 /* attdialect */, 655370 /* regdef:GPR32common */, def %0, 1245194 /* regdef:FPR64 */, def %1
; CHECK: [[COPY:%[0-9]+]]:_(s32) = COPY %0
; CHECK: [[COPY1:%[0-9]+]]:_(s64) = COPY %1
; CHECK: $d0 = COPY [[COPY1]](s64)
; CHECK: RET_ReallyLR implicit $d0
%1 = call { float, double } asm "mov $0, #0; mov $1, #0", "=r,=w"()
%asmresult = extractvalue { float, double } %1, 1
ret double %asmresult
}
define i32 @test_specific_register_output_trunc() nounwind ssp {
; CHECK-LABEL: name: test_specific_register_output_trunc
; CHECK: bb.1.entry:
; CHECK: INLINEASM &"mov ${0:w}, 7", 0 /* attdialect */, 10 /* regdef */, implicit-def $x0
; CHECK: [[COPY:%[0-9]+]]:_(s64) = COPY $x0
; CHECK: [[TRUNC:%[0-9]+]]:_(s32) = G_TRUNC [[COPY]](s64)
; CHECK: $w0 = COPY [[TRUNC]](s32)
; CHECK: RET_ReallyLR implicit $w0
entry:
%0 = tail call i32 asm "mov ${0:w}, 7", "={x0}"() nounwind
ret i32 %0
}
define zeroext i8 @test_register_output_trunc(i8* %src) nounwind {
; CHECK-LABEL: name: test_register_output_trunc
; CHECK: bb.1.entry:
; CHECK: liveins: $x0
; CHECK: [[COPY:%[0-9]+]]:_(p0) = COPY $x0
; CHECK: INLINEASM &"mov ${0:w}, 32", 0 /* attdialect */, 655370 /* regdef:GPR32common */, def %1
; CHECK: [[COPY1:%[0-9]+]]:_(s32) = COPY %1
; CHECK: [[TRUNC:%[0-9]+]]:_(s8) = G_TRUNC [[COPY1]](s32)
; CHECK: [[ZEXT:%[0-9]+]]:_(s32) = G_ZEXT [[TRUNC]](s8)
; CHECK: $w0 = COPY [[ZEXT]](s32)
; CHECK: RET_ReallyLR implicit $w0
entry:
%0 = tail call i8 asm "mov ${0:w}, 32", "=r"() nounwind
ret i8 %0
}
define float @test_vector_output() nounwind {
; CHECK-LABEL: name: test_vector_output
; CHECK: bb.1 (%ir-block.0):
; CHECK: [[C:%[0-9]+]]:_(s64) = G_CONSTANT i64 0
; CHECK: INLINEASM &"fmov ${0}.2s, #1.0", 1 /* sideeffect attdialect */, 10 /* regdef */, implicit-def $d14
; CHECK: [[COPY:%[0-9]+]]:_(<2 x s32>) = COPY $d14
; CHECK: [[EVEC:%[0-9]+]]:_(s32) = G_EXTRACT_VECTOR_ELT [[COPY]](<2 x s32>), [[C]](s64)
; CHECK: $s0 = COPY [[EVEC]](s32)
; CHECK: RET_ReallyLR implicit $s0
%1 = tail call <2 x float> asm sideeffect "fmov ${0}.2s, #1.0", "={v14}"() nounwind
%2 = extractelement <2 x float> %1, i32 0
ret float %2
}

View File

@ -0,0 +1,88 @@
# NOTE: Assertions have been autogenerated by utils/update_mir_test_checks.py
# RUN: llc -mtriple=aarch64-unknown-unknown -verify-machineinstrs -O0 -run-pass=regbankselect %s -o - | FileCheck %s
---
name: inlineasm_memory_clobber
alignment: 4
legalized: true
tracksRegLiveness: true
body: |
bb.1:
; CHECK-LABEL: name: inlineasm_memory_clobber
; CHECK: INLINEASM &"", 25 /* sideeffect mayload maystore attdialect */
; CHECK: INLINEASM &"", 1 /* sideeffect attdialect */
; CHECK: RET_ReallyLR
INLINEASM &"", 25
INLINEASM &"", 1
RET_ReallyLR
...
---
name: inlineasm_register_clobber
alignment: 4
legalized: true
tracksRegLiveness: true
body: |
bb.1:
; CHECK-LABEL: name: inlineasm_register_clobber
; CHECK: INLINEASM &"", 25 /* sideeffect mayload maystore attdialect */, 12 /* clobber */, implicit-def early-clobber $d0
; CHECK: RET_ReallyLR
INLINEASM &"", 25, 12, implicit-def early-clobber $d0
RET_ReallyLR
...
---
name: inlineasm_phys_reg_output
alignment: 4
legalized: true
tracksRegLiveness: true
body: |
bb.1:
; CHECK-LABEL: name: inlineasm_phys_reg_output
; CHECK: INLINEASM &"mov ${0:w}, 7", 0 /* attdialect */, 10 /* regdef */, implicit-def $w0
; CHECK: [[COPY:%[0-9]+]]:gpr(s32) = COPY $w0
; CHECK: $w0 = COPY [[COPY]](s32)
; CHECK: RET_ReallyLR implicit $w0
INLINEASM &"mov ${0:w}, 7", 0 /* attdialect */, 10 /* regdef */, implicit-def $w0
%0:_(s32) = COPY $w0
$w0 = COPY %0(s32)
RET_ReallyLR implicit $w0
...
---
name: inlineasm_virt_reg_output
alignment: 4
legalized: true
tracksRegLiveness: true
body: |
bb.1:
; CHECK-LABEL: name: inlineasm_virt_reg_output
; CHECK: INLINEASM &"mov ${0:w}, 7", 0 /* attdialect */, 655370 /* regdef:GPR32common */, def %0
; CHECK: [[COPY:%[0-9]+]]:gpr(s32) = COPY %0
; CHECK: $w0 = COPY [[COPY]](s32)
; CHECK: RET_ReallyLR implicit $w0
INLINEASM &"mov ${0:w}, 7", 0 /* attdialect */, 655370 /* regdef:GPR32common */, def %0:gpr32common
%1:_(s32) = COPY %0
$w0 = COPY %1(s32)
RET_ReallyLR implicit $w0
...
---
name: inlineasm_virt_mixed_types
alignment: 4
legalized: true
tracksRegLiveness: true
body: |
bb.1:
; CHECK-LABEL: name: inlineasm_virt_mixed_types
; CHECK: INLINEASM &"mov $0, #0; mov $1, #0", 0 /* attdialect */, 655370 /* regdef:GPR32common */, def %0, 1245194 /* regdef:FPR64 */, def %1
; CHECK: [[COPY:%[0-9]+]]:gpr(s32) = COPY %0
; CHECK: [[COPY1:%[0-9]+]]:fpr(s64) = COPY %1
; CHECK: $d0 = COPY [[COPY1]](s64)
; CHECK: RET_ReallyLR implicit $d0
INLINEASM &"mov $0, #0; mov $1, #0", 0 /* attdialect */, 655370 /* regdef:GPR32common */, def %0:gpr32common, 1245194 /* regdef:FPR64 */, def %1:fpr64
%3:_(s32) = COPY %0
%4:_(s64) = COPY %1
$d0 = COPY %4(s64)
RET_ReallyLR implicit $d0
...

View File

@ -1,14 +0,0 @@
; RUN: llc -mtriple=aarch64-darwin-ios13 -O0 -global-isel -stop-after=irtranslator -o - %s | FileCheck %s
; The update_mir_test_checks script doesn't seem to handle INLINE_ASM well. Write this manually.
define void @asm_simple_memory_clobber() {
; CHECK-LABEL: name: asm_simple_memory_clobber
; CHECK: INLINEASM &"", 25
; CHECK: INLINEASM &"", 1
call void asm sideeffect "", "~{memory}"(), !srcloc !0
call void asm sideeffect "", ""(), !srcloc !0
ret void
}
!0 = !{i32 70}