1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 02:52:53 +02:00

Reappy r80998, now that the GlobalOpt bug that it exposed on MiniSAT is fixed.

llvm-svn: 81172
This commit is contained in:
Dan Gohman 2009-09-07 23:54:19 +00:00
parent 572ecc26b6
commit 1147a7ba87
16 changed files with 348 additions and 241 deletions

View File

@ -571,13 +571,17 @@ protected:
// These private methods are used by the type resolution code to create
// ConstantExprs in intermediate forms.
static Constant *getTy(const Type *Ty, unsigned Opcode,
Constant *C1, Constant *C2);
Constant *C1, Constant *C2,
unsigned Flags = 0);
static Constant *getCompareTy(unsigned short pred, Constant *C1,
Constant *C2);
static Constant *getSelectTy(const Type *Ty,
Constant *C1, Constant *C2, Constant *C3);
static Constant *getGetElementPtrTy(const Type *Ty, Constant *C,
Value* const *Idxs, unsigned NumIdxs);
static Constant *getInBoundsGetElementPtrTy(const Type *Ty, Constant *C,
Value* const *Idxs,
unsigned NumIdxs);
static Constant *getExtractElementTy(const Type *Ty, Constant *Val,
Constant *Idx);
static Constant *getInsertElementTy(const Type *Ty, Constant *Val,
@ -718,7 +722,8 @@ public:
/// get - Return a binary or shift operator constant expression,
/// folding if possible.
///
static Constant *get(unsigned Opcode, Constant *C1, Constant *C2);
static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
unsigned Flags = 0);
/// @brief Return an ICmp or FCmp comparison operator constant expression.
static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2);

View File

@ -200,19 +200,19 @@ public:
static BinaryOperator *CreateNSWAdd(Value *V1, Value *V2,
const Twine &Name = "") {
BinaryOperator *BO = CreateAdd(V1, V2, Name);
cast<AddOperator>(BO)->setHasNoSignedWrap(true);
BO->setHasNoSignedWrap(true);
return BO;
}
static BinaryOperator *CreateNSWAdd(Value *V1, Value *V2,
const Twine &Name, BasicBlock *BB) {
BinaryOperator *BO = CreateAdd(V1, V2, Name, BB);
cast<AddOperator>(BO)->setHasNoSignedWrap(true);
BO->setHasNoSignedWrap(true);
return BO;
}
static BinaryOperator *CreateNSWAdd(Value *V1, Value *V2,
const Twine &Name, Instruction *I) {
BinaryOperator *BO = CreateAdd(V1, V2, Name, I);
cast<AddOperator>(BO)->setHasNoSignedWrap(true);
BO->setHasNoSignedWrap(true);
return BO;
}
@ -221,19 +221,19 @@ public:
static BinaryOperator *CreateExactSDiv(Value *V1, Value *V2,
const Twine &Name = "") {
BinaryOperator *BO = CreateSDiv(V1, V2, Name);
cast<SDivOperator>(BO)->setIsExact(true);
BO->setIsExact(true);
return BO;
}
static BinaryOperator *CreateExactSDiv(Value *V1, Value *V2,
const Twine &Name, BasicBlock *BB) {
BinaryOperator *BO = CreateSDiv(V1, V2, Name, BB);
cast<SDivOperator>(BO)->setIsExact(true);
BO->setIsExact(true);
return BO;
}
static BinaryOperator *CreateExactSDiv(Value *V1, Value *V2,
const Twine &Name, Instruction *I) {
BinaryOperator *BO = CreateSDiv(V1, V2, Name, I);
cast<SDivOperator>(BO)->setIsExact(true);
BO->setIsExact(true);
return BO;
}
@ -287,6 +287,21 @@ public:
///
bool swapOperands();
/// setHasNoUnsignedWrap - Set or clear the nsw flag on this instruction,
/// which must be an operator which supports this flag. See LangRef.html
/// for the meaning of this flag.
void setHasNoUnsignedWrap(bool);
/// setHasNoSignedWrap - Set or clear the nsw flag on this instruction,
/// which must be an operator which supports this flag. See LangRef.html
/// for the meaning of this flag.
void setHasNoSignedWrap(bool);
/// setIsExact - Set or clear the exact flag on this instruction,
/// which must be an operator which supports this flag. See LangRef.html
/// for the meaning of this flag.
void setIsExact(bool);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const BinaryOperator *) { return true; }
static inline bool classof(const Instruction *I) {

View File

@ -496,7 +496,7 @@ public:
Instruction *InsertBefore = 0) {
GetElementPtrInst *GEP = Create(Ptr, IdxBegin, IdxEnd,
NameStr, InsertBefore);
cast<GEPOperator>(GEP)->setIsInBounds(true);
GEP->setIsInBounds(true);
return GEP;
}
template<typename InputIterator>
@ -507,21 +507,21 @@ public:
BasicBlock *InsertAtEnd) {
GetElementPtrInst *GEP = Create(Ptr, IdxBegin, IdxEnd,
NameStr, InsertAtEnd);
cast<GEPOperator>(GEP)->setIsInBounds(true);
GEP->setIsInBounds(true);
return GEP;
}
static GetElementPtrInst *CreateInBounds(Value *Ptr, Value *Idx,
const Twine &NameStr = "",
Instruction *InsertBefore = 0) {
GetElementPtrInst *GEP = Create(Ptr, Idx, NameStr, InsertBefore);
cast<GEPOperator>(GEP)->setIsInBounds(true);
GEP->setIsInBounds(true);
return GEP;
}
static GetElementPtrInst *CreateInBounds(Value *Ptr, Value *Idx,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
GetElementPtrInst *GEP = Create(Ptr, Idx, NameStr, InsertAtEnd);
cast<GEPOperator>(GEP)->setIsInBounds(true);
GEP->setIsInBounds(true);
return GEP;
}
@ -602,6 +602,10 @@ public:
/// a constant offset between them.
bool hasAllConstantIndices() const;
/// setIsInBounds - Set or clear the inbounds flag on this GEP instruction.
/// See LangRef.html for the meaning of inbounds on a getelementptr.
void setIsInBounds(bool);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const GetElementPtrInst *) { return true; }
static inline bool classof(const Instruction *I) {

View File

@ -21,6 +21,8 @@
namespace llvm {
class GetElementPtrInst;
class BinaryOperator;
class ConstantExpr;
/// Operator - This is a utility class that provides an abstraction for the
/// common functionality between Instructions and ConstantExprs.
@ -67,24 +69,37 @@ public:
/// despite that operator having the potential for overflow.
///
class OverflowingBinaryOperator : public Operator {
public:
enum {
NoUnsignedWrap = (1 << 0),
NoSignedWrap = (1 << 1)
};
private:
~OverflowingBinaryOperator(); // do not implement
friend class BinaryOperator;
friend class ConstantExpr;
void setHasNoUnsignedWrap(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap);
}
void setHasNoSignedWrap(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap);
}
public:
/// hasNoUnsignedWrap - Test whether this operation is known to never
/// undergo unsigned overflow, aka the nuw property.
bool hasNoUnsignedWrap() const {
return SubclassOptionalData & (1 << 0);
}
void setHasNoUnsignedWrap(bool B) {
SubclassOptionalData = (SubclassOptionalData & ~(1 << 0)) | (B << 0);
return SubclassOptionalData & NoUnsignedWrap;
}
/// hasNoSignedWrap - Test whether this operation is known to never
/// undergo signed overflow, aka the nsw property.
bool hasNoSignedWrap() const {
return SubclassOptionalData & (1 << 1);
}
void setHasNoSignedWrap(bool B) {
SubclassOptionalData = (SubclassOptionalData & ~(1 << 1)) | (B << 1);
return SubclassOptionalData & NoSignedWrap;
}
static inline bool classof(const OverflowingBinaryOperator *) { return true; }
@ -161,15 +176,25 @@ public:
/// SDivOperator - An Operator with opcode Instruction::SDiv.
///
class SDivOperator : public Operator {
public:
enum {
IsExact = (1 << 0)
};
private:
~SDivOperator(); // do not implement
friend class BinaryOperator;
friend class ConstantExpr;
void setIsExact(bool B) {
SubclassOptionalData = (SubclassOptionalData & ~IsExact) | (B * IsExact);
}
public:
/// isExact - Test whether this division is known to be exact, with
/// zero remainder.
bool isExact() const {
return SubclassOptionalData & (1 << 0);
}
void setIsExact(bool B) {
SubclassOptionalData = (SubclassOptionalData & ~(1 << 0)) | (B << 0);
return SubclassOptionalData & IsExact;
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
@ -187,15 +212,24 @@ public:
};
class GEPOperator : public Operator {
enum {
IsInBounds = (1 << 0)
};
~GEPOperator(); // do not implement
friend class GetElementPtrInst;
friend class ConstantExpr;
void setIsInBounds(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~IsInBounds) | (B * IsInBounds);
}
public:
/// isInBounds - Test whether this is an inbounds GEP, as defined
/// by LangRef.html.
bool isInBounds() const {
return SubclassOptionalData & (1 << 0);
}
void setIsInBounds(bool B) {
SubclassOptionalData = (SubclassOptionalData & ~(1 << 0)) | (B << 0);
return SubclassOptionalData & IsInBounds;
}
inline op_iterator idx_begin() { return op_begin()+1; }

View File

@ -146,12 +146,6 @@ public:
// Only use when in type resolution situations!
void uncheckedReplaceAllUsesWith(Value *V);
/// clearOptionalData - Clear any optional optimization data from this Value.
/// Transformation passes must call this method whenever changing the IR
/// in a way that would affect the values produced by this Value, unless
/// it takes special care to ensure correctness in some other way.
void clearOptionalData() { SubclassOptionalData = 0; }
//----------------------------------------------------------------------
// Methods for handling the chain of uses of this Value.
//
@ -240,6 +234,13 @@ public:
return SubclassID;
}
/// getRawSubclassOptionalData - Return the raw optional flags value
/// contained in this value. This should only be used when testing two
/// Values for equivalence.
unsigned getRawSubclassOptionalData() const {
return SubclassOptionalData;
}
/// hasSameSubclassOptionalData - Test whether the optional flags contained
/// in this value are equal to the optional flags in the given value.
bool hasSameSubclassOptionalData(const Value *V) const {

View File

@ -2095,13 +2095,11 @@ bool LLParser::ParseValID(ValID &ID) {
if (!Val0->getType()->isIntOrIntVector() &&
!Val0->getType()->isFPOrFPVector())
return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
Constant *C = ConstantExpr::get(Opc, Val0, Val1);
if (NUW)
cast<OverflowingBinaryOperator>(C)->setHasNoUnsignedWrap(true);
if (NSW)
cast<OverflowingBinaryOperator>(C)->setHasNoSignedWrap(true);
if (Exact)
cast<SDivOperator>(C)->setIsExact(true);
unsigned Flags = 0;
if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
if (Exact) Flags |= SDivOperator::IsExact;
Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
ID.ConstantVal = C;
ID.Kind = ValID::t_Constant;
return false;
@ -2157,10 +2155,12 @@ bool LLParser::ParseValID(ValID &ID) {
(Value**)(Elts.data() + 1),
Elts.size() - 1))
return Error(ID.Loc, "invalid indices for getelementptr");
ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0],
ID.ConstantVal = InBounds ?
ConstantExpr::getInBoundsGetElementPtr(Elts[0],
Elts.data() + 1,
Elts.size() - 1) :
ConstantExpr::getGetElementPtr(Elts[0],
Elts.data() + 1, Elts.size() - 1);
if (InBounds)
cast<GEPOperator>(ID.ConstantVal)->setIsInBounds(true);
} else if (Opc == Instruction::Select) {
if (Elts.size() != 3)
return Error(ID.Loc, "expected three operands to select");
@ -2681,9 +2681,9 @@ bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
return Error(ModifierLoc, "nsw only applies to integer operations");
}
if (NUW)
cast<OverflowingBinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
if (NSW)
cast<OverflowingBinaryOperator>(Inst)->setHasNoSignedWrap(true);
cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
}
return Result;
}
@ -2698,7 +2698,7 @@ bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
if (!Result)
if (Exact)
cast<SDivOperator>(Inst)->setIsExact(true);
cast<BinaryOperator>(Inst)->setIsExact(true);
return Result;
}
@ -3501,7 +3501,7 @@ bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
return Error(Loc, "invalid getelementptr indices");
Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
if (InBounds)
cast<GEPOperator>(Inst)->setIsInBounds(true);
cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
return false;
}

View File

@ -883,19 +883,6 @@ bool BitcodeReader::ResolveGlobalAndAliasInits() {
return false;
}
static void SetOptimizationFlags(Value *V, uint64_t Flags) {
if (OverflowingBinaryOperator *OBO =
dyn_cast<OverflowingBinaryOperator>(V)) {
if (Flags & (1 << bitc::OBO_NO_SIGNED_WRAP))
OBO->setHasNoSignedWrap(true);
if (Flags & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
OBO->setHasNoUnsignedWrap(true);
} else if (SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
if (Flags & (1 << bitc::SDIV_EXACT))
Div->setIsExact(true);
}
}
bool BitcodeReader::ParseConstants() {
if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
return Error("Malformed block record");
@ -1047,10 +1034,22 @@ bool BitcodeReader::ParseConstants() {
} else {
Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
V = ConstantExpr::get(Opc, LHS, RHS);
unsigned Flags = 0;
if (Record.size() >= 4) {
if (Opc == Instruction::Add ||
Opc == Instruction::Sub ||
Opc == Instruction::Mul) {
if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
Flags |= OverflowingBinaryOperator::NoSignedWrap;
if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
} else if (Opc == Instruction::SDiv) {
if (Record[3] & (1 << bitc::SDIV_EXACT))
Flags |= SDivOperator::IsExact;
}
}
V = ConstantExpr::get(Opc, LHS, RHS, Flags);
}
if (Record.size() >= 4)
SetOptimizationFlags(V, Record[3]);
break;
}
case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
@ -1075,10 +1074,12 @@ bool BitcodeReader::ParseConstants() {
if (!ElTy) return Error("Invalid CE_GEP record");
Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
}
if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
Elts.size()-1);
else
V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
Elts.size()-1);
if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
cast<GEPOperator>(V)->setIsInBounds(true);
break;
}
case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#]
@ -1610,8 +1611,19 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
if (Opc == -1) return Error("Invalid BINOP record");
I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
if (OpNum < Record.size())
SetOptimizationFlags(I, Record[3]);
if (OpNum < Record.size()) {
if (Opc == Instruction::Add ||
Opc == Instruction::Sub ||
Opc == Instruction::Mul) {
if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
} else if (Opc == Instruction::SDiv) {
if (Record[3] & (1 << bitc::SDIV_EXACT))
cast<BinaryOperator>(I)->setIsExact(true);
}
}
break;
}
case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
@ -1645,7 +1657,7 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
cast<GEPOperator>(I)->setIsInBounds(true);
cast<GetElementPtrInst>(I)->setIsInBounds(true);
break;
}

View File

@ -8086,11 +8086,11 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
// If we were able to index down into an element, create the GEP
// and bitcast the result. This eliminates one bitcast, potentially
// two.
Value *NGEP = Builder->CreateGEP(OrigBase, NewIndices.begin(),
NewIndices.end());
Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
Builder->CreateInBoundsGEP(OrigBase,
NewIndices.begin(), NewIndices.end()) :
Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end());
NGEP->takeName(GEP);
if (isa<Instruction>(NGEP) && cast<GEPOperator>(GEP)->isInBounds())
cast<GEPOperator>(NGEP)->setIsInBounds(true);
if (isa<BitCastInst>(CI))
return new BitCastInst(NGEP, CI.getType());
@ -8805,11 +8805,8 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
// If we found a path from the src to dest, create the getelementptr now.
if (SrcElTy == DstElTy) {
SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Instruction *GEP = GetElementPtrInst::Create(Src,
Idxs.begin(), Idxs.end(), "",
return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(), "",
((Instruction*) NULL));
cast<GEPOperator>(GEP)->setIsInBounds(true);
return GEP;
}
}
@ -10481,12 +10478,11 @@ Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
}
Value *Base = FixedOperands[0];
GetElementPtrInst *GEP =
return cast<GEPOperator>(FirstInst)->isInBounds() ?
GetElementPtrInst::CreateInBounds(Base, FixedOperands.begin()+1,
FixedOperands.end()) :
GetElementPtrInst::Create(Base, FixedOperands.begin()+1,
FixedOperands.end());
if (cast<GEPOperator>(FirstInst)->isInBounds())
cast<GEPOperator>(GEP)->setIsInBounds(true);
return GEP;
}
@ -10889,14 +10885,13 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Indices.append(GEP.idx_begin()+1, GEP.idx_end());
}
if (!Indices.empty()) {
GetElementPtrInst *NewGEP =
if (!Indices.empty())
return (cast<GEPOperator>(&GEP)->isInBounds() &&
Src->isInBounds()) ?
GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices.begin(),
Indices.end(), GEP.getName()) :
GetElementPtrInst::Create(Src->getOperand(0), Indices.begin(),
Indices.end(), GEP.getName());
if (cast<GEPOperator>(&GEP)->isInBounds() && Src->isInBounds())
cast<GEPOperator>(NewGEP)->setIsInBounds(true);
return NewGEP;
}
}
// Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
@ -10926,12 +10921,11 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
if (CATy->getElementType() == XTy->getElementType()) {
// -> GEP i8* X, ...
SmallVector<Value*, 8> Indices(GEP.idx_begin()+1, GEP.idx_end());
GetElementPtrInst *NewGEP =
return cast<GEPOperator>(&GEP)->isInBounds() ?
GetElementPtrInst::CreateInBounds(X, Indices.begin(), Indices.end(),
GEP.getName()) :
GetElementPtrInst::Create(X, Indices.begin(), Indices.end(),
GEP.getName());
if (cast<GEPOperator>(&GEP)->isInBounds())
cast<GEPOperator>(NewGEP)->setIsInBounds(true);
return NewGEP;
}
if (const ArrayType *XATy = dyn_cast<ArrayType>(XTy->getElementType())){
@ -10959,10 +10953,9 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Value *Idx[2];
Idx[0] = Constant::getNullValue(Type::getInt32Ty(*Context));
Idx[1] = GEP.getOperand(1);
Value *NewGEP =
Value *NewGEP = cast<GEPOperator>(&GEP)->isInBounds() ?
Builder->CreateInBoundsGEP(X, Idx, Idx + 2, GEP.getName()) :
Builder->CreateGEP(X, Idx, Idx + 2, GEP.getName());
if (cast<GEPOperator>(&GEP)->isInBounds())
cast<GEPOperator>(NewGEP)->setIsInBounds(true);
// V and GEP are both pointer types --> BitCast
return new BitCastInst(NewGEP, GEP.getType());
}
@ -11019,9 +11012,9 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Value *Idx[2];
Idx[0] = Constant::getNullValue(Type::getInt32Ty(*Context));
Idx[1] = NewIdx;
Value *NewGEP = Builder->CreateGEP(X, Idx, Idx + 2, GEP.getName());
if (cast<GEPOperator>(&GEP)->isInBounds())
cast<GEPOperator>(NewGEP)->setIsInBounds(true);
Value *NewGEP = cast<GEPOperator>(&GEP)->isInBounds() ?
Builder->CreateInBoundsGEP(X, Idx, Idx + 2, GEP.getName()) :
Builder->CreateGEP(X, Idx, Idx + 2, GEP.getName());
// The NewGEP must be pointer typed, so must the old one -> BitCast
return new BitCastInst(NewGEP, GEP.getType());
}
@ -11069,10 +11062,11 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
const Type *InTy =
cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
if (FindElementAtOffset(InTy, Offset, NewIndices, TD, Context)) {
Value *NGEP = Builder->CreateGEP(BCI->getOperand(0), NewIndices.begin(),
Value *NGEP = cast<GEPOperator>(&GEP)->isInBounds() ?
Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices.begin(),
NewIndices.end()) :
Builder->CreateGEP(BCI->getOperand(0), NewIndices.begin(),
NewIndices.end());
if (cast<GEPOperator>(&GEP)->isInBounds())
cast<GEPOperator>(NGEP)->setIsInBounds(true);
if (NGEP->getType() == GEP.getType())
return ReplaceInstUsesWith(GEP, NGEP);
@ -11115,9 +11109,8 @@ Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
Value *Idx[2];
Idx[0] = NullIdx;
Idx[1] = NullIdx;
Value *V = GetElementPtrInst::Create(New, Idx, Idx + 2,
Value *V = GetElementPtrInst::CreateInBounds(New, Idx, Idx + 2,
New->getName()+".sub", It);
cast<GEPOperator>(V)->setIsInBounds(true);
// Now make everything use the getelementptr instead of the original
// allocation.
@ -11486,11 +11479,9 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
// SIOp0 is a pointer to aggregate and this is a store to the first field,
// emit a GEP to index into its first field.
if (!NewGEPIndices.empty()) {
CastOp = IC.Builder->CreateGEP(CastOp, NewGEPIndices.begin(),
if (!NewGEPIndices.empty())
CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices.begin(),
NewGEPIndices.end());
cast<GEPOperator>(CastOp)->setIsInBounds(true);
}
NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
SIOp0->getName()+".c");

View File

@ -632,21 +632,13 @@ Constant* ConstantVector::get(Constant* const* Vals, unsigned NumVals) {
}
Constant* ConstantExpr::getNSWAdd(Constant* C1, Constant* C2) {
Constant *C = getAdd(C1, C2);
// Set nsw attribute, assuming constant folding didn't eliminate the
// Add.
if (AddOperator *Add = dyn_cast<AddOperator>(C))
Add->setHasNoSignedWrap(true);
return C;
return getTy(C1->getType(), Instruction::Add, C1, C2,
OverflowingBinaryOperator::NoSignedWrap);
}
Constant* ConstantExpr::getExactSDiv(Constant* C1, Constant* C2) {
Constant *C = getSDiv(C1, C2);
// Set exact attribute, assuming constant folding didn't eliminate the
// SDiv.
if (SDivOperator *SDiv = dyn_cast<SDivOperator>(C))
SDiv->setIsExact(true);
return C;
return getTy(C1->getType(), Instruction::SDiv, C1, C2,
SDivOperator::IsExact);
}
// Utility function for determining if a ConstantExpr is a CastOp or not. This
@ -729,15 +721,19 @@ ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
Ops[i-1] = getOperand(i);
if (OpNo == 0)
return ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size());
return cast<GEPOperator>(this)->isInBounds() ?
ConstantExpr::getInBoundsGetElementPtr(Op, &Ops[0], Ops.size()) :
ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size());
Ops[OpNo-1] = Op;
return ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size());
return cast<GEPOperator>(this)->isInBounds() ?
ConstantExpr::getInBoundsGetElementPtr(getOperand(0), &Ops[0], Ops.size()) :
ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size());
}
default:
assert(getNumOperands() == 2 && "Must be binary operator?");
Op0 = (OpNo == 0) ? Op : getOperand(0);
Op1 = (OpNo == 1) ? Op : getOperand(1);
return ConstantExpr::get(getOpcode(), Op0, Op1);
return ConstantExpr::get(getOpcode(), Op0, Op1, SubclassData);
}
}
@ -779,13 +775,15 @@ getWithOperands(Constant* const *Ops, unsigned NumOps) const {
case Instruction::ShuffleVector:
return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
case Instruction::GetElementPtr:
return ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], NumOps-1);
return cast<GEPOperator>(this)->isInBounds() ?
ConstantExpr::getInBoundsGetElementPtr(Ops[0], &Ops[1], NumOps-1) :
ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], NumOps-1);
case Instruction::ICmp:
case Instruction::FCmp:
return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
default:
assert(getNumOperands() == 2 && "Must be binary operator?");
return ConstantExpr::get(getOpcode(), Ops[0], Ops[1]);
return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassData);
}
}
@ -1033,6 +1031,7 @@ static ExprMapKeyType getValType(ConstantExpr *CE) {
Operands.push_back(cast<Constant>(CE->getOperand(i)));
return ExprMapKeyType(CE->getOpcode(), Operands,
CE->isCompare() ? CE->getPredicate() : 0,
CE->getRawSubclassOptionalData(),
CE->hasIndices() ?
CE->getIndices() : SmallVector<unsigned, 4>());
}
@ -1280,7 +1279,8 @@ Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) {
}
Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
Constant *C1, Constant *C2) {
Constant *C1, Constant *C2,
unsigned Flags) {
// Check the operands for consistency first
assert(Opcode >= Instruction::BinaryOpsBegin &&
Opcode < Instruction::BinaryOpsEnd &&
@ -1294,7 +1294,7 @@ Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
return FC; // Fold a few common cases...
std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
ExprMapKeyType Key(Opcode, argVec);
ExprMapKeyType Key(Opcode, argVec, 0, Flags);
LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
@ -1322,7 +1322,8 @@ Constant *ConstantExpr::getCompareTy(unsigned short predicate,
}
}
Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) {
Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
unsigned Flags) {
// API compatibility: Adjust integer opcodes to floating-point opcodes.
if (C1->getType()->isFPOrFPVector()) {
if (Opcode == Instruction::Add) Opcode = Instruction::FAdd;
@ -1387,7 +1388,7 @@ Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) {
}
#endif
return getTy(C1->getType(), Opcode, C1, C2);
return getTy(C1->getType(), Opcode, C1, C2, Flags);
}
Constant* ConstantExpr::getSizeOf(const Type* Ty) {
@ -1481,6 +1482,36 @@ Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getInBoundsGetElementPtrTy(const Type *ReqTy,
Constant *C,
Value* const *Idxs,
unsigned NumIdx) {
assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs,
Idxs+NumIdx) ==
cast<PointerType>(ReqTy)->getElementType() &&
"GEP indices invalid!");
if (Constant *FC = ConstantFoldGetElementPtr(
ReqTy->getContext(), C, (Constant**)Idxs, NumIdx))
return FC; // Fold a few common cases...
assert(isa<PointerType>(C->getType()) &&
"Non-pointer type for constant GetElementPtr expression");
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec;
ArgVec.reserve(NumIdx+1);
ArgVec.push_back(C);
for (unsigned i = 0; i != NumIdx; ++i)
ArgVec.push_back(cast<Constant>(Idxs[i]));
const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
GEPOperator::IsInBounds);
LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
// Implicitly locked.
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs,
unsigned NumIdx) {
// Get the result type of the getelementptr!
@ -1494,12 +1525,12 @@ Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs,
Constant *ConstantExpr::getInBoundsGetElementPtr(Constant *C,
Value* const *Idxs,
unsigned NumIdx) {
Constant *Result = getGetElementPtr(C, Idxs, NumIdx);
// Set in bounds attribute, assuming constant folding didn't eliminate the
// GEP.
if (GEPOperator *GEP = dyn_cast<GEPOperator>(Result))
GEP->setIsInBounds(true);
return Result;
// Get the result type of the getelementptr!
const Type *Ty =
GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx);
assert(Ty && "GEP indices invalid!");
unsigned As = cast<PointerType>(C->getType())->getAddressSpace();
return getInBoundsGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx);
}
Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs,
@ -2104,7 +2135,7 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
Constant *C2 = getOperand(1);
if (C1 == From) C1 = To;
if (C2 == From) C2 = To;
Replacement = ConstantExpr::get(getOpcode(), C1, C2);
Replacement = ConstantExpr::get(getOpcode(), C1, C2, SubclassData);
} else {
llvm_unreachable("Unknown ConstantExpr type!");
return;

View File

@ -53,10 +53,12 @@ public:
void *operator new(size_t s) {
return User::operator new(s, 2);
}
BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2)
BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2,
unsigned Flags)
: ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
Op<0>() = C1;
Op<1>() = C2;
SubclassOptionalData = Flags;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
@ -206,9 +208,12 @@ class GetElementPtrConstantExpr : public ConstantExpr {
public:
static GetElementPtrConstantExpr *Create(Constant *C,
const std::vector<Constant*>&IdxList,
const Type *DestTy) {
return
const Type *DestTy,
unsigned Flags) {
GetElementPtrConstantExpr *Result =
new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy);
Result->SubclassOptionalData = Flags;
return Result;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
@ -291,26 +296,32 @@ struct ExprMapKeyType {
ExprMapKeyType(unsigned opc,
const std::vector<Constant*> &ops,
unsigned short pred = 0,
unsigned short flags = 0,
unsigned short optionalflags = 0,
const IndexList &inds = IndexList())
: opcode(opc), predicate(pred), operands(ops), indices(inds) {}
uint16_t opcode;
uint16_t predicate;
: opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags),
operands(ops), indices(inds) {}
uint8_t opcode;
uint8_t subclassoptionaldata;
uint16_t subclassdata;
std::vector<Constant*> operands;
IndexList indices;
bool operator==(const ExprMapKeyType& that) const {
return this->opcode == that.opcode &&
this->predicate == that.predicate &&
this->subclassdata == that.subclassdata &&
this->subclassoptionaldata == that.subclassoptionaldata &&
this->operands == that.operands &&
this->indices == that.indices;
}
bool operator<(const ExprMapKeyType & that) const {
return this->opcode < that.opcode ||
(this->opcode == that.opcode && this->predicate < that.predicate) ||
(this->opcode == that.opcode && this->predicate == that.predicate &&
this->operands < that.operands) ||
(this->opcode == that.opcode && this->predicate == that.predicate &&
this->operands == that.operands && this->indices < that.indices);
if (this->opcode != that.opcode) return this->opcode < that.opcode;
if (this->operands != that.operands) return this->operands < that.operands;
if (this->subclassdata != that.subclassdata)
return this->subclassdata < that.subclassdata;
if (this->subclassoptionaldata != that.subclassoptionaldata)
return this->subclassoptionaldata < that.subclassoptionaldata;
if (this->indices != that.indices) return this->indices < that.indices;
return false;
}
bool operator!=(const ExprMapKeyType& that) const {
@ -354,7 +365,8 @@ struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
if ((V.opcode >= Instruction::BinaryOpsBegin &&
V.opcode < Instruction::BinaryOpsEnd))
return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1]);
return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1],
V.subclassoptionaldata);
if (V.opcode == Instruction::Select)
return new SelectConstantExpr(V.operands[0], V.operands[1],
V.operands[2]);
@ -373,17 +385,18 @@ struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
if (V.opcode == Instruction::GetElementPtr) {
std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty);
return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty,
V.subclassoptionaldata);
}
// The compare instructions are weird. We have to encode the predicate
// value and it is combined with the instruction opcode by multiplying
// the opcode by one hundred. We must decode this to get the predicate.
if (V.opcode == Instruction::ICmp)
return new CompareConstantExpr(Ty, Instruction::ICmp, V.predicate,
return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata,
V.operands[0], V.operands[1]);
if (V.opcode == Instruction::FCmp)
return new CompareConstantExpr(Ty, Instruction::FCmp, V.predicate,
return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata,
V.operands[0], V.operands[1]);
llvm_unreachable("Invalid ConstantExpr!");
return 0;

View File

@ -1171,6 +1171,9 @@ bool GetElementPtrInst::hasAllConstantIndices() const {
return true;
}
void GetElementPtrInst::setIsInBounds(bool B) {
cast<GEPOperator>(this)->setIsInBounds(B);
}
//===----------------------------------------------------------------------===//
// ExtractElementInst Implementation
@ -1716,6 +1719,18 @@ bool BinaryOperator::swapOperands() {
return false;
}
void BinaryOperator::setHasNoUnsignedWrap(bool b) {
cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
}
void BinaryOperator::setHasNoSignedWrap(bool b) {
cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
}
void BinaryOperator::setIsExact(bool b) {
cast<SDivOperator>(this)->setIsExact(b);
}
//===----------------------------------------------------------------------===//
// CastInst Class
//===----------------------------------------------------------------------===//

View File

@ -1,28 +0,0 @@
; RUN: llvm-as < %s | llvm-dis | FileCheck %s
@addr = external global i64
define i64 @add_plain_ce() {
; CHECK: ret i64 add (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 add (i64 ptrtoint (i64* @addr to i64), i64 91)
}
define i64 @sub_plain_ce() {
; CHECK: ret i64 sub (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 sub (i64 ptrtoint (i64* @addr to i64), i64 91)
}
define i64 @mul_plain_ce() {
; CHECK: ret i64 mul (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 mul (i64 ptrtoint (i64* @addr to i64), i64 91)
}
define i64 @sdiv_plain_ce() {
; CHECK: ret i64 sdiv (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 sdiv (i64 ptrtoint (i64* @addr to i64), i64 91)
}
define i64* @gep_plain_ce() {
; CHECK: ret i64* getelementptr (i64* @addr, i64 171)
ret i64* getelementptr (i64* @addr, i64 171)
}

View File

@ -1,18 +0,0 @@
; RUN: llvm-as < %s | llvm-dis | FileCheck %s
@addr = external global i64
define i64 @add_both_reversed_ce() {
; CHECK: ret i64 add nuw nsw (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 add nsw nuw (i64 ptrtoint (i64* @addr to i64), i64 91)
}
define i64 @sub_both_reversed_ce() {
; CHECK: ret i64 sub nuw nsw (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 sub nsw nuw (i64 ptrtoint (i64* @addr to i64), i64 91)
}
define i64 @mul_both_reversed_ce() {
; CHECK: ret i64 mul nuw nsw (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 mul nsw nuw (i64 ptrtoint (i64* @addr to i64), i64 91)
}

View File

@ -1,18 +0,0 @@
; RUN: llvm-as < %s | llvm-dis | FileCheck %s
@addr = external global i64
define i64 @add_signed_ce() {
; CHECK: ret i64 add nsw (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 add nsw (i64 ptrtoint (i64* @addr to i64), i64 91)
}
define i64 @sub_signed_ce() {
; CHECK: ret i64 sub nsw (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 sub nsw (i64 ptrtoint (i64* @addr to i64), i64 91)
}
define i64 @mul_signed_ce() {
; CHECK: ret i64 mul nsw (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 mul nsw (i64 ptrtoint (i64* @addr to i64), i64 91)
}

View File

@ -1,18 +0,0 @@
; RUN: llvm-as < %s | llvm-dis | FileCheck %s
@addr = external global i64
define i64 @add_unsigned_ce() {
; CHECK: ret i64 add nuw (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 add nuw (i64 ptrtoint (i64* @addr to i64), i64 91)
}
define i64 @sub_unsigned_ce() {
; CHECK: ret i64 sub nuw (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 sub nuw (i64 ptrtoint (i64* @addr to i64), i64 91)
}
define i64 @mul_unsigned_ce() {
; CHECK: ret i64 mul nuw (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 mul nuw (i64 ptrtoint (i64* @addr to i64), i64 91)
}

View File

@ -141,4 +141,72 @@ define i64* @gep_nw_ce() {
ret i64* getelementptr inbounds (i64* @addr, i64 171)
}
define i64 @add_plain_ce() {
; CHECK: ret i64 add (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 add (i64 ptrtoint (i64* @addr to i64), i64 91)
}
define i64 @sub_plain_ce() {
; CHECK: ret i64 sub (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 sub (i64 ptrtoint (i64* @addr to i64), i64 91)
}
define i64 @mul_plain_ce() {
; CHECK: ret i64 mul (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 mul (i64 ptrtoint (i64* @addr to i64), i64 91)
}
define i64 @sdiv_plain_ce() {
; CHECK: ret i64 sdiv (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 sdiv (i64 ptrtoint (i64* @addr to i64), i64 91)
}
define i64* @gep_plain_ce() {
; CHECK: ret i64* getelementptr (i64* @addr, i64 171)
ret i64* getelementptr (i64* @addr, i64 171)
}
define i64 @add_both_reversed_ce() {
; CHECK: ret i64 add nuw nsw (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 add nsw nuw (i64 ptrtoint (i64* @addr to i64), i64 91)
}
define i64 @sub_both_reversed_ce() {
; CHECK: ret i64 sub nuw nsw (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 sub nsw nuw (i64 ptrtoint (i64* @addr to i64), i64 91)
}
define i64 @mul_both_reversed_ce() {
; CHECK: ret i64 mul nuw nsw (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 mul nsw nuw (i64 ptrtoint (i64* @addr to i64), i64 91)
}
define i64 @add_signed_ce() {
; CHECK: ret i64 add nsw (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 add nsw (i64 ptrtoint (i64* @addr to i64), i64 91)
}
define i64 @sub_signed_ce() {
; CHECK: ret i64 sub nsw (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 sub nsw (i64 ptrtoint (i64* @addr to i64), i64 91)
}
define i64 @mul_signed_ce() {
; CHECK: ret i64 mul nsw (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 mul nsw (i64 ptrtoint (i64* @addr to i64), i64 91)
}
define i64 @add_unsigned_ce() {
; CHECK: ret i64 add nuw (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 add nuw (i64 ptrtoint (i64* @addr to i64), i64 91)
}
define i64 @sub_unsigned_ce() {
; CHECK: ret i64 sub nuw (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 sub nuw (i64 ptrtoint (i64* @addr to i64), i64 91)
}
define i64 @mul_unsigned_ce() {
; CHECK: ret i64 mul nuw (i64 ptrtoint (i64* @addr to i64), i64 91)
ret i64 mul nuw (i64 ptrtoint (i64* @addr to i64), i64 91)
}