1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00

Remove DOS line endings.

llvm-svn: 167968
This commit is contained in:
Jakub Staszak 2012-11-14 20:18:34 +00:00
parent 0006b33581
commit 14a889a054
9 changed files with 910 additions and 910 deletions

View File

@ -1,80 +1,80 @@
//===---- ObjectBuffer.h - Utility class to wrap object image memory -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares a wrapper class to hold the memory into which an
// object will be generated.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_EXECUTIONENGINE_OBJECTBUFFER_H
#define LLVM_EXECUTIONENGINE_OBJECTBUFFER_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/MemoryBuffer.h"
namespace llvm {
/// ObjectBuffer - This class acts as a container for the memory buffer used during
/// generation and loading of executable objects using MCJIT and RuntimeDyld. The
/// underlying memory for the object will be owned by the ObjectBuffer instance
/// throughout its lifetime. The getMemBuffer() method provides a way to create a
/// MemoryBuffer wrapper object instance to be owned by other classes (such as
/// ObjectFile) as needed, but the MemoryBuffer instance returned does not own the
/// actual memory it points to.
class ObjectBuffer {
public:
ObjectBuffer() {}
ObjectBuffer(MemoryBuffer* Buf) : Buffer(Buf) {}
virtual ~ObjectBuffer() {}
/// getMemBuffer - Like MemoryBuffer::getMemBuffer() this function
/// returns a pointer to an object that is owned by the caller. However,
/// the caller does not take ownership of the underlying memory.
MemoryBuffer *getMemBuffer() const {
return MemoryBuffer::getMemBuffer(Buffer->getBuffer(), "", false);
}
const char *getBufferStart() const { return Buffer->getBufferStart(); }
size_t getBufferSize() const { return Buffer->getBufferSize(); }
protected:
// The memory contained in an ObjectBuffer
OwningPtr<MemoryBuffer> Buffer;
};
/// ObjectBufferStream - This class encapsulates the SmallVector and
/// raw_svector_ostream needed to generate an object using MC code emission
/// while providing a common ObjectBuffer interface for access to the
/// memory once the object has been generated.
class ObjectBufferStream : public ObjectBuffer {
public:
ObjectBufferStream() : OS(SV) {}
virtual ~ObjectBufferStream() {}
raw_ostream &getOStream() { return OS; }
void flush()
{
OS.flush();
// Make the data accessible via the ObjectBuffer::Buffer
Buffer.reset(MemoryBuffer::getMemBuffer(StringRef(SV.data(), SV.size()),
"",
false));
}
protected:
SmallVector<char, 4096> SV; // Working buffer into which we JIT.
raw_svector_ostream OS; // streaming wrapper
};
} // namespace llvm
#endif
//===---- ObjectBuffer.h - Utility class to wrap object image memory -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares a wrapper class to hold the memory into which an
// object will be generated.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_EXECUTIONENGINE_OBJECTBUFFER_H
#define LLVM_EXECUTIONENGINE_OBJECTBUFFER_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/MemoryBuffer.h"
namespace llvm {
/// ObjectBuffer - This class acts as a container for the memory buffer used during
/// generation and loading of executable objects using MCJIT and RuntimeDyld. The
/// underlying memory for the object will be owned by the ObjectBuffer instance
/// throughout its lifetime. The getMemBuffer() method provides a way to create a
/// MemoryBuffer wrapper object instance to be owned by other classes (such as
/// ObjectFile) as needed, but the MemoryBuffer instance returned does not own the
/// actual memory it points to.
class ObjectBuffer {
public:
ObjectBuffer() {}
ObjectBuffer(MemoryBuffer* Buf) : Buffer(Buf) {}
virtual ~ObjectBuffer() {}
/// getMemBuffer - Like MemoryBuffer::getMemBuffer() this function
/// returns a pointer to an object that is owned by the caller. However,
/// the caller does not take ownership of the underlying memory.
MemoryBuffer *getMemBuffer() const {
return MemoryBuffer::getMemBuffer(Buffer->getBuffer(), "", false);
}
const char *getBufferStart() const { return Buffer->getBufferStart(); }
size_t getBufferSize() const { return Buffer->getBufferSize(); }
protected:
// The memory contained in an ObjectBuffer
OwningPtr<MemoryBuffer> Buffer;
};
/// ObjectBufferStream - This class encapsulates the SmallVector and
/// raw_svector_ostream needed to generate an object using MC code emission
/// while providing a common ObjectBuffer interface for access to the
/// memory once the object has been generated.
class ObjectBufferStream : public ObjectBuffer {
public:
ObjectBufferStream() : OS(SV) {}
virtual ~ObjectBufferStream() {}
raw_ostream &getOStream() { return OS; }
void flush()
{
OS.flush();
// Make the data accessible via the ObjectBuffer::Buffer
Buffer.reset(MemoryBuffer::getMemBuffer(StringRef(SV.data(), SV.size()),
"",
false));
}
protected:
SmallVector<char, 4096> SV; // Working buffer into which we JIT.
raw_svector_ostream OS; // streaming wrapper
};
} // namespace llvm
#endif

View File

@ -1,61 +1,61 @@
//===---- ObjectImage.h - Format independent executuable object image -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares a file format independent ObjectImage class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_EXECUTIONENGINE_OBJECTIMAGE_H
#define LLVM_EXECUTIONENGINE_OBJECTIMAGE_H
#include "llvm/Object/ObjectFile.h"
#include "llvm/ExecutionEngine/ObjectBuffer.h"
namespace llvm {
/// ObjectImage - A container class that represents an ObjectFile that has been
/// or is in the process of being loaded into memory for execution.
class ObjectImage {
ObjectImage() LLVM_DELETED_FUNCTION;
ObjectImage(const ObjectImage &other) LLVM_DELETED_FUNCTION;
protected:
OwningPtr<ObjectBuffer> Buffer;
public:
ObjectImage(ObjectBuffer *Input) : Buffer(Input) {}
virtual ~ObjectImage() {}
virtual object::symbol_iterator begin_symbols() const = 0;
virtual object::symbol_iterator end_symbols() const = 0;
virtual object::section_iterator begin_sections() const = 0;
virtual object::section_iterator end_sections() const = 0;
virtual /* Triple::ArchType */ unsigned getArch() const = 0;
// Subclasses can override these methods to update the image with loaded
// addresses for sections and common symbols
virtual void updateSectionAddress(const object::SectionRef &Sec,
uint64_t Addr) = 0;
virtual void updateSymbolAddress(const object::SymbolRef &Sym,
uint64_t Addr) = 0;
virtual StringRef getData() const = 0;
// Subclasses can override these methods to provide JIT debugging support
virtual void registerWithDebugger() = 0;
virtual void deregisterWithDebugger() = 0;
};
} // end namespace llvm
#endif // LLVM_RUNTIMEDYLD_OBJECT_IMAGE_H
//===---- ObjectImage.h - Format independent executuable object image -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares a file format independent ObjectImage class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_EXECUTIONENGINE_OBJECTIMAGE_H
#define LLVM_EXECUTIONENGINE_OBJECTIMAGE_H
#include "llvm/Object/ObjectFile.h"
#include "llvm/ExecutionEngine/ObjectBuffer.h"
namespace llvm {
/// ObjectImage - A container class that represents an ObjectFile that has been
/// or is in the process of being loaded into memory for execution.
class ObjectImage {
ObjectImage() LLVM_DELETED_FUNCTION;
ObjectImage(const ObjectImage &other) LLVM_DELETED_FUNCTION;
protected:
OwningPtr<ObjectBuffer> Buffer;
public:
ObjectImage(ObjectBuffer *Input) : Buffer(Input) {}
virtual ~ObjectImage() {}
virtual object::symbol_iterator begin_symbols() const = 0;
virtual object::symbol_iterator end_symbols() const = 0;
virtual object::section_iterator begin_sections() const = 0;
virtual object::section_iterator end_sections() const = 0;
virtual /* Triple::ArchType */ unsigned getArch() const = 0;
// Subclasses can override these methods to update the image with loaded
// addresses for sections and common symbols
virtual void updateSectionAddress(const object::SectionRef &Sec,
uint64_t Addr) = 0;
virtual void updateSymbolAddress(const object::SymbolRef &Sym,
uint64_t Addr) = 0;
virtual StringRef getData() const = 0;
// Subclasses can override these methods to provide JIT debugging support
virtual void registerWithDebugger() = 0;
virtual void deregisterWithDebugger() = 0;
};
} // end namespace llvm
#endif // LLVM_RUNTIMEDYLD_OBJECT_IMAGE_H

View File

@ -1,76 +1,76 @@
//===-- ObjectImageCommon.h - Format independent executuable object image -===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares a file format independent ObjectImage class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_RUNTIMEDYLD_OBJECTIMAGECOMMON_H
#define LLVM_RUNTIMEDYLD_OBJECTIMAGECOMMON_H
#include "llvm/Object/ObjectFile.h"
#include "llvm/ExecutionEngine/ObjectImage.h"
#include "llvm/ExecutionEngine/ObjectBuffer.h"
namespace llvm {
class ObjectImageCommon : public ObjectImage {
ObjectImageCommon(); // = delete
ObjectImageCommon(const ObjectImageCommon &other); // = delete
protected:
object::ObjectFile *ObjFile;
// This form of the constructor allows subclasses to use
// format-specific subclasses of ObjectFile directly
ObjectImageCommon(ObjectBuffer *Input, object::ObjectFile *Obj)
: ObjectImage(Input), // saves Input as Buffer and takes ownership
ObjFile(Obj)
{
}
public:
ObjectImageCommon(ObjectBuffer* Input)
: ObjectImage(Input) // saves Input as Buffer and takes ownership
{
ObjFile = object::ObjectFile::createObjectFile(Buffer->getMemBuffer());
}
virtual ~ObjectImageCommon() { delete ObjFile; }
virtual object::symbol_iterator begin_symbols() const
{ return ObjFile->begin_symbols(); }
virtual object::symbol_iterator end_symbols() const
{ return ObjFile->end_symbols(); }
virtual object::section_iterator begin_sections() const
{ return ObjFile->begin_sections(); }
virtual object::section_iterator end_sections() const
{ return ObjFile->end_sections(); }
virtual /* Triple::ArchType */ unsigned getArch() const
{ return ObjFile->getArch(); }
virtual StringRef getData() const { return ObjFile->getData(); }
// Subclasses can override these methods to update the image with loaded
// addresses for sections and common symbols
virtual void updateSectionAddress(const object::SectionRef &Sec,
uint64_t Addr) {}
virtual void updateSymbolAddress(const object::SymbolRef &Sym, uint64_t Addr)
{}
// Subclasses can override these methods to provide JIT debugging support
virtual void registerWithDebugger() {}
virtual void deregisterWithDebugger() {}
};
} // end namespace llvm
#endif // LLVM_RUNTIMEDYLD_OBJECT_IMAGE_H
//===-- ObjectImageCommon.h - Format independent executuable object image -===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares a file format independent ObjectImage class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_RUNTIMEDYLD_OBJECTIMAGECOMMON_H
#define LLVM_RUNTIMEDYLD_OBJECTIMAGECOMMON_H
#include "llvm/Object/ObjectFile.h"
#include "llvm/ExecutionEngine/ObjectImage.h"
#include "llvm/ExecutionEngine/ObjectBuffer.h"
namespace llvm {
class ObjectImageCommon : public ObjectImage {
ObjectImageCommon(); // = delete
ObjectImageCommon(const ObjectImageCommon &other); // = delete
protected:
object::ObjectFile *ObjFile;
// This form of the constructor allows subclasses to use
// format-specific subclasses of ObjectFile directly
ObjectImageCommon(ObjectBuffer *Input, object::ObjectFile *Obj)
: ObjectImage(Input), // saves Input as Buffer and takes ownership
ObjFile(Obj)
{
}
public:
ObjectImageCommon(ObjectBuffer* Input)
: ObjectImage(Input) // saves Input as Buffer and takes ownership
{
ObjFile = object::ObjectFile::createObjectFile(Buffer->getMemBuffer());
}
virtual ~ObjectImageCommon() { delete ObjFile; }
virtual object::symbol_iterator begin_symbols() const
{ return ObjFile->begin_symbols(); }
virtual object::symbol_iterator end_symbols() const
{ return ObjFile->end_symbols(); }
virtual object::section_iterator begin_sections() const
{ return ObjFile->begin_sections(); }
virtual object::section_iterator end_sections() const
{ return ObjFile->end_sections(); }
virtual /* Triple::ArchType */ unsigned getArch() const
{ return ObjFile->getArch(); }
virtual StringRef getData() const { return ObjFile->getData(); }
// Subclasses can override these methods to update the image with loaded
// addresses for sections and common symbols
virtual void updateSectionAddress(const object::SectionRef &Sec,
uint64_t Addr) {}
virtual void updateSymbolAddress(const object::SymbolRef &Sym, uint64_t Addr)
{}
// Subclasses can override these methods to provide JIT debugging support
virtual void registerWithDebugger() {}
virtual void deregisterWithDebugger() {}
};
} // end namespace llvm
#endif // LLVM_RUNTIMEDYLD_OBJECT_IMAGE_H

View File

@ -1,67 +1,67 @@
# RUN: llvm-mc --disassemble %s -triple=mips64-unknown-linux | FileCheck %s
# CHECK: .section __TEXT,__text,regular,pure_instructions
# CHECK: daddiu $11, $26, 31949
0x67 0x4b 0x7c 0xcd
# CHECK: daddu $26, $1, $11
0x00 0x2b 0xd0 0x2d
# CHECK: ddiv $zero, $26, $22
0x03 0x56 0x00 0x1e
# CHECK: ddivu $zero, $9, $24
0x01 0x38 0x00 0x1f
# CHECK: dmfc1 $2, $f14
0x44 0x22 0x70 0x00
# CHECK: dmtc1 $23, $f5
0x44 0xb7 0x28 0x00
# CHECK: dmult $11, $26
0x01 0x7a 0x00 0x1c
# CHECK: dmultu $23, $13
0x02 0xed 0x00 0x1d
# CHECK: dsll $3, $24, 17
0x00 0x18 0x1c 0x78
# CHECK: dsllv $gp, $27, $24
0x03 0x1b 0xe0 0x14
# CHECK: dsra $1, $1, 30
0x00 0x01 0x0f 0xbb
# CHECK: dsrav $1, $1, $fp
0x03 0xc1 0x08 0x17
# CHECK: dsrl $10, $gp, 24
0x00 0x1c 0x56 0x3a
# CHECK: dsrlv $gp, $10, $23
0x02 0xea 0xe0 0x16
# CHECK: dsubu $gp, $27, $24
0x03 0x78 0xe0 0x2f
# CHECK: lw $27, -15155($1)
0x8c 0x3b 0xc4 0xcd
# CHECK: lui $1, 1
0x3c 0x01 0x00 0x01
# CHECK: lwu $3, -1746($3)
0x9c 0x63 0xf9 0x2e
# CHECK: lui $ra, 1
0x3c 0x1f 0x00 0x01
# CHECK: sw $26, -15159($1)
0xac 0x3a 0xc4 0xc9
# CHECK: ld $26, 3958($zero)
0xdc 0x1a 0x0f 0x76
# CHECK: sd $6, 17767($zero)
0xfc 0x06 0x45 0x67
# RUN: llvm-mc --disassemble %s -triple=mips64-unknown-linux | FileCheck %s
# CHECK: .section __TEXT,__text,regular,pure_instructions
# CHECK: daddiu $11, $26, 31949
0x67 0x4b 0x7c 0xcd
# CHECK: daddu $26, $1, $11
0x00 0x2b 0xd0 0x2d
# CHECK: ddiv $zero, $26, $22
0x03 0x56 0x00 0x1e
# CHECK: ddivu $zero, $9, $24
0x01 0x38 0x00 0x1f
# CHECK: dmfc1 $2, $f14
0x44 0x22 0x70 0x00
# CHECK: dmtc1 $23, $f5
0x44 0xb7 0x28 0x00
# CHECK: dmult $11, $26
0x01 0x7a 0x00 0x1c
# CHECK: dmultu $23, $13
0x02 0xed 0x00 0x1d
# CHECK: dsll $3, $24, 17
0x00 0x18 0x1c 0x78
# CHECK: dsllv $gp, $27, $24
0x03 0x1b 0xe0 0x14
# CHECK: dsra $1, $1, 30
0x00 0x01 0x0f 0xbb
# CHECK: dsrav $1, $1, $fp
0x03 0xc1 0x08 0x17
# CHECK: dsrl $10, $gp, 24
0x00 0x1c 0x56 0x3a
# CHECK: dsrlv $gp, $10, $23
0x02 0xea 0xe0 0x16
# CHECK: dsubu $gp, $27, $24
0x03 0x78 0xe0 0x2f
# CHECK: lw $27, -15155($1)
0x8c 0x3b 0xc4 0xcd
# CHECK: lui $1, 1
0x3c 0x01 0x00 0x01
# CHECK: lwu $3, -1746($3)
0x9c 0x63 0xf9 0x2e
# CHECK: lui $ra, 1
0x3c 0x1f 0x00 0x01
# CHECK: sw $26, -15159($1)
0xac 0x3a 0xc4 0xc9
# CHECK: ld $26, 3958($zero)
0xdc 0x1a 0x0f 0x76
# CHECK: sd $6, 17767($zero)
0xfc 0x06 0x45 0x67

View File

@ -1,67 +1,67 @@
# RUN: llvm-mc --disassemble %s -triple=mips64el-unknown-linux | FileCheck %s
# CHECK: .section __TEXT,__text,regular,pure_instructions
# CHECK: daddiu $11, $26, 31949
0xcd 0x7c 0x4b 0x67
# CHECK: daddu $26, $1, $11
0x2d 0xd0 0x2b 0x00
# CHECK: ddiv $zero, $26, $22
0x1e 0x00 0x56 0x03
# CHECK: ddivu $zero, $9, $24
0x1f 0x00 0x38 0x01
# CHECK: dmfc1 $2, $f14
0x00 0x70 0x22 0x44
# CHECK: dmtc1 $23, $f5
0x00 0x28 0xb7 0x44
# CHECK: dmult $11, $26
0x1c 0x00 0x7a 0x01
# CHECK: dmultu $23, $13
0x1d 0x00 0xed 0x02
# CHECK: dsll $3, $24, 17
0x78 0x1c 0x18 0x00
# CHECK: dsllv $gp, $27, $24
0x14 0xe0 0x1b 0x03
# CHECK: dsra $1, $1, 30
0xbb 0x0f 0x01 0x00
# CHECK: dsrav $1, $1, $fp
0x17 0x08 0xc1 0x03
# CHECK: dsrl $10, $gp, 24
0x3a 0x56 0x1c 0x00
# CHECK: dsrlv $gp, $10, $23
0x16 0xe0 0xea 0x02
# CHECK: dsubu $gp, $27, $24
0x2f 0xe0 0x78 0x03
# CHECK: lw $27, -15155($1)
0xcd 0xc4 0x3b 0x8c
# CHECK: lui $1, 1
0x01 0x00 0x01 0x3c
# CHECK: lwu $3, -1746($3)
0x2e 0xf9 0x63 0x9c
# CHECK: lui $ra, 1
0x01 0x00 0x1f 0x3c
# CHECK: sw $26, -15159($1)
0xc9 0xc4 0x3a 0xac
# CHECK: ld $26, 3958($zero)
0x76 0x0f 0x1a 0xdc
# CHECK: sd $6, 17767($zero)
0x67 0x45 0x06 0xfc
# RUN: llvm-mc --disassemble %s -triple=mips64el-unknown-linux | FileCheck %s
# CHECK: .section __TEXT,__text,regular,pure_instructions
# CHECK: daddiu $11, $26, 31949
0xcd 0x7c 0x4b 0x67
# CHECK: daddu $26, $1, $11
0x2d 0xd0 0x2b 0x00
# CHECK: ddiv $zero, $26, $22
0x1e 0x00 0x56 0x03
# CHECK: ddivu $zero, $9, $24
0x1f 0x00 0x38 0x01
# CHECK: dmfc1 $2, $f14
0x00 0x70 0x22 0x44
# CHECK: dmtc1 $23, $f5
0x00 0x28 0xb7 0x44
# CHECK: dmult $11, $26
0x1c 0x00 0x7a 0x01
# CHECK: dmultu $23, $13
0x1d 0x00 0xed 0x02
# CHECK: dsll $3, $24, 17
0x78 0x1c 0x18 0x00
# CHECK: dsllv $gp, $27, $24
0x14 0xe0 0x1b 0x03
# CHECK: dsra $1, $1, 30
0xbb 0x0f 0x01 0x00
# CHECK: dsrav $1, $1, $fp
0x17 0x08 0xc1 0x03
# CHECK: dsrl $10, $gp, 24
0x3a 0x56 0x1c 0x00
# CHECK: dsrlv $gp, $10, $23
0x16 0xe0 0xea 0x02
# CHECK: dsubu $gp, $27, $24
0x2f 0xe0 0x78 0x03
# CHECK: lw $27, -15155($1)
0xcd 0xc4 0x3b 0x8c
# CHECK: lui $1, 1
0x01 0x00 0x01 0x3c
# CHECK: lwu $3, -1746($3)
0x2e 0xf9 0x63 0x9c
# CHECK: lui $ra, 1
0x01 0x00 0x1f 0x3c
# CHECK: sw $26, -15159($1)
0xc9 0xc4 0x3a 0xac
# CHECK: ld $26, 3958($zero)
0x76 0x0f 0x1a 0xdc
# CHECK: sd $6, 17767($zero)
0x67 0x45 0x06 0xfc

View File

@ -1,91 +1,91 @@
# RUN: llvm-mc --disassemble %s -triple=mips64-unknown-linux -mattr +mips64r2 | FileCheck %s
# CHECK: .section __TEXT,__text,regular,pure_instructions
# CHECK: daddiu $11, $26, 31949
0x67 0x4b 0x7c 0xcd
# CHECK: daddu $26, $1, $11
0x00 0x2b 0xd0 0x2d
# CHECK: ddiv $zero, $26, $22
0x03 0x56 0x00 0x1e
# CHECK: ddivu $zero, $9, $24
0x01 0x38 0x00 0x1f
# CHECK: dmfc1 $2, $f14
0x44 0x22 0x70 0x00
# CHECK: dmtc1 $23, $f5
0x44 0xb7 0x28 0x00
# CHECK: dmult $11, $26
0x01 0x7a 0x00 0x1c
# CHECK: dmultu $23, $13
0x02 0xed 0x00 0x1d
# CHECK: dsll $3, $24, 17
0x00 0x18 0x1c 0x78
# CHECK: dsllv $gp, $27, $24
0x03 0x1b 0xe0 0x14
# CHECK: dsra $1, $1, 30
0x00 0x01 0x0f 0xbb
# CHECK: dsrav $1, $1, $fp
0x03 0xc1 0x08 0x17
# CHECK: dsrl $10, $gp, 24
0x00 0x1c 0x56 0x3a
# CHECK: dsrlv $gp, $10, $23
0x02 0xea 0xe0 0x16
# CHECK: dsubu $gp, $27, $24
0x03 0x78 0xe0 0x2f
# CHECK: lw $27, -15155($1)
0x8c 0x3b 0xc4 0xcd
# CHECK: lui $1, 1
0x3c 0x01 0x00 0x01
# CHECK: lwu $3, -1746($3)
0x9c 0x63 0xf9 0x2e
# CHECK: lui $ra, 1
0x3c 0x1f 0x00 0x01
# CHECK: sw $26, -15159($1)
0xac 0x3a 0xc4 0xc9
# CHECK: ld $26, 3958($zero)
0xdc 0x1a 0x0f 0x76
# CHECK: sd $6, 17767($zero)
0xfc 0x06 0x45 0x67
# CHECK: dclo $9, $24
0x73 0x09 0x48 0x25
# CHECK: dclz $26, $9
0x71 0x3a 0xd0 0x24
# CHECK: dext $7, $gp, 29, 31
0x7f 0x87 0xf7 0x43
# CHECK: dins $20, $gp, 15, 1
0x7f 0x94 0x7b 0xc7
# CHECK: dsbh $7, $gp
0x7c 0x1c 0x38 0xa4
# CHECK: dshd $3, $14
0x7c 0x0e 0x19 0x64
# CHECK: drotr $20, $27, 6
0x00 0x3b 0xa1 0xba
# CHECK: drotrv $24, $23, $5
0x00 0xb7 0xc0 0x56
# RUN: llvm-mc --disassemble %s -triple=mips64-unknown-linux -mattr +mips64r2 | FileCheck %s
# CHECK: .section __TEXT,__text,regular,pure_instructions
# CHECK: daddiu $11, $26, 31949
0x67 0x4b 0x7c 0xcd
# CHECK: daddu $26, $1, $11
0x00 0x2b 0xd0 0x2d
# CHECK: ddiv $zero, $26, $22
0x03 0x56 0x00 0x1e
# CHECK: ddivu $zero, $9, $24
0x01 0x38 0x00 0x1f
# CHECK: dmfc1 $2, $f14
0x44 0x22 0x70 0x00
# CHECK: dmtc1 $23, $f5
0x44 0xb7 0x28 0x00
# CHECK: dmult $11, $26
0x01 0x7a 0x00 0x1c
# CHECK: dmultu $23, $13
0x02 0xed 0x00 0x1d
# CHECK: dsll $3, $24, 17
0x00 0x18 0x1c 0x78
# CHECK: dsllv $gp, $27, $24
0x03 0x1b 0xe0 0x14
# CHECK: dsra $1, $1, 30
0x00 0x01 0x0f 0xbb
# CHECK: dsrav $1, $1, $fp
0x03 0xc1 0x08 0x17
# CHECK: dsrl $10, $gp, 24
0x00 0x1c 0x56 0x3a
# CHECK: dsrlv $gp, $10, $23
0x02 0xea 0xe0 0x16
# CHECK: dsubu $gp, $27, $24
0x03 0x78 0xe0 0x2f
# CHECK: lw $27, -15155($1)
0x8c 0x3b 0xc4 0xcd
# CHECK: lui $1, 1
0x3c 0x01 0x00 0x01
# CHECK: lwu $3, -1746($3)
0x9c 0x63 0xf9 0x2e
# CHECK: lui $ra, 1
0x3c 0x1f 0x00 0x01
# CHECK: sw $26, -15159($1)
0xac 0x3a 0xc4 0xc9
# CHECK: ld $26, 3958($zero)
0xdc 0x1a 0x0f 0x76
# CHECK: sd $6, 17767($zero)
0xfc 0x06 0x45 0x67
# CHECK: dclo $9, $24
0x73 0x09 0x48 0x25
# CHECK: dclz $26, $9
0x71 0x3a 0xd0 0x24
# CHECK: dext $7, $gp, 29, 31
0x7f 0x87 0xf7 0x43
# CHECK: dins $20, $gp, 15, 1
0x7f 0x94 0x7b 0xc7
# CHECK: dsbh $7, $gp
0x7c 0x1c 0x38 0xa4
# CHECK: dshd $3, $14
0x7c 0x0e 0x19 0x64
# CHECK: drotr $20, $27, 6
0x00 0x3b 0xa1 0xba
# CHECK: drotrv $24, $23, $5
0x00 0xb7 0xc0 0x56

View File

@ -1,91 +1,91 @@
# RUN: llvm-mc --disassemble %s -triple=mips64el-unknown-linux -mattr +mips64r2 | FileCheck %s
# CHECK: .section __TEXT,__text,regular,pure_instructions
# CHECK: daddiu $11, $26, 31949
0xcd 0x7c 0x4b 0x67
# CHECK: daddu $26, $1, $11
0x2d 0xd0 0x2b 0x00
# CHECK: ddiv $zero, $26, $22
0x1e 0x00 0x56 0x03
# CHECK: ddivu $zero, $9, $24
0x1f 0x00 0x38 0x01
# CHECK: dmfc1 $2, $f14
0x00 0x70 0x22 0x44
# CHECK: dmtc1 $23, $f5
0x00 0x28 0xb7 0x44
# CHECK: dmult $11, $26
0x1c 0x00 0x7a 0x01
# CHECK: dmultu $23, $13
0x1d 0x00 0xed 0x02
# CHECK: dsll $3, $24, 17
0x78 0x1c 0x18 0x00
# CHECK: dsllv $gp, $27, $24
0x14 0xe0 0x1b 0x03
# CHECK: dsra $1, $1, 30
0xbb 0x0f 0x01 0x00
# CHECK: dsrav $1, $1, $fp
0x17 0x08 0xc1 0x03
# CHECK: dsrl $10, $gp, 24
0x3a 0x56 0x1c 0x00
# CHECK: dsrlv $gp, $10, $23
0x16 0xe0 0xea 0x02
# CHECK: dsubu $gp, $27, $24
0x2f 0xe0 0x78 0x03
# CHECK: lw $27, -15155($1)
0xcd 0xc4 0x3b 0x8c
# CHECK: lui $1, 1
0x01 0x00 0x01 0x3c
# CHECK: lwu $3, -1746($3)
0x2e 0xf9 0x63 0x9c
# CHECK: lui $ra, 1
0x01 0x00 0x1f 0x3c
# CHECK: sw $26, -15159($1)
0xc9 0xc4 0x3a 0xac
# CHECK: ld $26, 3958($zero)
0x76 0x0f 0x1a 0xdc
# CHECK: sd $6, 17767($zero)
0x67 0x45 0x06 0xfc
# CHECK: dclo $9, $24
0x25 0x48 0x09 0x73
# CHECK: dclz $26, $9
0x24 0xd0 0x3a 0x71
# CHECK: dext $7, $gp, 29, 31
0x43 0xf7 0x87 0x7f
# CHECK: dins $20, $gp, 15, 1
0xc7 0x7b 0x94 0x7f
# CHECK: dsbh $7, $gp
0xa4 0x38 0x1c 0x7c
# CHECK: dshd $3, $14
0x64 0x19 0x0e 0x7c
# CHECK: drotr $20, $27, 6
0xba 0xa1 0x3b 0x00
# CHECK: drotrv $24, $23, $5
0x56 0xc0 0xb7 0x00
# RUN: llvm-mc --disassemble %s -triple=mips64el-unknown-linux -mattr +mips64r2 | FileCheck %s
# CHECK: .section __TEXT,__text,regular,pure_instructions
# CHECK: daddiu $11, $26, 31949
0xcd 0x7c 0x4b 0x67
# CHECK: daddu $26, $1, $11
0x2d 0xd0 0x2b 0x00
# CHECK: ddiv $zero, $26, $22
0x1e 0x00 0x56 0x03
# CHECK: ddivu $zero, $9, $24
0x1f 0x00 0x38 0x01
# CHECK: dmfc1 $2, $f14
0x00 0x70 0x22 0x44
# CHECK: dmtc1 $23, $f5
0x00 0x28 0xb7 0x44
# CHECK: dmult $11, $26
0x1c 0x00 0x7a 0x01
# CHECK: dmultu $23, $13
0x1d 0x00 0xed 0x02
# CHECK: dsll $3, $24, 17
0x78 0x1c 0x18 0x00
# CHECK: dsllv $gp, $27, $24
0x14 0xe0 0x1b 0x03
# CHECK: dsra $1, $1, 30
0xbb 0x0f 0x01 0x00
# CHECK: dsrav $1, $1, $fp
0x17 0x08 0xc1 0x03
# CHECK: dsrl $10, $gp, 24
0x3a 0x56 0x1c 0x00
# CHECK: dsrlv $gp, $10, $23
0x16 0xe0 0xea 0x02
# CHECK: dsubu $gp, $27, $24
0x2f 0xe0 0x78 0x03
# CHECK: lw $27, -15155($1)
0xcd 0xc4 0x3b 0x8c
# CHECK: lui $1, 1
0x01 0x00 0x01 0x3c
# CHECK: lwu $3, -1746($3)
0x2e 0xf9 0x63 0x9c
# CHECK: lui $ra, 1
0x01 0x00 0x1f 0x3c
# CHECK: sw $26, -15159($1)
0xc9 0xc4 0x3a 0xac
# CHECK: ld $26, 3958($zero)
0x76 0x0f 0x1a 0xdc
# CHECK: sd $6, 17767($zero)
0x67 0x45 0x06 0xfc
# CHECK: dclo $9, $24
0x25 0x48 0x09 0x73
# CHECK: dclz $26, $9
0x24 0xd0 0x3a 0x71
# CHECK: dext $7, $gp, 29, 31
0x43 0xf7 0x87 0x7f
# CHECK: dins $20, $gp, 15, 1
0xc7 0x7b 0x94 0x7f
# CHECK: dsbh $7, $gp
0xa4 0x38 0x1c 0x7c
# CHECK: dshd $3, $14
0x64 0x19 0x0e 0x7c
# CHECK: drotr $20, $27, 6
0xba 0xa1 0x3b 0x00
# CHECK: drotrv $24, $23, $5
0x56 0xc0 0xb7 0x00

View File

@ -1,24 +1,24 @@
; RUN: opt < %s -instcombine -S | FileCheck %s
define void @entry() nounwind {
entry:
br label %for.cond
for.cond:
define void @entry() nounwind {
entry:
br label %for.cond
for.cond:
%local = phi <1 x i32> [ <i32 0>, %entry ], [ %phi2, %cond.end47 ]
; CHECK: sub <1 x i32> <i32 92>, %local
%phi3 = sub <1 x i32> zeroinitializer, %local
br label %cond.end
cond.false:
br label %cond.end
cond.end:
%cond = phi <1 x i32> [ %phi3, %for.cond ], [ undef, %cond.false ]
br label %cond.end47
cond.end47:
%sum = add <1 x i32> %cond, <i32 92>
%phi2 = sub <1 x i32> zeroinitializer, %sum
br label %for.cond
}
; CHECK: sub <1 x i32> <i32 92>, %local
%phi3 = sub <1 x i32> zeroinitializer, %local
br label %cond.end
cond.false:
br label %cond.end
cond.end:
%cond = phi <1 x i32> [ %phi3, %for.cond ], [ undef, %cond.false ]
br label %cond.end47
cond.end47:
%sum = add <1 x i32> %cond, <i32 92>
%phi2 = sub <1 x i32> zeroinitializer, %sum
br label %for.cond
}

View File

@ -1,356 +1,356 @@
//===- llvm/unittest/Support/AllocatorTest.cpp - BumpPtrAllocator tests ---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Memory.h"
#include "llvm/Support/Process.h"
#include "gtest/gtest.h"
#include <cstdlib>
using namespace llvm;
using namespace sys;
namespace {
class MappedMemoryTest : public ::testing::TestWithParam<unsigned> {
public:
MappedMemoryTest() {
Flags = GetParam();
PageSize = sys::Process::GetPageSize();
}
protected:
// Adds RW flags to permit testing of the resulting memory
unsigned getTestableEquivalent(unsigned RequestedFlags) {
switch (RequestedFlags) {
case Memory::MF_READ:
case Memory::MF_WRITE:
case Memory::MF_READ|Memory::MF_WRITE:
return Memory::MF_READ|Memory::MF_WRITE;
case Memory::MF_READ|Memory::MF_EXEC:
case Memory::MF_READ|Memory::MF_WRITE|Memory::MF_EXEC:
case Memory::MF_EXEC:
return Memory::MF_READ|Memory::MF_WRITE|Memory::MF_EXEC;
}
// Default in case values are added to the enum, as required by some compilers
return Memory::MF_READ|Memory::MF_WRITE;
}
// Returns true if the memory blocks overlap
bool doesOverlap(MemoryBlock M1, MemoryBlock M2) {
if (M1.base() == M2.base())
return true;
if (M1.base() > M2.base())
return (unsigned char *)M2.base() + M2.size() > M1.base();
return (unsigned char *)M1.base() + M1.size() > M2.base();
}
unsigned Flags;
size_t PageSize;
};
TEST_P(MappedMemoryTest, AllocAndRelease) {
error_code EC;
MemoryBlock M1 = Memory::allocateMappedMemory(sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(sizeof(int), M1.size());
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
}
TEST_P(MappedMemoryTest, MultipleAllocAndRelease) {
error_code EC;
MemoryBlock M1 = Memory::allocateMappedMemory(16, 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(64, 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(32, 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(16U, M1.size());
EXPECT_NE((void*)0, M2.base());
EXPECT_LE(64U, M2.size());
EXPECT_NE((void*)0, M3.base());
EXPECT_LE(32U, M3.size());
EXPECT_FALSE(doesOverlap(M1, M2));
EXPECT_FALSE(doesOverlap(M2, M3));
EXPECT_FALSE(doesOverlap(M1, M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
MemoryBlock M4 = Memory::allocateMappedMemory(16, 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M4.base());
EXPECT_LE(16U, M4.size());
EXPECT_FALSE(Memory::releaseMappedMemory(M4));
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, BasicWrite) {
// This test applies only to writeable combinations
if (Flags && !(Flags & Memory::MF_WRITE))
return;
error_code EC;
MemoryBlock M1 = Memory::allocateMappedMemory(sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(sizeof(int), M1.size());
int *a = (int*)M1.base();
*a = 1;
EXPECT_EQ(1, *a);
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
}
TEST_P(MappedMemoryTest, MultipleWrite) {
// This test applies only to writeable combinations
if (Flags && !(Flags & Memory::MF_WRITE))
return;
error_code EC;
MemoryBlock M1 = Memory::allocateMappedMemory(sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(8 * sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(4 * sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_FALSE(doesOverlap(M1, M2));
EXPECT_FALSE(doesOverlap(M2, M3));
EXPECT_FALSE(doesOverlap(M1, M3));
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(1U * sizeof(int), M1.size());
EXPECT_NE((void*)0, M2.base());
EXPECT_LE(8U * sizeof(int), M2.size());
EXPECT_NE((void*)0, M3.base());
EXPECT_LE(4U * sizeof(int), M3.size());
int *x = (int*)M1.base();
*x = 1;
int *y = (int*)M2.base();
for (int i = 0; i < 8; i++) {
y[i] = i;
}
int *z = (int*)M3.base();
*z = 42;
EXPECT_EQ(1, *x);
EXPECT_EQ(7, y[7]);
EXPECT_EQ(42, *z);
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
MemoryBlock M4 = Memory::allocateMappedMemory(64 * sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M4.base());
EXPECT_LE(64U * sizeof(int), M4.size());
x = (int*)M4.base();
*x = 4;
EXPECT_EQ(4, *x);
EXPECT_FALSE(Memory::releaseMappedMemory(M4));
// Verify that M2 remains unaffected by other activity
for (int i = 0; i < 8; i++) {
EXPECT_EQ(i, y[i]);
}
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, EnabledWrite) {
error_code EC;
MemoryBlock M1 = Memory::allocateMappedMemory(2 * sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(8 * sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(4 * sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(2U * sizeof(int), M1.size());
EXPECT_NE((void*)0, M2.base());
EXPECT_LE(8U * sizeof(int), M2.size());
EXPECT_NE((void*)0, M3.base());
EXPECT_LE(4U * sizeof(int), M3.size());
EXPECT_FALSE(Memory::protectMappedMemory(M1, getTestableEquivalent(Flags)));
EXPECT_FALSE(Memory::protectMappedMemory(M2, getTestableEquivalent(Flags)));
EXPECT_FALSE(Memory::protectMappedMemory(M3, getTestableEquivalent(Flags)));
EXPECT_FALSE(doesOverlap(M1, M2));
EXPECT_FALSE(doesOverlap(M2, M3));
EXPECT_FALSE(doesOverlap(M1, M3));
int *x = (int*)M1.base();
*x = 1;
int *y = (int*)M2.base();
for (unsigned int i = 0; i < 8; i++) {
y[i] = i;
}
int *z = (int*)M3.base();
*z = 42;
EXPECT_EQ(1, *x);
EXPECT_EQ(7, y[7]);
EXPECT_EQ(42, *z);
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
EXPECT_EQ(6, y[6]);
MemoryBlock M4 = Memory::allocateMappedMemory(16, 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M4.base());
EXPECT_LE(16U, M4.size());
EXPECT_EQ(error_code::success(), Memory::protectMappedMemory(M4, getTestableEquivalent(Flags)));
x = (int*)M4.base();
*x = 4;
EXPECT_EQ(4, *x);
EXPECT_FALSE(Memory::releaseMappedMemory(M4));
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, SuccessiveNear) {
error_code EC;
MemoryBlock M1 = Memory::allocateMappedMemory(16, 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(64, &M1, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(32, &M2, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(16U, M1.size());
EXPECT_NE((void*)0, M2.base());
EXPECT_LE(64U, M2.size());
EXPECT_NE((void*)0, M3.base());
EXPECT_LE(32U, M3.size());
EXPECT_FALSE(doesOverlap(M1, M2));
EXPECT_FALSE(doesOverlap(M2, M3));
EXPECT_FALSE(doesOverlap(M1, M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, DuplicateNear) {
error_code EC;
MemoryBlock Near((void*)(3*PageSize), 16);
MemoryBlock M1 = Memory::allocateMappedMemory(16, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(64, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(32, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(16U, M1.size());
EXPECT_NE((void*)0, M2.base());
EXPECT_LE(64U, M2.size());
EXPECT_NE((void*)0, M3.base());
EXPECT_LE(32U, M3.size());
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, ZeroNear) {
error_code EC;
MemoryBlock Near(0, 0);
MemoryBlock M1 = Memory::allocateMappedMemory(16, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(64, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(32, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(16U, M1.size());
EXPECT_NE((void*)0, M2.base());
EXPECT_LE(64U, M2.size());
EXPECT_NE((void*)0, M3.base());
EXPECT_LE(32U, M3.size());
EXPECT_FALSE(doesOverlap(M1, M2));
EXPECT_FALSE(doesOverlap(M2, M3));
EXPECT_FALSE(doesOverlap(M1, M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, ZeroSizeNear) {
error_code EC;
MemoryBlock Near((void*)(4*PageSize), 0);
MemoryBlock M1 = Memory::allocateMappedMemory(16, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(64, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(32, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(16U, M1.size());
EXPECT_NE((void*)0, M2.base());
EXPECT_LE(64U, M2.size());
EXPECT_NE((void*)0, M3.base());
EXPECT_LE(32U, M3.size());
EXPECT_FALSE(doesOverlap(M1, M2));
EXPECT_FALSE(doesOverlap(M2, M3));
EXPECT_FALSE(doesOverlap(M1, M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, UnalignedNear) {
error_code EC;
MemoryBlock Near((void*)(2*PageSize+5), 0);
MemoryBlock M1 = Memory::allocateMappedMemory(15, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(sizeof(int), M1.size());
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
}
// Note that Memory::MF_WRITE is not supported exclusively across
// operating systems and architectures and can imply MF_READ|MF_WRITE
unsigned MemoryFlags[] = {
Memory::MF_READ,
Memory::MF_WRITE,
Memory::MF_READ|Memory::MF_WRITE,
Memory::MF_EXEC,
Memory::MF_READ|Memory::MF_EXEC,
Memory::MF_READ|Memory::MF_WRITE|Memory::MF_EXEC
};
INSTANTIATE_TEST_CASE_P(AllocationTests,
MappedMemoryTest,
::testing::ValuesIn(MemoryFlags));
} // anonymous namespace
//===- llvm/unittest/Support/AllocatorTest.cpp - BumpPtrAllocator tests ---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Memory.h"
#include "llvm/Support/Process.h"
#include "gtest/gtest.h"
#include <cstdlib>
using namespace llvm;
using namespace sys;
namespace {
class MappedMemoryTest : public ::testing::TestWithParam<unsigned> {
public:
MappedMemoryTest() {
Flags = GetParam();
PageSize = sys::Process::GetPageSize();
}
protected:
// Adds RW flags to permit testing of the resulting memory
unsigned getTestableEquivalent(unsigned RequestedFlags) {
switch (RequestedFlags) {
case Memory::MF_READ:
case Memory::MF_WRITE:
case Memory::MF_READ|Memory::MF_WRITE:
return Memory::MF_READ|Memory::MF_WRITE;
case Memory::MF_READ|Memory::MF_EXEC:
case Memory::MF_READ|Memory::MF_WRITE|Memory::MF_EXEC:
case Memory::MF_EXEC:
return Memory::MF_READ|Memory::MF_WRITE|Memory::MF_EXEC;
}
// Default in case values are added to the enum, as required by some compilers
return Memory::MF_READ|Memory::MF_WRITE;
}
// Returns true if the memory blocks overlap
bool doesOverlap(MemoryBlock M1, MemoryBlock M2) {
if (M1.base() == M2.base())
return true;
if (M1.base() > M2.base())
return (unsigned char *)M2.base() + M2.size() > M1.base();
return (unsigned char *)M1.base() + M1.size() > M2.base();
}
unsigned Flags;
size_t PageSize;
};
TEST_P(MappedMemoryTest, AllocAndRelease) {
error_code EC;
MemoryBlock M1 = Memory::allocateMappedMemory(sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(sizeof(int), M1.size());
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
}
TEST_P(MappedMemoryTest, MultipleAllocAndRelease) {
error_code EC;
MemoryBlock M1 = Memory::allocateMappedMemory(16, 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(64, 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(32, 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(16U, M1.size());
EXPECT_NE((void*)0, M2.base());
EXPECT_LE(64U, M2.size());
EXPECT_NE((void*)0, M3.base());
EXPECT_LE(32U, M3.size());
EXPECT_FALSE(doesOverlap(M1, M2));
EXPECT_FALSE(doesOverlap(M2, M3));
EXPECT_FALSE(doesOverlap(M1, M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
MemoryBlock M4 = Memory::allocateMappedMemory(16, 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M4.base());
EXPECT_LE(16U, M4.size());
EXPECT_FALSE(Memory::releaseMappedMemory(M4));
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, BasicWrite) {
// This test applies only to writeable combinations
if (Flags && !(Flags & Memory::MF_WRITE))
return;
error_code EC;
MemoryBlock M1 = Memory::allocateMappedMemory(sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(sizeof(int), M1.size());
int *a = (int*)M1.base();
*a = 1;
EXPECT_EQ(1, *a);
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
}
TEST_P(MappedMemoryTest, MultipleWrite) {
// This test applies only to writeable combinations
if (Flags && !(Flags & Memory::MF_WRITE))
return;
error_code EC;
MemoryBlock M1 = Memory::allocateMappedMemory(sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(8 * sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(4 * sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_FALSE(doesOverlap(M1, M2));
EXPECT_FALSE(doesOverlap(M2, M3));
EXPECT_FALSE(doesOverlap(M1, M3));
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(1U * sizeof(int), M1.size());
EXPECT_NE((void*)0, M2.base());
EXPECT_LE(8U * sizeof(int), M2.size());
EXPECT_NE((void*)0, M3.base());
EXPECT_LE(4U * sizeof(int), M3.size());
int *x = (int*)M1.base();
*x = 1;
int *y = (int*)M2.base();
for (int i = 0; i < 8; i++) {
y[i] = i;
}
int *z = (int*)M3.base();
*z = 42;
EXPECT_EQ(1, *x);
EXPECT_EQ(7, y[7]);
EXPECT_EQ(42, *z);
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
MemoryBlock M4 = Memory::allocateMappedMemory(64 * sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M4.base());
EXPECT_LE(64U * sizeof(int), M4.size());
x = (int*)M4.base();
*x = 4;
EXPECT_EQ(4, *x);
EXPECT_FALSE(Memory::releaseMappedMemory(M4));
// Verify that M2 remains unaffected by other activity
for (int i = 0; i < 8; i++) {
EXPECT_EQ(i, y[i]);
}
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, EnabledWrite) {
error_code EC;
MemoryBlock M1 = Memory::allocateMappedMemory(2 * sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(8 * sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(4 * sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(2U * sizeof(int), M1.size());
EXPECT_NE((void*)0, M2.base());
EXPECT_LE(8U * sizeof(int), M2.size());
EXPECT_NE((void*)0, M3.base());
EXPECT_LE(4U * sizeof(int), M3.size());
EXPECT_FALSE(Memory::protectMappedMemory(M1, getTestableEquivalent(Flags)));
EXPECT_FALSE(Memory::protectMappedMemory(M2, getTestableEquivalent(Flags)));
EXPECT_FALSE(Memory::protectMappedMemory(M3, getTestableEquivalent(Flags)));
EXPECT_FALSE(doesOverlap(M1, M2));
EXPECT_FALSE(doesOverlap(M2, M3));
EXPECT_FALSE(doesOverlap(M1, M3));
int *x = (int*)M1.base();
*x = 1;
int *y = (int*)M2.base();
for (unsigned int i = 0; i < 8; i++) {
y[i] = i;
}
int *z = (int*)M3.base();
*z = 42;
EXPECT_EQ(1, *x);
EXPECT_EQ(7, y[7]);
EXPECT_EQ(42, *z);
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
EXPECT_EQ(6, y[6]);
MemoryBlock M4 = Memory::allocateMappedMemory(16, 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M4.base());
EXPECT_LE(16U, M4.size());
EXPECT_EQ(error_code::success(), Memory::protectMappedMemory(M4, getTestableEquivalent(Flags)));
x = (int*)M4.base();
*x = 4;
EXPECT_EQ(4, *x);
EXPECT_FALSE(Memory::releaseMappedMemory(M4));
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, SuccessiveNear) {
error_code EC;
MemoryBlock M1 = Memory::allocateMappedMemory(16, 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(64, &M1, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(32, &M2, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(16U, M1.size());
EXPECT_NE((void*)0, M2.base());
EXPECT_LE(64U, M2.size());
EXPECT_NE((void*)0, M3.base());
EXPECT_LE(32U, M3.size());
EXPECT_FALSE(doesOverlap(M1, M2));
EXPECT_FALSE(doesOverlap(M2, M3));
EXPECT_FALSE(doesOverlap(M1, M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, DuplicateNear) {
error_code EC;
MemoryBlock Near((void*)(3*PageSize), 16);
MemoryBlock M1 = Memory::allocateMappedMemory(16, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(64, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(32, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(16U, M1.size());
EXPECT_NE((void*)0, M2.base());
EXPECT_LE(64U, M2.size());
EXPECT_NE((void*)0, M3.base());
EXPECT_LE(32U, M3.size());
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, ZeroNear) {
error_code EC;
MemoryBlock Near(0, 0);
MemoryBlock M1 = Memory::allocateMappedMemory(16, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(64, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(32, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(16U, M1.size());
EXPECT_NE((void*)0, M2.base());
EXPECT_LE(64U, M2.size());
EXPECT_NE((void*)0, M3.base());
EXPECT_LE(32U, M3.size());
EXPECT_FALSE(doesOverlap(M1, M2));
EXPECT_FALSE(doesOverlap(M2, M3));
EXPECT_FALSE(doesOverlap(M1, M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, ZeroSizeNear) {
error_code EC;
MemoryBlock Near((void*)(4*PageSize), 0);
MemoryBlock M1 = Memory::allocateMappedMemory(16, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(64, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(32, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(16U, M1.size());
EXPECT_NE((void*)0, M2.base());
EXPECT_LE(64U, M2.size());
EXPECT_NE((void*)0, M3.base());
EXPECT_LE(32U, M3.size());
EXPECT_FALSE(doesOverlap(M1, M2));
EXPECT_FALSE(doesOverlap(M2, M3));
EXPECT_FALSE(doesOverlap(M1, M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, UnalignedNear) {
error_code EC;
MemoryBlock Near((void*)(2*PageSize+5), 0);
MemoryBlock M1 = Memory::allocateMappedMemory(15, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(sizeof(int), M1.size());
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
}
// Note that Memory::MF_WRITE is not supported exclusively across
// operating systems and architectures and can imply MF_READ|MF_WRITE
unsigned MemoryFlags[] = {
Memory::MF_READ,
Memory::MF_WRITE,
Memory::MF_READ|Memory::MF_WRITE,
Memory::MF_EXEC,
Memory::MF_READ|Memory::MF_EXEC,
Memory::MF_READ|Memory::MF_WRITE|Memory::MF_EXEC
};
INSTANTIATE_TEST_CASE_P(AllocationTests,
MappedMemoryTest,
::testing::ValuesIn(MemoryFlags));
} // anonymous namespace