1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 03:23:01 +02:00

[UnrollRuntime] Fix domTree failures in multiexit unrolling

Summary:
This fixes the IDom for exit blocks and all blocks reachable from the exit blocks, when runtime unrolling under multiexit/exiting case.
We initially had a restrictive check that the IDom is only updated when
it is the header of the loop.
However, we also need to update the IDom to the correct one when the
IDom is any block within the original loop. See added test cases (which
fail dom tree verification without the patch).

Reviewers: reames, mzolotukhin, mkazantsev, hfinkel

Reviewed by: brzycki, kuhar

Subscribers: zzheng, dmgreen, llvm-commits

Differential Revision: https://reviews.llvm.org/D56284

llvm-svn: 350640
This commit is contained in:
Anna Thomas 2019-01-08 17:16:25 +00:00
parent 620741cb36
commit 11683336a7
2 changed files with 173 additions and 24 deletions

View File

@ -805,10 +805,7 @@ bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count,
// Now the loop blocks are cloned and the other exiting blocks from the
// remainder are connected to the original Loop's exit blocks. The remaining
// work is to update the phi nodes in the original loop, and take in the
// values from the cloned region. Also update the dominator info for
// OtherExits and their immediate successors, since we have new edges into
// OtherExits.
SmallPtrSet<BasicBlock*, 8> ImmediateSuccessorsOfExitBlocks;
// values from the cloned region.
for (auto *BB : OtherExits) {
for (auto &II : *BB) {
@ -843,27 +840,30 @@ bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count,
"Breaks the definition of dedicated exits!");
}
#endif
// Update the dominator info because the immediate dominator is no longer the
// header of the original Loop. BB has edges both from L and remainder code.
// Since the preheader determines which loop is run (L or directly jump to
// the remainder code), we set the immediate dominator as the preheader.
if (DT) {
DT->changeImmediateDominator(BB, PreHeader);
// Also update the IDom for immediate successors of BB. If the current
// IDom is the header, update the IDom to be the preheader because that is
// the nearest common dominator of all predecessors of SuccBB. We need to
// check for IDom being the header because successors of exit blocks can
// have edges from outside the loop, and we should not incorrectly update
// the IDom in that case.
for (BasicBlock *SuccBB: successors(BB))
if (ImmediateSuccessorsOfExitBlocks.insert(SuccBB).second) {
if (DT->getNode(SuccBB)->getIDom()->getBlock() == Header) {
assert(!SuccBB->getSinglePredecessor() &&
"BB should be the IDom then!");
DT->changeImmediateDominator(SuccBB, PreHeader);
}
}
}
// Update the immediate dominator of the exit blocks and blocks that are
// reachable from the exit blocks. This is needed because we now have paths
// from both the original loop and the remainder code reaching the exit
// blocks. While the IDom of these exit blocks were from the original loop,
// now the IDom is the preheader (which decides whether the original loop or
// remainder code should run).
if (DT && !L->getExitingBlock()) {
SmallVector<BasicBlock *, 16> ChildrenToUpdate;
// NB! We have to examine the dom children of all loop blocks, not just
// those which are the IDom of the exit blocks. This is because blocks
// reachable from the exit blocks can have their IDom as the nearest common
// dominator of the exit blocks.
for (auto *BB : L->blocks()) {
auto *DomNodeBB = DT->getNode(BB);
for (auto *DomChild : DomNodeBB->getChildren()) {
auto *DomChildBB = DomChild->getBlock();
if (!L->contains(LI->getLoopFor(DomChildBB)))
ChildrenToUpdate.push_back(DomChildBB);
}
}
for (auto *BB : ChildrenToUpdate)
DT->changeImmediateDominator(BB, PreHeader);
}
// Loop structure should be the following:

View File

@ -124,3 +124,152 @@ latchexit: ; preds = %latch
exitsucc: ; preds = %headerexit
ret i64 96
}
; exit block (%default) has an exiting block and another exit block as predecessors.
define void @test4(i16 %c3) {
; CHECK-LABEL: test4
; CHECK-LABEL: exiting.prol:
; CHECK-NEXT: switch i16 %c3, label %default.loopexit.loopexit1 [
; CHECK-LABEL: exiting:
; CHECK-NEXT: switch i16 %c3, label %default.loopexit.loopexit [
; CHECK-LABEL: default.loopexit.loopexit:
; CHECK-NEXT: br label %default.loopexit
; CHECK-LABEL: default.loopexit.loopexit1:
; CHECK-NEXT: br label %default.loopexit
; CHECK-LABEL: default.loopexit:
; CHECK-NEXT: br label %default
preheader:
%c1 = zext i32 undef to i64
br label %header
header: ; preds = %latch, %preheader
%indvars.iv = phi i64 [ 0, %preheader ], [ %indvars.iv.next, %latch ]
br label %exiting
exiting: ; preds = %header
switch i16 %c3, label %default [
i16 45, label %otherexit
i16 95, label %latch
]
latch: ; preds = %exiting
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%c2 = icmp ult i64 %indvars.iv.next, %c1
br i1 %c2, label %header, label %latchexit
latchexit: ; preds = %latch
ret void
default: ; preds = %otherexit, %exiting
ret void
otherexit: ; preds = %exiting
br label %default
}
; exit block (%exitB) has an exiting block and another exit block as predecessors.
; exiting block comes from inner loop.
define void @test5() {
; CHECK-LABEL: test5
; CHECK-LABEL: bb1:
; CHECK-NEXT: br i1 false, label %outerH.prol.preheader, label %outerH.prol.loopexit
; CHECK-LABEL: outerH.prol.preheader:
; CHECK-NEXT: br label %outerH.prol
; CHECK-LABEL: outerH.prol:
; CHECK-NEXT: %tmp4.prol = phi i32 [ %tmp6.prol, %outerLatch.prol ], [ undef, %outerH.prol.preheader ]
; CHECK-NEXT: %prol.iter = phi i32 [ 0, %outerH.prol.preheader ], [ %prol.iter.sub, %outerLatch.prol ]
; CHECK-NEXT: br label %innerH.prol
bb:
%tmp = icmp sgt i32 undef, 79
br i1 %tmp, label %outerLatchExit, label %bb1
bb1: ; preds = %bb
br label %outerH
outerH: ; preds = %outerLatch, %bb1
%tmp4 = phi i32 [ %tmp6, %outerLatch ], [ undef, %bb1 ]
br label %innerH
innerH: ; preds = %innerLatch, %outerH
br i1 undef, label %innerexiting, label %otherexitB
innerexiting: ; preds = %innerH
br i1 undef, label %innerLatch, label %exitB
innerLatch: ; preds = %innerexiting
%tmp13 = fcmp olt double undef, 2.000000e+00
br i1 %tmp13, label %innerH, label %outerLatch
outerLatch: ; preds = %innerLatch
%tmp6 = add i32 %tmp4, 1
%tmp7 = icmp sgt i32 %tmp6, 79
br i1 %tmp7, label %outerLatchExit, label %outerH
outerLatchExit: ; preds = %outerLatch, %bb
ret void
exitB: ; preds = %innerexiting, %otherexitB
ret void
otherexitB: ; preds = %innerH
br label %exitB
}
; Blocks reachable from exits (not_zero44) have the IDom as the block within the loop (Header).
; Update the IDom to the preheader.
define void @test6() {
; CHECK-LABEL: test6
; CHECK-LABEL: header.prol.preheader:
; CHECK-NEXT: br label %header.prol
; CHECK-LABEL: header.prol:
; CHECK-NEXT: %indvars.iv.prol = phi i64 [ undef, %header.prol.preheader ], [ %indvars.iv.next.prol, %latch.prol ]
; CHECK-NEXT: %prol.iter = phi i64 [ 1, %header.prol.preheader ], [ %prol.iter.sub, %latch.prol ]
; CHECK-NEXT: br i1 false, label %latch.prol, label %otherexit.loopexit1
; CHECK-LABEL: header.prol.loopexit.unr-lcssa:
; CHECK-NEXT: %indvars.iv.unr.ph = phi i64 [ %indvars.iv.next.prol, %latch.prol ]
; CHECK-NEXT: br label %header.prol.loopexit
; CHECK-LABEL: header.prol.loopexit:
; CHECK-NEXT: %indvars.iv.unr = phi i64 [ undef, %entry ], [ %indvars.iv.unr.ph, %header.prol.loopexit.unr-lcssa ]
; CHECK-NEXT: br i1 true, label %latchexit, label %entry.new
; CHECK-LABEL: entry.new:
; CHECK-NEXT: br label %header
entry:
br label %header
header: ; preds = %latch, %entry
%indvars.iv = phi i64 [ undef, %entry ], [ %indvars.iv.next, %latch ]
br i1 undef, label %latch, label %otherexit
latch: ; preds = %header
%indvars.iv.next = add nsw i64 %indvars.iv, 2
%0 = icmp slt i64 %indvars.iv.next, 616
br i1 %0, label %header, label %latchexit
latchexit: ; preds = %latch
br label %latchexitsucc
otherexit: ; preds = %header
br label %otherexitsucc
otherexitsucc: ; preds = %otherexit
br label %not_zero44
not_zero44: ; preds = %latchexitsucc, %otherexitsucc
unreachable
latchexitsucc: ; preds = %latchexit
br label %not_zero44
}