1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00

[LV][LAA] Vectorize loop invariant values stored into loop invariant address

Summary:
We are overly conservative in loop vectorizer with respect to stores to loop
invariant addresses.
More details in https://bugs.llvm.org/show_bug.cgi?id=38546
This is the first part of the fix where we start with vectorizing loop invariant
values to loop invariant addresses.

This also includes changes to ORE for stores to invariant address.

Reviewers: anemet, Ayal, mkuper, mssimpso

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D50665

llvm-svn: 343028
This commit is contained in:
Anna Thomas 2018-09-25 20:57:20 +00:00
parent ff15ca143c
commit 146a9e87c5
11 changed files with 458 additions and 35 deletions

View File

@ -564,11 +564,10 @@ public:
/// Print the information about the memory accesses in the loop. /// Print the information about the memory accesses in the loop.
void print(raw_ostream &OS, unsigned Depth = 0) const; void print(raw_ostream &OS, unsigned Depth = 0) const;
/// Checks existence of store to invariant address inside loop. /// If the loop has any store of a variant value to an invariant address, then
/// If the loop has any store to invariant address, then it returns true, /// return true, else return false.
/// else returns false. bool hasVariantStoreToLoopInvariantAddress() const {
bool hasStoreToLoopInvariantAddress() const { return HasVariantStoreToLoopInvariantAddress;
return StoreToLoopInvariantAddress;
} }
/// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts
@ -621,9 +620,8 @@ private:
/// Cache the result of analyzeLoop. /// Cache the result of analyzeLoop.
bool CanVecMem; bool CanVecMem;
/// Indicator for storing to uniform addresses. /// Indicator that there is a store of a variant value to a uniform address.
/// If a loop has write to a loop invariant address then it should be true. bool HasVariantStoreToLoopInvariantAddress;
bool StoreToLoopInvariantAddress;
/// The diagnostics report generated for the analysis. E.g. why we /// The diagnostics report generated for the analysis. E.g. why we
/// couldn't analyze the loop. /// couldn't analyze the loop.

View File

@ -1862,10 +1862,21 @@ void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
// writes and between reads and writes, but not between reads and reads. // writes and between reads and writes, but not between reads and reads.
ValueSet Seen; ValueSet Seen;
// Record uniform store addresses to identify if we have multiple stores
// to the same address.
ValueSet UniformStores;
for (StoreInst *ST : Stores) { for (StoreInst *ST : Stores) {
Value *Ptr = ST->getPointerOperand(); Value *Ptr = ST->getPointerOperand();
// Check for store to loop invariant address.
StoreToLoopInvariantAddress |= isUniform(Ptr); if (isUniform(Ptr)) {
// Consider multiple stores to the same uniform address as a store of a
// variant value.
bool MultipleStoresToUniformPtr = !UniformStores.insert(Ptr).second;
HasVariantStoreToLoopInvariantAddress |=
(!isUniform(ST->getValueOperand()) || MultipleStoresToUniformPtr);
}
// If we did *not* see this pointer before, insert it to the read-write // If we did *not* see this pointer before, insert it to the read-write
// list. At this phase it is only a 'write' list. // list. At this phase it is only a 'write' list.
if (Seen.insert(Ptr).second) { if (Seen.insert(Ptr).second) {
@ -2265,7 +2276,7 @@ LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)), PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)),
DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
StoreToLoopInvariantAddress(false) { HasVariantStoreToLoopInvariantAddress(false) {
if (canAnalyzeLoop()) if (canAnalyzeLoop())
analyzeLoop(AA, LI, TLI, DT); analyzeLoop(AA, LI, TLI, DT);
} }
@ -2297,8 +2308,8 @@ void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
PtrRtChecking->print(OS, Depth); PtrRtChecking->print(OS, Depth);
OS << "\n"; OS << "\n";
OS.indent(Depth) << "Store to invariant address was " OS.indent(Depth) << "Variant Store to invariant address was "
<< (StoreToLoopInvariantAddress ? "" : "not ") << (HasVariantStoreToLoopInvariantAddress ? "" : "not ")
<< "found in loop.\n"; << "found in loop.\n";
OS.indent(Depth) << "SCEV assumptions:\n"; OS.indent(Depth) << "SCEV assumptions:\n";

View File

@ -817,9 +817,10 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
if (!LAI->canVectorizeMemory()) if (!LAI->canVectorizeMemory())
return false; return false;
if (LAI->hasStoreToLoopInvariantAddress()) { if (LAI->hasVariantStoreToLoopInvariantAddress()) {
ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress")
<< "write to a loop invariant address could not be vectorized"); << "write of variant value to a loop invariant address could not "
"be vectorized");
LLVM_DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); LLVM_DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
return false; return false;
} }

View File

@ -1174,8 +1174,11 @@ private:
/// memory access. /// memory access.
unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF);
/// The cost calculation for Load instruction \p I with uniform pointer - /// The cost calculation for Load/Store instruction \p I with uniform pointer -
/// scalar load + broadcast. /// Load: scalar load + broadcast.
/// Store: scalar store + (loop invariant value stored? 0 : extract of last
/// element)
/// TODO: Test the extra cost of the extract when loop variant value stored.
unsigned getUniformMemOpCost(Instruction *I, unsigned VF); unsigned getUniformMemOpCost(Instruction *I, unsigned VF);
/// Returns whether the instruction is a load or store and will be a emitted /// Returns whether the instruction is a load or store and will be a emitted
@ -5297,15 +5300,23 @@ unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
unsigned VF) { unsigned VF) {
LoadInst *LI = cast<LoadInst>(I); Type *ValTy = getMemInstValueType(I);
Type *ValTy = LI->getType();
Type *VectorTy = ToVectorTy(ValTy, VF); Type *VectorTy = ToVectorTy(ValTy, VF);
unsigned Alignment = LI->getAlignment(); unsigned Alignment = getLoadStoreAlignment(I);
unsigned AS = LI->getPointerAddressSpace(); unsigned AS = getLoadStoreAddressSpace(I);
if (isa<LoadInst>(I)) {
return TTI.getAddressComputationCost(ValTy) +
TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) +
TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
}
StoreInst *SI = cast<StoreInst>(I);
bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
return TTI.getAddressComputationCost(ValTy) + return TTI.getAddressComputationCost(ValTy) +
TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) +
TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); (isLoopInvariantStoreValue ? 0 : TTI.getVectorInstrCost(
Instruction::ExtractElement,
VectorTy, VF - 1));
} }
unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
@ -5404,15 +5415,22 @@ void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) {
if (!Ptr) if (!Ptr)
continue; continue;
// TODO: We should generate better code and update the cost model for
// predicated uniform stores. Today they are treated as any other
// predicated store (see added test cases in
// invariant-store-vectorization.ll).
if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
NumPredStores++; NumPredStores++;
if (isa<LoadInst>(&I) && Legal->isUniform(Ptr) && if (Legal->isUniform(Ptr) &&
// Conditional loads should be scalarized and predicated. // Conditional loads and stores should be scalarized and predicated.
// isScalarWithPredication cannot be used here since masked // isScalarWithPredication cannot be used here since masked
// gather/scatters are not considered scalar with predication. // gather/scatters are not considered scalar with predication.
!Legal->blockNeedsPredication(I.getParent())) { !Legal->blockNeedsPredication(I.getParent())) {
// Scalar load + broadcast // TODO: Avoid replicating loads and stores instead of
// relying on instcombine to remove them.
// Load: Scalar load + broadcast
// Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
unsigned Cost = getUniformMemOpCost(&I, VF); unsigned Cost = getUniformMemOpCost(&I, VF);
setWideningDecision(&I, VF, CM_Scalarize, Cost); setWideningDecision(&I, VF, CM_Scalarize, Cost);
continue; continue;

View File

@ -39,7 +39,7 @@ target datalayout = "e-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"
; CHECK-NEXT: Group ; CHECK-NEXT: Group
; CHECK-NEXT: (Low: %b High: ((4 * (1 umax %x)) + %b)) ; CHECK-NEXT: (Low: %b High: ((4 * (1 umax %x)) + %b))
; CHECK-NEXT: Member: {%b,+,4}<%for.body> ; CHECK-NEXT: Member: {%b,+,4}<%for.body>
; CHECK: Store to invariant address was not found in loop. ; CHECK: Variant Store to invariant address was not found in loop.
; CHECK-NEXT: SCEV assumptions: ; CHECK-NEXT: SCEV assumptions:
; CHECK-NEXT: {1,+,1}<%for.body> Added Flags: <nusw> ; CHECK-NEXT: {1,+,1}<%for.body> Added Flags: <nusw>
; CHECK-NEXT: {0,+,1}<%for.body> Added Flags: <nusw> ; CHECK-NEXT: {0,+,1}<%for.body> Added Flags: <nusw>

View File

@ -13,14 +13,14 @@
; The LAA with the new PM is a loop pass so we go from inner to outer loops. ; The LAA with the new PM is a loop pass so we go from inner to outer loops.
; OLDPM: for.cond1.preheader: ; OLDPM: for.cond1.preheader:
; OLDPM: Store to invariant address was not found in loop. ; OLDPM: Variant Store to invariant address was not found in loop.
; OLDPM: for.body3: ; OLDPM: for.body3:
; OLDPM: Store to invariant address was found in loop. ; OLDPM: Variant Store to invariant address was found in loop.
; NEWPM: for.body3: ; NEWPM: for.body3:
; NEWPM: Store to invariant address was found in loop. ; NEWPM: Variant Store to invariant address was found in loop.
; NEWPM: for.cond1.preheader: ; NEWPM: for.cond1.preheader:
; NEWPM: Store to invariant address was not found in loop. ; NEWPM: Variant Store to invariant address was not found in loop.
define i32 @foo(i32* nocapture %var1, i32* nocapture readonly %var2, i32 %itr) #0 { define i32 @foo(i32* nocapture %var1, i32* nocapture readonly %var2, i32 %itr) #0 {
entry: entry:

View File

@ -10,8 +10,8 @@
; } ; }
; } ; }
; CHECK: Store to invariant address was not found in loop. ; CHECK: Variant Store to invariant address was not found in loop.
; CHECK-NOT: Store to invariant address was found in loop. ; CHECK-NOT: Variant Store to invariant address was found in loop.
define i32 @foo(i32* nocapture readonly %var1, i32* nocapture %var2, i32 %itr) #0 { define i32 @foo(i32* nocapture readonly %var1, i32* nocapture %var2, i32 %itr) #0 {

View File

@ -10,7 +10,7 @@
; } ; }
; } ; }
; CHECK: Store to invariant address was found in loop. ; CHECK: Variant Store to invariant address was found in loop.
define void @foo(i32* nocapture %var1, i32* nocapture %var2, i32 %itr) #0 { define void @foo(i32* nocapture %var1, i32* nocapture %var2, i32 %itr) #0 {
entry: entry:

View File

@ -0,0 +1,132 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt -loop-vectorize -S -mcpu=skylake-avx512 -instcombine < %s | FileCheck %s
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
; first test checks that loop with a reduction and a uniform store gets
; vectorized.
; CHECK-LABEL: inv_val_store_to_inv_address_with_reduction
; CHECK-LABEL: vector.memcheck:
; CHECK: found.conflict
; CHECK-LABEL: vector.body:
; CHECK: %vec.phi = phi <16 x i32> [ zeroinitializer, %vector.ph ], [ [[ADD:%[a-zA-Z0-9.]+]], %vector.body ]
; CHECK: %wide.load = load <16 x i32>
; CHECK: [[ADD]] = add <16 x i32> %vec.phi, %wide.load
; CHECK: store i32 %ntrunc, i32* %a
; CHECK-NOT: store i32 %ntrunc, i32* %a
; CHECK: %index.next = add i64 %index, 64
; CHECK-LABEL: middle.block:
; CHECK: %rdx.shuf = shufflevector <16 x i32>
define i32 @inv_val_store_to_inv_address_with_reduction(i32* %a, i64 %n, i32* %b) {
entry:
%ntrunc = trunc i64 %n to i32
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
%tmp0 = phi i32 [ %tmp3, %for.body ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
%tmp3 = add i32 %tmp0, %tmp2
store i32 %ntrunc, i32* %a
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
%tmp4 = phi i32 [ %tmp3, %for.body ]
ret i32 %tmp4
}
; Conditional store
; if (b[i] == k) a = ntrunc
define void @inv_val_store_to_inv_address_conditional(i32* %a, i64 %n, i32* %b, i32 %k) {
; CHECK-LABEL: @inv_val_store_to_inv_address_conditional(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[NTRUNC:%.*]] = trunc i64 [[N:%.*]] to i32
; CHECK-NEXT: [[TMP0:%.*]] = icmp sgt i64 [[N]], 1
; CHECK-NEXT: [[SMAX:%.*]] = select i1 [[TMP0]], i64 [[N]], i64 1
; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[SMAX]], 16
; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_MEMCHECK:%.*]]
; CHECK: vector.memcheck:
; CHECK-NEXT: [[A4:%.*]] = bitcast i32* [[A:%.*]] to i8*
; CHECK-NEXT: [[B1:%.*]] = bitcast i32* [[B:%.*]] to i8*
; CHECK-NEXT: [[TMP1:%.*]] = icmp sgt i64 [[N]], 1
; CHECK-NEXT: [[SMAX2:%.*]] = select i1 [[TMP1]], i64 [[N]], i64 1
; CHECK-NEXT: [[SCEVGEP:%.*]] = getelementptr i32, i32* [[B]], i64 [[SMAX2]]
; CHECK-NEXT: [[UGLYGEP:%.*]] = getelementptr i8, i8* [[A4]], i64 1
; CHECK-NEXT: [[BOUND0:%.*]] = icmp ugt i8* [[UGLYGEP]], [[B1]]
; CHECK-NEXT: [[BOUND1:%.*]] = icmp ugt i32* [[SCEVGEP]], [[A]]
; CHECK-NEXT: [[FOUND_CONFLICT:%.*]] = and i1 [[BOUND0]], [[BOUND1]]
; CHECK-NEXT: br i1 [[FOUND_CONFLICT]], label [[SCALAR_PH]], label [[VECTOR_PH:%.*]]
; CHECK: vector.ph:
; CHECK-NEXT: [[N_VEC:%.*]] = and i64 [[SMAX]], 9223372036854775792
; CHECK-NEXT: [[BROADCAST_SPLATINSERT5:%.*]] = insertelement <16 x i32> undef, i32 [[K:%.*]], i32 0
; CHECK-NEXT: [[BROADCAST_SPLAT6:%.*]] = shufflevector <16 x i32> [[BROADCAST_SPLATINSERT5]], <16 x i32> undef, <16 x i32> zeroinitializer
; CHECK-NEXT: [[BROADCAST_SPLATINSERT7:%.*]] = insertelement <16 x i32> undef, i32 [[NTRUNC]], i32 0
; CHECK-NEXT: [[BROADCAST_SPLAT8:%.*]] = shufflevector <16 x i32> [[BROADCAST_SPLATINSERT7]], <16 x i32> undef, <16 x i32> zeroinitializer
; CHECK-NEXT: [[BROADCAST_SPLATINSERT9:%.*]] = insertelement <16 x i32*> undef, i32* [[A]], i32 0
; CHECK-NEXT: [[BROADCAST_SPLAT10:%.*]] = shufflevector <16 x i32*> [[BROADCAST_SPLATINSERT9]], <16 x i32*> undef, <16 x i32> zeroinitializer
; CHECK-NEXT: br label [[VECTOR_BODY:%.*]]
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[TMP2:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[INDEX]]
; CHECK-NEXT: [[TMP3:%.*]] = bitcast i32* [[TMP2]] to <16 x i32>*
; CHECK-NEXT: [[WIDE_LOAD:%.*]] = load <16 x i32>, <16 x i32>* [[TMP3]], align 8, !alias.scope !8, !noalias !11
; CHECK-NEXT: [[TMP4:%.*]] = icmp eq <16 x i32> [[WIDE_LOAD]], [[BROADCAST_SPLAT6]]
; CHECK-NEXT: [[TMP5:%.*]] = bitcast i32* [[TMP2]] to <16 x i32>*
; CHECK-NEXT: store <16 x i32> [[BROADCAST_SPLAT8]], <16 x i32>* [[TMP5]], align 4, !alias.scope !8, !noalias !11
; CHECK-NEXT: call void @llvm.masked.scatter.v16i32.v16p0i32(<16 x i32> [[BROADCAST_SPLAT8]], <16 x i32*> [[BROADCAST_SPLAT10]], i32 4, <16 x i1> [[TMP4]]), !alias.scope !11
; CHECK-NEXT: [[INDEX_NEXT]] = add i64 [[INDEX]], 16
; CHECK-NEXT: [[TMP6:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]]
; CHECK-NEXT: br i1 [[TMP6]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]], !llvm.loop !13
; CHECK: middle.block:
; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[SMAX]], [[N_VEC]]
; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_END:%.*]], label [[SCALAR_PH]]
; CHECK: scalar.ph:
; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ], [ 0, [[VECTOR_MEMCHECK]] ]
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[I:%.*]] = phi i64 [ [[I_NEXT:%.*]], [[LATCH:%.*]] ], [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ]
; CHECK-NEXT: [[TMP1:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[I]]
; CHECK-NEXT: [[TMP2:%.*]] = load i32, i32* [[TMP1]], align 8
; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[TMP2]], [[K]]
; CHECK-NEXT: store i32 [[NTRUNC]], i32* [[TMP1]], align 4
; CHECK-NEXT: br i1 [[CMP]], label [[COND_STORE:%.*]], label [[LATCH]]
; CHECK: cond_store:
; CHECK-NEXT: store i32 [[NTRUNC]], i32* [[A]], align 4
; CHECK-NEXT: br label [[LATCH]]
; CHECK: latch:
; CHECK-NEXT: [[I_NEXT]] = add nuw nsw i64 [[I]], 1
; CHECK-NEXT: [[COND:%.*]] = icmp slt i64 [[I_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[COND]], label [[FOR_BODY]], label [[FOR_END]], !llvm.loop !14
; CHECK: for.end:
; CHECK-NEXT: ret void
;
entry:
%ntrunc = trunc i64 %n to i32
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %latch ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
%cmp = icmp eq i32 %tmp2, %k
store i32 %ntrunc, i32* %tmp1
br i1 %cmp, label %cond_store, label %latch
cond_store:
store i32 %ntrunc, i32* %a
br label %latch
latch:
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
ret void
}

View File

@ -0,0 +1,260 @@
; RUN: opt < %s -licm -loop-vectorize -force-vector-width=4 -dce -instcombine -licm -S | FileCheck %s
; First licm pass is to hoist/sink invariant stores if possible. Today LICM does
; not hoist/sink the invariant stores. Even if that changes, we should still
; vectorize this loop in case licm is not run.
; The next licm pass after vectorization is to hoist/sink loop invariant
; instructions.
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
; all tests check that it is legal to vectorize the stores to invariant
; address.
; CHECK-LABEL: inv_val_store_to_inv_address_with_reduction(
; memory check is found.conflict = b[max(n-1,1)] > a && (i8* a)+1 > (i8* b)
; CHECK: vector.memcheck:
; CHECK: found.conflict
; CHECK-LABEL: vector.body:
; CHECK: %vec.phi = phi <4 x i32> [ zeroinitializer, %vector.ph ], [ [[ADD:%[a-zA-Z0-9.]+]], %vector.body ]
; CHECK: %wide.load = load <4 x i32>
; CHECK: [[ADD]] = add <4 x i32> %vec.phi, %wide.load
; CHECK-NEXT: store i32 %ntrunc, i32* %a
; CHECK-NEXT: %index.next = add i64 %index, 4
; CHECK-NEXT: icmp eq i64 %index.next, %n.vec
; CHECK-NEXT: br i1
; CHECK-LABEL: middle.block:
; CHECK: %rdx.shuf = shufflevector <4 x i32>
define i32 @inv_val_store_to_inv_address_with_reduction(i32* %a, i64 %n, i32* %b) {
entry:
%ntrunc = trunc i64 %n to i32
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
%tmp0 = phi i32 [ %tmp3, %for.body ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
%tmp3 = add i32 %tmp0, %tmp2
store i32 %ntrunc, i32* %a
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
%tmp4 = phi i32 [ %tmp3, %for.body ]
ret i32 %tmp4
}
; CHECK-LABEL: inv_val_store_to_inv_address(
; CHECK-LABEL: vector.body:
; CHECK: store i32 %ntrunc, i32* %a
; CHECK: store <4 x i32>
; CHECK-NEXT: %index.next = add i64 %index, 4
; CHECK-NEXT: icmp eq i64 %index.next, %n.vec
; CHECK-NEXT: br i1
define void @inv_val_store_to_inv_address(i32* %a, i64 %n, i32* %b) {
entry:
%ntrunc = trunc i64 %n to i32
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
store i32 %ntrunc, i32* %a
store i32 %ntrunc, i32* %tmp1
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
ret void
}
; Both of these tests below are handled as predicated stores.
; Conditional store
; if (b[i] == k) a = ntrunc
; TODO: We can be better with the code gen for the first test and we can have
; just one scalar store if vector.or.reduce(vector_cmp(b[i] == k)) is 1.
; CHECK-LABEL:inv_val_store_to_inv_address_conditional(
; CHECK-LABEL: vector.body:
; CHECK: %wide.load = load <4 x i32>, <4 x i32>*
; CHECK: [[CMP:%[a-zA-Z0-9.]+]] = icmp eq <4 x i32> %wide.load, %{{.*}}
; CHECK: store <4 x i32>
; CHECK-NEXT: [[EE:%[a-zA-Z0-9.]+]] = extractelement <4 x i1> [[CMP]], i32 0
; CHECK-NEXT: br i1 [[EE]], label %pred.store.if, label %pred.store.continue
; CHECK-LABEL: pred.store.if:
; CHECK-NEXT: store i32 %ntrunc, i32* %a
; CHECK-NEXT: br label %pred.store.continue
; CHECK-LABEL: pred.store.continue:
; CHECK-NEXT: [[EE1:%[a-zA-Z0-9.]+]] = extractelement <4 x i1> [[CMP]], i32 1
define void @inv_val_store_to_inv_address_conditional(i32* %a, i64 %n, i32* %b, i32 %k) {
entry:
%ntrunc = trunc i64 %n to i32
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %latch ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
%cmp = icmp eq i32 %tmp2, %k
store i32 %ntrunc, i32* %tmp1
br i1 %cmp, label %cond_store, label %latch
cond_store:
store i32 %ntrunc, i32* %a
br label %latch
latch:
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
ret void
}
; if (b[i] == k)
; a = ntrunc
; else a = k;
; TODO: We could vectorize this once we support multiple uniform stores to the
; same address.
; CHECK-LABEL:inv_val_store_to_inv_address_conditional_diff_values(
; CHECK-NOT: load <4 x i32>
define void @inv_val_store_to_inv_address_conditional_diff_values(i32* %a, i64 %n, i32* %b, i32 %k) {
entry:
%ntrunc = trunc i64 %n to i32
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %latch ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
%cmp = icmp eq i32 %tmp2, %k
store i32 %ntrunc, i32* %tmp1
br i1 %cmp, label %cond_store, label %cond_store_k
cond_store:
store i32 %ntrunc, i32* %a
br label %latch
cond_store_k:
store i32 %k, i32 * %a
br label %latch
latch:
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
ret void
}
; Instcombine'd version of above test. Now the store is no longer of invariant
; value.
; TODO: We should be able to vectorize this loop once we support vectorizing
; stores of variant values to invariant addresses.
; CHECK-LABEL: inv_val_store_to_inv_address_conditional_diff_values_ic
; CHECK-NOT: <4 x
define void @inv_val_store_to_inv_address_conditional_diff_values_ic(i32* %a, i64 %n, i32* %b, i32 %k) {
entry:
%ntrunc = trunc i64 %n to i32
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %latch ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
%cmp = icmp eq i32 %tmp2, %k
store i32 %ntrunc, i32* %tmp1
br i1 %cmp, label %cond_store, label %cond_store_k
cond_store:
br label %latch
cond_store_k:
br label %latch
latch:
%storeval = phi i32 [ %ntrunc, %cond_store ], [ %k, %cond_store_k ]
store i32 %storeval, i32* %a
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
ret void
}
; invariant val stored to invariant address predicated on invariant condition
; This is not treated as a predicated store since the block the store belongs to
; is the latch block (which doesn't need to be predicated).
; TODO: We should vectorize this loop once we relax the check for
; variant/invariant values being stored to invariant address.
; CHECK-LABEL: inv_val_store_to_inv_address_conditional_inv
; CHECK-NOT: <4 x
define void @inv_val_store_to_inv_address_conditional_inv(i32* %a, i64 %n, i32* %b, i32 %k) {
entry:
%ntrunc = trunc i64 %n to i32
%cmp = icmp eq i32 %ntrunc, %k
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %latch ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
store i32 %ntrunc, i32* %tmp1
br i1 %cmp, label %cond_store, label %cond_store_k
cond_store:
br label %latch
cond_store_k:
br label %latch
latch:
%storeval = phi i32 [ %ntrunc, %cond_store ], [ %k, %cond_store_k ]
store i32 %storeval, i32* %a
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
ret void
}
; TODO: This loop can be vectorized once we support variant value being
; stored into invariant address.
; CHECK-LABEL: variant_val_store_to_inv_address
; CHECK-NOT: <4 x i32>
define i32 @variant_val_store_to_inv_address(i32* %a, i64 %n, i32* %b, i32 %k) {
entry:
%ntrunc = trunc i64 %n to i32
%cmp = icmp eq i32 %ntrunc, %k
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
%tmp0 = phi i32 [ %tmp3, %for.body ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
store i32 %tmp2, i32* %a
%tmp3 = add i32 %tmp0, %tmp2
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
%rdx.lcssa = phi i32 [ %tmp0, %for.body ]
ret i32 %rdx.lcssa
}

View File

@ -29,7 +29,10 @@
@a = external global i32, align 4 @a = external global i32, align 4
@b = external global [1 x i32], align 4 @b = external global [1 x i32], align 4
; CHECK: LV: Not vectorizing: Cannot prove legality. ; We can vectorize this loop because we are storing an invariant value into an
; invariant address.
; CHECK: LV: We can vectorize this loop!
; CHECK-LABEL: @test ; CHECK-LABEL: @test
define void @test() { define void @test() {
entry: entry: