1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00

[llvm-lipo] Add support for archives

Add support for creating universal binaries which 
can contain an archive.

Differential revision: https://reviews.llvm.org/D67758

Test plan: make check-all

llvm-svn: 372666
This commit is contained in:
Alexander Shaposhnikov 2019-09-23 22:22:55 +00:00
parent 5939ecd723
commit 18f2664e1b
2 changed files with 230 additions and 140 deletions

View File

@ -0,0 +1,26 @@
# RUN: yaml2obj %p/Inputs/i386-slice.yaml > %t-i386.o
# RUN: yaml2obj %p/Inputs/x86_64-slice.yaml > %t-x86_64.o
# RUN: yaml2obj %p/Inputs/i386-x86_64-universal.yaml > %t-universal.o
# RUN: llvm-ar cr %t.empty.a
# RUN: not llvm-lipo %t.empty.a -create -output /dev/null 2>&1 | FileCheck --check-prefix=EMPTY-ARCHIVE %s
# RUN: llvm-ar cr %t.different_architectures.a %t-i386.o %t-x86_64.o
# RUN: not llvm-lipo %t.different_architectures.a -create -output /dev/null 2>&1 | FileCheck --check-prefix=ARCHIVE-WITH-DIFFERENT-ARCHS %s
# RUN: llvm-ar cr %t.contains_fat_binary.a %t-universal.o
# RUN: not llvm-lipo %t.contains_fat_binary.a -create -output /dev/null 2>&1 | FileCheck --check-prefix=ARCHIVE-WITH-FAT-BINARY %s
# RUN: llvm-ar cr %t-i386-lib.a %t-i386.o
# RUN: llvm-lipo %t-i386-lib.a %t-x86_64.o -create -output %t-i386-x86_64-universal.o
# RUN: llvm-lipo %t-i386-x86_64-universal.o -info | FileCheck --check-prefix=INFO-i386-x86_64 %s
# RUN: llvm-lipo %t-i386-x86_64-universal.o -thin i386 -output %t-extracted-i386-lib.a
# RUN: cmp %t-extracted-i386-lib.a %t-i386-lib.a
# RUN: llvm-lipo %t-i386-x86_64-universal.o -thin x86_64 -output %t-extracted-x86_64.o
# RUN: cmp %t-extracted-x86_64.o %t-x86_64.o
#
# EMPTY-ARCHIVE: empty archive
# ARCHIVE-WITH-DIFFERENT-ARCHS: all members must match
# ARCHIVE-WITH-FAT-BINARY: fat file (not allowed in an archive)
#
# INFO-i386-x86_64: i386 x86_64

View File

@ -101,12 +101,156 @@ struct Config {
LipoAction ActionToPerform;
};
struct Slice {
const MachOObjectFile *ObjectFile;
// Requires Alignment field to store slice alignment values from universal
// binaries. Also needed to order the slices using compareSlices, so the total
// For compatibility with cctools lipo, a file's alignment is calculated as the
// minimum aligment of all segments. For object files, the file's alignment is
// the maximum alignment of its sections.
static uint32_t calculateFileAlignment(const MachOObjectFile &O) {
uint32_t P2CurrentAlignment;
uint32_t P2MinAlignment = MachOUniversalBinary::MaxSectionAlignment;
const bool Is64Bit = O.is64Bit();
for (const auto &LC : O.load_commands()) {
if (LC.C.cmd != (Is64Bit ? MachO::LC_SEGMENT_64 : MachO::LC_SEGMENT))
continue;
if (O.getHeader().filetype == MachO::MH_OBJECT) {
unsigned NumberOfSections =
(Is64Bit ? O.getSegment64LoadCommand(LC).nsects
: O.getSegmentLoadCommand(LC).nsects);
P2CurrentAlignment = NumberOfSections ? 2 : P2MinAlignment;
for (unsigned SI = 0; SI < NumberOfSections; ++SI) {
P2CurrentAlignment = std::max(P2CurrentAlignment,
(Is64Bit ? O.getSection64(LC, SI).align
: O.getSection(LC, SI).align));
}
} else {
P2CurrentAlignment =
countTrailingZeros(Is64Bit ? O.getSegment64LoadCommand(LC).vmaddr
: O.getSegmentLoadCommand(LC).vmaddr);
}
P2MinAlignment = std::min(P2MinAlignment, P2CurrentAlignment);
}
// return a value >= 4 byte aligned, and less than MachO MaxSectionAlignment
return std::max(
static_cast<uint32_t>(2),
std::min(P2MinAlignment, static_cast<uint32_t>(
MachOUniversalBinary::MaxSectionAlignment)));
}
static uint32_t calculateAlignment(const MachOObjectFile *ObjectFile) {
switch (ObjectFile->getHeader().cputype) {
case MachO::CPU_TYPE_I386:
case MachO::CPU_TYPE_X86_64:
case MachO::CPU_TYPE_POWERPC:
case MachO::CPU_TYPE_POWERPC64:
return 12; // log2 value of page size(4k) for x86 and PPC
case MachO::CPU_TYPE_ARM:
case MachO::CPU_TYPE_ARM64:
case MachO::CPU_TYPE_ARM64_32:
return 14; // log2 value of page size(16k) for Darwin ARM
default:
return calculateFileAlignment(*ObjectFile);
}
}
class Slice {
const Binary *B;
uint32_t CPUType;
uint32_t CPUSubType;
std::string ArchName;
// P2Alignment field stores slice alignment values from universal
// binaries. This is also needed to order the slices so the total
// file size can be calculated before creating the output buffer.
uint32_t Alignment;
uint32_t P2Alignment;
public:
Slice(const MachOObjectFile *O, uint32_t Align)
: B(O), CPUType(O->getHeader().cputype),
CPUSubType(O->getHeader().cpusubtype),
ArchName(O->getArchTriple().getArchName()), P2Alignment(Align) {}
explicit Slice(const MachOObjectFile *O) : Slice(O, calculateAlignment(O)){};
explicit Slice(const Archive *A) : B(A) {
Error Err = Error::success();
std::unique_ptr<MachOObjectFile> FO = nullptr;
for (const Archive::Child &Child : A->children(Err)) {
Expected<std::unique_ptr<Binary>> ChildOrErr = Child.getAsBinary();
if (!ChildOrErr)
reportError(A->getFileName(), ChildOrErr.takeError());
Binary *Bin = ChildOrErr.get().get();
if (Bin->isMachOUniversalBinary())
reportError(("archive member " + Bin->getFileName() +
" is a fat file (not allowed in an archive)")
.str());
if (!Bin->isMachO())
reportError(("archive member " + Bin->getFileName() +
" is not a MachO file (not allowed in an archive)"));
MachOObjectFile *O = cast<MachOObjectFile>(Bin);
if (FO &&
std::tie(FO->getHeader().cputype, FO->getHeader().cpusubtype) !=
std::tie(O->getHeader().cputype, O->getHeader().cpusubtype)) {
reportError(("archive member " + O->getFileName() + " cputype (" +
Twine(O->getHeader().cputype) + ") and cpusubtype(" +
Twine(O->getHeader().cpusubtype) +
") does not match previous archive members cputype (" +
Twine(FO->getHeader().cputype) + ") and cpusubtype(" +
Twine(FO->getHeader().cpusubtype) +
") (all members must match) " + FO->getFileName())
.str());
}
if (!FO) {
ChildOrErr.get().release();
FO.reset(O);
}
}
if (Err)
reportError(A->getFileName(), std::move(Err));
if (!FO)
reportError(("empty archive with no architecture specification: " +
A->getFileName() + " (can't determine architecture for it)")
.str());
CPUType = FO->getHeader().cputype;
CPUSubType = FO->getHeader().cpusubtype;
ArchName = FO->getArchTriple().getArchName();
// Replicate the behavior of cctools lipo.
P2Alignment = FO->is64Bit() ? 3 : 2;
}
void setP2Alignment(uint32_t Align) { P2Alignment = Align; }
const Binary *getBinary() const { return B; }
uint32_t getCPUType() const { return CPUType; }
uint32_t getCPUSubType() const { return CPUSubType; }
uint32_t getP2Alignment() const { return P2Alignment; }
uint64_t getCPUID() const {
return static_cast<uint64_t>(CPUType) << 32 | CPUSubType;
}
std::string getArchString() const {
if (!ArchName.empty())
return ArchName;
return ("unknown(" + Twine(CPUType) + "," +
Twine(CPUSubType & ~MachO::CPU_SUBTYPE_MASK) + ")")
.str();
}
friend bool operator<(const Slice &Lhs, const Slice &Rhs) {
if (Lhs.CPUType == Rhs.CPUType)
return Lhs.CPUSubType < Rhs.CPUSubType;
// force arm64-family to follow after all other slices for
// compatibility with cctools lipo
if (Lhs.CPUType == MachO::CPU_TYPE_ARM64)
return false;
if (Rhs.CPUType == MachO::CPU_TYPE_ARM64)
return true;
// Sort by alignment to minimize file size
return Lhs.P2Alignment < Rhs.P2Alignment;
}
};
} // end namespace
@ -281,11 +425,8 @@ readInputBinaries(ArrayRef<std::string> InputFiles) {
Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(InputFile);
if (!BinaryOrErr)
reportError(InputFile, BinaryOrErr.takeError());
// TODO: Add compatibility for archive files
if (BinaryOrErr->getBinary()->isArchive())
reportError("File " + InputFile +
" is an archive file and is not yet supported.");
if (!BinaryOrErr->getBinary()->isMachO() &&
if (!BinaryOrErr->getBinary()->isArchive() &&
!BinaryOrErr->getBinary()->isMachO() &&
!BinaryOrErr->getBinary()->isMachOUniversalBinary())
reportError("File " + InputFile + " has unsupported binary format");
InputBinaries.push_back(std::move(*BinaryOrErr));
@ -306,8 +447,9 @@ static void verifyArch(ArrayRef<OwningBinary<Binary>> InputBinaries,
if (auto UO =
dyn_cast<MachOUniversalBinary>(InputBinaries.front().getBinary())) {
for (StringRef Arch : VerifyArchList) {
auto ObjForArch = UO->getObjectForArch(Arch);
if (!ObjForArch)
Expected<MachOUniversalBinary::ObjectForArch> Obj =
UO->getObjectForArch(Arch);
if (!Obj)
exit(EXIT_FAILURE);
}
} else if (auto O =
@ -322,34 +464,29 @@ static void verifyArch(ArrayRef<OwningBinary<Binary>> InputBinaries,
exit(EXIT_SUCCESS);
}
// Returns a string of the given Object file's architecture type
// Unknown architectures formatted unknown(CPUType,CPUSubType) for compatibility
// with cctools lipo
static std::string getArchString(const MachOObjectFile &ObjectFile) {
const Triple T = ObjectFile.getArchTriple();
const StringRef ObjectArch = T.getArchName();
if (!ObjectArch.empty())
return ObjectArch;
return ("unknown(" + Twine(ObjectFile.getHeader().cputype) + "," +
Twine(ObjectFile.getHeader().cpusubtype & ~MachO::CPU_SUBTYPE_MASK) +
")")
.str();
}
static void printBinaryArchs(const Binary *Binary, raw_ostream &OS) {
// Prints trailing space for compatibility with cctools lipo.
if (auto UO = dyn_cast<MachOUniversalBinary>(Binary)) {
for (const auto &O : UO->objects()) {
Expected<std::unique_ptr<MachOObjectFile>> BinaryOrError =
Expected<std::unique_ptr<MachOObjectFile>> MachOObjOrError =
O.getAsObjectFile();
if (!BinaryOrError)
reportError(Binary->getFileName(), BinaryOrError.takeError());
OS << getArchString(*BinaryOrError.get().get()) << " ";
if (MachOObjOrError) {
OS << Slice(MachOObjOrError->get()).getArchString() << " ";
continue;
}
Expected<std::unique_ptr<Archive>> ArchiveOrError = O.getAsArchive();
if (ArchiveOrError) {
consumeError(MachOObjOrError.takeError());
OS << Slice(ArchiveOrError->get()).getArchString() << " ";
continue;
}
consumeError(ArchiveOrError.takeError());
reportError(Binary->getFileName(), MachOObjOrError.takeError());
}
OS << "\n";
return;
}
OS << getArchString(*cast<MachOObjectFile>(Binary)) << " \n";
OS << Slice(cast<MachOObjectFile>(Binary)).getArchString() << " \n";
}
LLVM_ATTRIBUTE_NORETURN
@ -399,21 +536,23 @@ static void extractSlice(ArrayRef<OwningBinary<Binary>> InputBinaries,
auto *UO = cast<MachOUniversalBinary>(InputBinaries.front().getBinary());
Expected<std::unique_ptr<MachOObjectFile>> Obj =
UO->getMachOObjectForArch(ThinArchType);
if (!Obj)
Expected<std::unique_ptr<Archive>> Ar = UO->getArchiveForArch(ThinArchType);
if (!Obj && !Ar)
reportError("fat input file " + UO->getFileName() +
" does not contain the specified architecture " + ThinArchType +
" to thin it to");
Binary *B = Obj ? static_cast<Binary *>(Obj->get())
: static_cast<Binary *>(Ar->get());
Expected<std::unique_ptr<FileOutputBuffer>> OutFileOrError =
FileOutputBuffer::create(OutputFileName,
Obj.get()->getMemoryBufferRef().getBufferSize(),
B->getMemoryBufferRef().getBufferSize(),
sys::fs::can_execute(UO->getFileName())
? FileOutputBuffer::F_executable
: 0);
if (!OutFileOrError)
reportError(OutputFileName, OutFileOrError.takeError());
std::copy(Obj.get()->getMemoryBufferRef().getBufferStart(),
Obj.get()->getMemoryBufferRef().getBufferEnd(),
std::copy(B->getMemoryBufferRef().getBufferStart(),
B->getMemoryBufferRef().getBufferEnd(),
OutFileOrError.get()->getBufferStart());
if (Error E = OutFileOrError.get()->commit())
reportError(OutputFileName, std::move(E));
@ -421,98 +560,24 @@ static void extractSlice(ArrayRef<OwningBinary<Binary>> InputBinaries,
}
static void checkArchDuplicates(const ArrayRef<Slice> &Slices) {
DenseMap<uint64_t, const MachOObjectFile *> CPUIds;
auto CPUIDForSlice = [](const Slice &S) {
return static_cast<uint64_t>(S.ObjectFile->getHeader().cputype) << 32 |
S.ObjectFile->getHeader().cpusubtype;
};
DenseMap<uint64_t, const Binary *> CPUIds;
for (const auto &S : Slices) {
auto Entry = CPUIds.try_emplace(CPUIDForSlice(S), S.ObjectFile);
auto Entry = CPUIds.try_emplace(S.getCPUID(), S.getBinary());
if (!Entry.second)
reportError(Entry.first->second->getFileName() + " and " +
S.ObjectFile->getFileName() + " have the same architecture " +
getArchString(*S.ObjectFile) +
S.getBinary()->getFileName() +
" have the same architecture " + S.getArchString() +
" and therefore cannot be in the same universal binary");
}
}
// For compatibility with cctools lipo, alignment is calculated as the minimum
// aligment of all segments. Each segments's alignment is the maximum alignment
// from its sections
static uint32_t calculateSegmentAlignment(const MachOObjectFile &O) {
uint32_t P2CurrentAlignment;
uint32_t P2MinAlignment = MachOUniversalBinary::MaxSectionAlignment;
const bool Is64Bit = O.is64Bit();
for (const auto &LC : O.load_commands()) {
if (LC.C.cmd != (Is64Bit ? MachO::LC_SEGMENT_64 : MachO::LC_SEGMENT))
continue;
if (O.getHeader().filetype == MachO::MH_OBJECT) {
unsigned NumberOfSections =
(Is64Bit ? O.getSegment64LoadCommand(LC).nsects
: O.getSegmentLoadCommand(LC).nsects);
P2CurrentAlignment = NumberOfSections ? 2 : P2MinAlignment;
for (unsigned SI = 0; SI < NumberOfSections; ++SI) {
P2CurrentAlignment = std::max(P2CurrentAlignment,
(Is64Bit ? O.getSection64(LC, SI).align
: O.getSection(LC, SI).align));
}
} else {
P2CurrentAlignment =
countTrailingZeros(Is64Bit ? O.getSegment64LoadCommand(LC).vmaddr
: O.getSegmentLoadCommand(LC).vmaddr);
}
P2MinAlignment = std::min(P2MinAlignment, P2CurrentAlignment);
}
// return a value >= 4 byte aligned, and less than MachO MaxSectionAlignment
return std::max(
static_cast<uint32_t>(2),
std::min(P2MinAlignment, static_cast<uint32_t>(
MachOUniversalBinary::MaxSectionAlignment)));
}
static uint32_t calculateAlignment(const MachOObjectFile *ObjectFile) {
switch (ObjectFile->getHeader().cputype) {
case MachO::CPU_TYPE_I386:
case MachO::CPU_TYPE_X86_64:
case MachO::CPU_TYPE_POWERPC:
case MachO::CPU_TYPE_POWERPC64:
return 12; // log2 value of page size(4k) for x86 and PPC
case MachO::CPU_TYPE_ARM:
case MachO::CPU_TYPE_ARM64:
case MachO::CPU_TYPE_ARM64_32:
return 14; // log2 value of page size(16k) for Darwin ARM
default:
return calculateSegmentAlignment(*ObjectFile);
}
}
// This function replicates ordering from cctools lipo for consistency
static bool compareSlices(const Slice &Lhs, const Slice &Rhs) {
if (Lhs.ObjectFile->getHeader().cputype ==
Rhs.ObjectFile->getHeader().cputype)
return Lhs.ObjectFile->getHeader().cpusubtype <
Rhs.ObjectFile->getHeader().cpusubtype;
// force arm64-family to follow after all other slices for compatibility
// with cctools lipo
if (Lhs.ObjectFile->getHeader().cputype == MachO::CPU_TYPE_ARM64)
return false;
if (Rhs.ObjectFile->getHeader().cputype == MachO::CPU_TYPE_ARM64)
return true;
// Sort by alignment to minimize file size
return Lhs.Alignment < Rhs.Alignment;
}
template <typename Range>
static void
updateSegmentAlignments(Range &Slices,
const StringMap<const uint32_t> &Alignments) {
static void updateAlignments(Range &Slices,
const StringMap<const uint32_t> &Alignments) {
for (auto &Slice : Slices) {
auto Alignment = Alignments.find(getArchString(*Slice.ObjectFile));
auto Alignment = Alignments.find(Slice.getArchString());
if (Alignment != Alignments.end())
Slice.Alignment = Alignment->second;
Slice.setP2Alignment(Alignment->second);
}
}
@ -520,7 +585,7 @@ static void checkUnusedAlignments(ArrayRef<Slice> Slices,
const StringMap<const uint32_t> &Alignments) {
auto HasArch = [&](StringRef Arch) {
return llvm::find_if(Slices, [Arch](Slice S) {
return getArchString(*S.ObjectFile) == Arch;
return S.getArchString() == Arch;
}) != Slices.end();
};
for (StringRef Arch : Alignments.keys())
@ -546,15 +611,17 @@ static SmallVector<Slice, 2> buildSlices(
if (!BinaryOrError)
reportError(InputBinary->getFileName(), BinaryOrError.takeError());
ExtractedObjects.push_back(std::move(BinaryOrError.get()));
Slices.push_back(Slice{ExtractedObjects.back().get(), O.getAlign()});
Slices.emplace_back(ExtractedObjects.back().get(), O.getAlign());
}
} else if (auto O = dyn_cast<MachOObjectFile>(InputBinary)) {
Slices.push_back(Slice{O, calculateAlignment(O)});
Slices.emplace_back(O);
} else if (auto A = dyn_cast<Archive>(InputBinary)) {
Slices.emplace_back(A);
} else {
llvm_unreachable("Unexpected binary format");
}
}
updateSegmentAlignments(Slices, Alignments);
updateAlignments(Slices, Alignments);
return Slices;
}
@ -564,22 +631,20 @@ buildFatArchList(ArrayRef<Slice> Slices) {
uint64_t Offset =
sizeof(MachO::fat_header) + Slices.size() * sizeof(MachO::fat_arch);
for (size_t Index = 0, Size = Slices.size(); Index < Size; ++Index) {
Offset = alignTo(Offset, 1ull << Slices[Index].Alignment);
const MachOObjectFile *ObjectFile = Slices[Index].ObjectFile;
for (const auto &S : Slices) {
Offset = alignTo(Offset, 1ull << S.getP2Alignment());
if (Offset > UINT32_MAX)
reportError("fat file too large to be created because the offset "
"field in struct fat_arch is only 32-bits and the offset " +
Twine(Offset) + " for " + ObjectFile->getFileName() +
" for architecture " + getArchString(*ObjectFile) +
"exceeds that.");
Twine(Offset) + " for " + S.getBinary()->getFileName() +
" for architecture " + S.getArchString() + "exceeds that.");
MachO::fat_arch FatArch;
FatArch.cputype = ObjectFile->getHeader().cputype;
FatArch.cpusubtype = ObjectFile->getHeader().cpusubtype;
FatArch.cputype = S.getCPUType();
FatArch.cpusubtype = S.getCPUSubType();
FatArch.offset = Offset;
FatArch.size = ObjectFile->getMemoryBufferRef().getBufferSize();
FatArch.align = Slices[Index].Alignment;
FatArch.size = S.getBinary()->getMemoryBufferRef().getBufferSize();
FatArch.align = S.getP2Alignment();
Offset += FatArch.size;
FatArchList.push_back(FatArch);
}
@ -592,11 +657,11 @@ static void createUniversalBinary(SmallVectorImpl<Slice> &Slices,
FatHeader.magic = MachO::FAT_MAGIC;
FatHeader.nfat_arch = Slices.size();
stable_sort(Slices, compareSlices);
stable_sort(Slices);
SmallVector<MachO::fat_arch, 2> FatArchList = buildFatArchList(Slices);
const bool IsExecutable = any_of(Slices, [](Slice S) {
return sys::fs::can_execute(S.ObjectFile->getFileName());
return sys::fs::can_execute(S.getBinary()->getFileName());
});
const uint64_t OutputFileSize =
FatArchList.back().offset + FatArchList.back().size;
@ -614,7 +679,7 @@ static void createUniversalBinary(SmallVectorImpl<Slice> &Slices,
std::memcpy(OutFile->getBufferStart(), &FatHeader, sizeof(MachO::fat_header));
for (size_t Index = 0, Size = Slices.size(); Index < Size; ++Index) {
MemoryBufferRef BufferRef = Slices[Index].ObjectFile->getMemoryBufferRef();
MemoryBufferRef BufferRef = Slices[Index].getBinary()->getMemoryBufferRef();
std::copy(BufferRef.getBufferStart(), BufferRef.getBufferEnd(),
OutFile->getBufferStart() + FatArchList[Index].offset);
}
@ -674,17 +739,16 @@ buildReplacementSlices(ArrayRef<OwningBinary<Binary>> ReplacementBinaries,
" for replacement file: " + ReplacementBinary->getFileName() +
" does not match the file's architecture");
auto Entry =
Slices.try_emplace(ReplacementArch, Slice{O, calculateAlignment(O)});
auto Entry = Slices.try_emplace(ReplacementArch, Slice(O));
if (!Entry.second)
reportError("-replace " + ReplacementArch +
" <file_name> specified multiple times: " +
Entry.first->second.ObjectFile->getFileName() + ", " +
Entry.first->second.getBinary()->getFileName() + ", " +
O->getFileName());
}
auto SlicesMapRange = map_range(
Slices, [](StringMapEntry<Slice> &E) -> Slice & { return E.getValue(); });
updateSegmentAlignments(SlicesMapRange, Alignments);
updateAlignments(SlicesMapRange, Alignments);
return Slices;
}
@ -714,7 +778,7 @@ static void replaceSlices(ArrayRef<OwningBinary<Binary>> InputBinaries,
buildSlices(InputBinaries, Alignments, ExtractedObjects);
for (auto &Slice : Slices) {
auto It = ReplacementSlices.find(getArchString(*Slice.ObjectFile));
auto It = ReplacementSlices.find(Slice.getArchString());
if (It != ReplacementSlices.end()) {
Slice = It->second;
ReplacementSlices.erase(It); // only keep remaining replacing arch_types