1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 10:42:39 +01:00

Teach the interpreter to handle vector compares and additional vector arithmetic operations.

Patch by Yuri Veselov.

llvm-svn: 180626
This commit is contained in:
Nadav Rotem 2013-04-26 20:19:41 +00:00
parent adb8197635
commit 19172bc0f1
6 changed files with 453 additions and 44 deletions

View File

@ -114,6 +114,15 @@ static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
break;
#define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \
case Type::VectorTyID: { \
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
Dest.AggregateVal[_i].IntVal = APInt(1, \
Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));\
} break;
// Handle pointers specially because they must be compared with only as much
// width as the host has. We _do not_ want to be comparing 64 bit values when
// running on a 32-bit target, otherwise the upper 32 bits might mess up
@ -129,6 +138,7 @@ static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(eq,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty);
IMPLEMENT_POINTER_ICMP(==);
default:
dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
@ -142,6 +152,7 @@ static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(ne,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty);
IMPLEMENT_POINTER_ICMP(!=);
default:
dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
@ -155,6 +166,7 @@ static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(ult,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty);
IMPLEMENT_POINTER_ICMP(<);
default:
dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
@ -168,6 +180,7 @@ static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(slt,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty);
IMPLEMENT_POINTER_ICMP(<);
default:
dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
@ -181,6 +194,7 @@ static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(ugt,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty);
IMPLEMENT_POINTER_ICMP(>);
default:
dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
@ -194,6 +208,7 @@ static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(sgt,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty);
IMPLEMENT_POINTER_ICMP(>);
default:
dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
@ -207,6 +222,7 @@ static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(ule,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty);
IMPLEMENT_POINTER_ICMP(<=);
default:
dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
@ -220,6 +236,7 @@ static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(sle,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty);
IMPLEMENT_POINTER_ICMP(<=);
default:
dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
@ -233,6 +250,7 @@ static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(uge,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty);
IMPLEMENT_POINTER_ICMP(>=);
default:
dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
@ -246,6 +264,7 @@ static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(sge,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty);
IMPLEMENT_POINTER_ICMP(>=);
default:
dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
@ -285,12 +304,29 @@ void Interpreter::visitICmpInst(ICmpInst &I) {
Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
break
#define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
Dest.AggregateVal[_i].IntVal = APInt(1, \
Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\
break;
#define IMPLEMENT_VECTOR_FCMP(OP) \
case Type::VectorTyID: \
if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) { \
IMPLEMENT_VECTOR_FCMP_T(OP, Float); \
} else { \
IMPLEMENT_VECTOR_FCMP_T(OP, Double); \
}
static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(==, Float);
IMPLEMENT_FCMP(==, Double);
IMPLEMENT_VECTOR_FCMP(==);
default:
dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
llvm_unreachable(0);
@ -298,17 +334,65 @@ static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
return Dest;
}
#define IMPLEMENT_SCALAR_NANS(TY, X,Y) \
if (TY->isFloatTy()) { \
if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
Dest.IntVal = APInt(1,false); \
return Dest; \
} \
} else { \
if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
Dest.IntVal = APInt(1,false); \
return Dest; \
} \
}
#define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \
assert(X.AggregateVal.size() == Y.AggregateVal.size()); \
Dest.AggregateVal.resize( X.AggregateVal.size() ); \
for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \
if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \
Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \
Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \
else { \
Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \
} \
}
#define MASK_VECTOR_NANS(TY, X,Y, FLAG) \
if (TY->isVectorTy()) { \
if (dyn_cast<VectorType>(TY)->getElementType()->isFloatTy()) { \
MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \
} else { \
MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \
} \
} \
static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
Type *Ty)
{
GenericValue Dest;
// if input is scalar value and Src1 or Src2 is NaN return false
IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2)
// if vector input detect NaNs and fill mask
MASK_VECTOR_NANS(Ty, Src1, Src2, false)
GenericValue DestMask = Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(!=, Float);
IMPLEMENT_FCMP(!=, Double);
default:
dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
llvm_unreachable(0);
IMPLEMENT_VECTOR_FCMP(!=);
default:
dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
// in vector case mask out NaN elements
if (Ty->isVectorTy())
for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
if (DestMask.AggregateVal[_i].IntVal == false)
Dest.AggregateVal[_i].IntVal = APInt(1,false);
return Dest;
}
@ -318,6 +402,7 @@ static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(<=, Float);
IMPLEMENT_FCMP(<=, Double);
IMPLEMENT_VECTOR_FCMP(<=);
default:
dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
llvm_unreachable(0);
@ -331,6 +416,7 @@ static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(>=, Float);
IMPLEMENT_FCMP(>=, Double);
IMPLEMENT_VECTOR_FCMP(>=);
default:
dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
llvm_unreachable(0);
@ -344,6 +430,7 @@ static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(<, Float);
IMPLEMENT_FCMP(<, Double);
IMPLEMENT_VECTOR_FCMP(<);
default:
dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
llvm_unreachable(0);
@ -357,6 +444,7 @@ static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(>, Float);
IMPLEMENT_FCMP(>, Double);
IMPLEMENT_VECTOR_FCMP(>);
default:
dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
llvm_unreachable(0);
@ -375,18 +463,32 @@ static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
return Dest; \
}
#define IMPLEMENT_VECTOR_UNORDERED(TY, X,Y, _FUNC) \
if (TY->isVectorTy()) { \
GenericValue DestMask = Dest; \
Dest = _FUNC(Src1, Src2, Ty); \
for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++) \
if (DestMask.AggregateVal[_i].IntVal == true) \
Dest.AggregateVal[_i].IntVal = APInt(1,true); \
return Dest; \
}
static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ)
return executeFCMP_OEQ(Src1, Src2, Ty);
}
static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE)
return executeFCMP_ONE(Src1, Src2, Ty);
}
@ -394,6 +496,8 @@ static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE)
return executeFCMP_OLE(Src1, Src2, Ty);
}
@ -401,6 +505,8 @@ static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE)
return executeFCMP_OGE(Src1, Src2, Ty);
}
@ -408,6 +514,8 @@ static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT)
return executeFCMP_OLT(Src1, Src2, Ty);
}
@ -415,33 +523,88 @@ static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT)
return executeFCMP_OGT(Src1, Src2, Ty);
}
static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
if (Ty->isFloatTy())
if(Ty->isVectorTy()) {
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
Dest.AggregateVal.resize( Src1.AggregateVal.size() );
if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
Dest.AggregateVal[_i].IntVal = APInt(1,
( (Src1.AggregateVal[_i].FloatVal ==
Src1.AggregateVal[_i].FloatVal) &&
(Src2.AggregateVal[_i].FloatVal ==
Src2.AggregateVal[_i].FloatVal)));
} else {
for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
Dest.AggregateVal[_i].IntVal = APInt(1,
( (Src1.AggregateVal[_i].DoubleVal ==
Src1.AggregateVal[_i].DoubleVal) &&
(Src2.AggregateVal[_i].DoubleVal ==
Src2.AggregateVal[_i].DoubleVal)));
}
} else if (Ty->isFloatTy())
Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
Src2.FloatVal == Src2.FloatVal));
else
else {
Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
Src2.DoubleVal == Src2.DoubleVal));
}
return Dest;
}
static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
if (Ty->isFloatTy())
if(Ty->isVectorTy()) {
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
Dest.AggregateVal.resize( Src1.AggregateVal.size() );
if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
Dest.AggregateVal[_i].IntVal = APInt(1,
( (Src1.AggregateVal[_i].FloatVal !=
Src1.AggregateVal[_i].FloatVal) ||
(Src2.AggregateVal[_i].FloatVal !=
Src2.AggregateVal[_i].FloatVal)));
} else {
for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
Dest.AggregateVal[_i].IntVal = APInt(1,
( (Src1.AggregateVal[_i].DoubleVal !=
Src1.AggregateVal[_i].DoubleVal) ||
(Src2.AggregateVal[_i].DoubleVal !=
Src2.AggregateVal[_i].DoubleVal)));
}
} else if (Ty->isFloatTy())
Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
Src2.FloatVal != Src2.FloatVal));
else
else {
Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
Src2.DoubleVal != Src2.DoubleVal));
}
return Dest;
}
static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2,
const Type *Ty, const bool val) {
GenericValue Dest;
if(Ty->isVectorTy()) {
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
Dest.AggregateVal.resize( Src1.AggregateVal.size() );
for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
Dest.AggregateVal[_i].IntVal = APInt(1,val);
} else {
Dest.IntVal = APInt(1, val);
}
return Dest;
}
void Interpreter::visitFCmpInst(FCmpInst &I) {
ExecutionContext &SF = ECStack.back();
Type *Ty = I.getOperand(0)->getType();
@ -450,8 +613,14 @@ void Interpreter::visitFCmpInst(FCmpInst &I) {
GenericValue R; // Result
switch (I.getPredicate()) {
case FCmpInst::FCMP_FALSE: R.IntVal = APInt(1,false); break;
case FCmpInst::FCMP_TRUE: R.IntVal = APInt(1,true); break;
default:
dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
llvm_unreachable(0);
break;
case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false);
break;
case FCmpInst::FCMP_TRUE: R = executeFCMP_BOOL(Src1, Src2, Ty, true);
break;
case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
@ -466,9 +635,6 @@ void Interpreter::visitFCmpInst(FCmpInst &I) {
case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
default:
dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
llvm_unreachable(0);
}
SetValue(&I, R, SF);
@ -502,16 +668,8 @@ static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty);
case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty);
case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty);
case FCmpInst::FCMP_FALSE: {
GenericValue Result;
Result.IntVal = APInt(1, false);
return Result;
}
case FCmpInst::FCMP_TRUE: {
GenericValue Result;
Result.IntVal = APInt(1, true);
return Result;
}
case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false);
case FCmpInst::FCMP_TRUE: return executeFCMP_BOOL(Src1, Src2, Ty, true);
default:
dbgs() << "Unhandled Cmp predicate\n";
llvm_unreachable(0);
@ -525,27 +683,105 @@ void Interpreter::visitBinaryOperator(BinaryOperator &I) {
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue R; // Result
switch (I.getOpcode()) {
case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
default:
dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
llvm_unreachable(0);
}
// First process vector operation
if (Ty->isVectorTy()) {
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
R.AggregateVal.resize(Src1.AggregateVal.size());
// Macros to execute binary operation 'OP' over integer vectors
#define INTEGER_VECTOR_OPERATION(OP) \
for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
R.AggregateVal[i].IntVal = \
Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal;
// Additional macros to execute binary operations udiv/sdiv/urem/srem since
// they have different notation.
#define INTEGER_VECTOR_FUNCTION(OP) \
for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
R.AggregateVal[i].IntVal = \
Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal);
// Macros to execute binary operation 'OP' over floating point type TY
// (float or double) vectors
#define FLOAT_VECTOR_FUNCTION(OP, TY) \
for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
R.AggregateVal[i].TY = \
Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY;
// Macros to choose appropriate TY: float or double and run operation
// execution
#define FLOAT_VECTOR_OP(OP) { \
if (dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) \
FLOAT_VECTOR_FUNCTION(OP, FloatVal) \
else { \
if (dyn_cast<VectorType>(Ty)->getElementType()->isDoubleTy()) \
FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \
else { \
dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \
llvm_unreachable(0); \
} \
} \
}
switch(I.getOpcode()){
default:
dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
llvm_unreachable(0);
break;
case Instruction::Add: INTEGER_VECTOR_OPERATION(+) break;
case Instruction::Sub: INTEGER_VECTOR_OPERATION(-) break;
case Instruction::Mul: INTEGER_VECTOR_OPERATION(*) break;
case Instruction::UDiv: INTEGER_VECTOR_FUNCTION(udiv) break;
case Instruction::SDiv: INTEGER_VECTOR_FUNCTION(sdiv) break;
case Instruction::URem: INTEGER_VECTOR_FUNCTION(urem) break;
case Instruction::SRem: INTEGER_VECTOR_FUNCTION(srem) break;
case Instruction::And: INTEGER_VECTOR_OPERATION(&) break;
case Instruction::Or: INTEGER_VECTOR_OPERATION(|) break;
case Instruction::Xor: INTEGER_VECTOR_OPERATION(^) break;
case Instruction::FAdd: FLOAT_VECTOR_OP(+) break;
case Instruction::FSub: FLOAT_VECTOR_OP(-) break;
case Instruction::FMul: FLOAT_VECTOR_OP(*) break;
case Instruction::FDiv: FLOAT_VECTOR_OP(/) break;
case Instruction::FRem:
if (dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy())
for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
R.AggregateVal[i].FloatVal =
fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal);
else {
if (dyn_cast<VectorType>(Ty)->getElementType()->isDoubleTy())
for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
R.AggregateVal[i].DoubleVal =
fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal);
else {
dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
}
break;
}
} else {
switch (I.getOpcode()) {
default:
dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
llvm_unreachable(0);
break;
case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
}
}
SetValue(&I, R, SF);
}

View File

@ -0,0 +1,20 @@
; RUN: %lli %s > /dev/null
define i32 @main() {
%A_float = fadd <4 x float> <float 0.0, float 11.0, float 22.0, float 33.0>, <float 44.0, float 55.0, float 66.0, float 77.0>
%B_float = fsub <4 x float> %A_float, <float 88.0, float 99.0, float 100.0, float 111.0>
%C_float = fmul <4 x float> %B_float, %B_float
%D_float = fdiv <4 x float> %C_float, %B_float
%E_float = frem <4 x float> %D_float, %A_float
%A_double = fadd <3 x double> <double 0.0, double 111.0, double 222.0>, <double 444.0, double 555.0, double 665.0>
%B_double = fsub <3 x double> %A_double, <double 888.0, double 999.0, double 1001.0>
%C_double = fmul <3 x double> %B_double, %B_double
%D_double = fdiv <3 x double> %C_double, %B_double
%E_double = frem <3 x double> %D_double, %A_double
ret i32 0
}

View File

@ -0,0 +1,37 @@
; RUN: %lli %s > /dev/null
define i32 @main() {
%A_i8 = add <5 x i8> <i8 0, i8 1, i8 2, i8 3, i8 4>, <i8 12, i8 34, i8 56, i8 78, i8 89>
%B_i8 = sub <5 x i8> %A_i8, <i8 11, i8 22, i8 33, i8 44, i8 55>
%C_i8 = mul <5 x i8> %B_i8, %B_i8
%D_i8 = sdiv <5 x i8> %C_i8, %C_i8
%E_i8 = srem <5 x i8> %D_i8, %D_i8
%F_i8 = udiv <5 x i8> <i8 5, i8 6, i8 7, i8 8, i8 9>, <i8 6, i8 5, i8 4, i8 3, i8 2>
%G_i8 = urem <5 x i8> <i8 6, i8 7, i8 8, i8 9, i8 10>, <i8 5, i8 4, i8 2, i8 2, i8 1>
%A_i16 = add <4 x i16> <i16 0, i16 1, i16 2, i16 3>, <i16 123, i16 345, i16 567, i16 789>
%B_i16 = sub <4 x i16> %A_i16, <i16 111, i16 222, i16 333, i16 444>
%C_i16 = mul <4 x i16> %B_i16, %B_i16
%D_i16 = sdiv <4 x i16> %C_i16, %C_i16
%E_i16 = srem <4 x i16> %D_i16, %D_i16
%F_i16 = udiv <4 x i16> <i16 5, i16 6, i16 7, i16 8>, <i16 6, i16 5, i16 4, i16 3>
%G_i16 = urem <4 x i16> <i16 6, i16 7, i16 8, i16 9>, <i16 5, i16 4, i16 3, i16 2>
%A_i32 = add <3 x i32> <i32 0, i32 1, i32 2>, <i32 1234, i32 3456, i32 5678>
%B_i32 = sub <3 x i32> %A_i32, <i32 1111, i32 2222, i32 3333>
%C_i32 = mul <3 x i32> %B_i32, %B_i32
%D_i32 = sdiv <3 x i32> %C_i32, %C_i32
%E_i32 = srem <3 x i32> %D_i32, %D_i32
%F_i32 = udiv <3 x i32> <i32 5, i32 6, i32 7>, <i32 6, i32 5, i32 4>
%G_i32 = urem <3 x i32> <i32 6, i32 7, i32 8>, <i32 5, i32 4, i32 3>
%A_i64 = add <2 x i64> <i64 0, i64 1>, <i64 12455, i64 34567>
%B_i64 = sub <2 x i64> %A_i64, <i64 11111, i64 22222>
%C_i64 = mul <2 x i64> %B_i64, %B_i64
%D_i64 = sdiv <2 x i64> %C_i64, %C_i64
%E_i64 = srem <2 x i64> %D_i64, %D_i64
%F_i64 = udiv <2 x i64> <i64 5, i64 6>, <i64 6, i64 5>
%G_i64 = urem <2 x i64> <i64 6, i64 7>, <i64 5, i64 3>
ret i32 0
}

View File

@ -0,0 +1,22 @@
; RUN: %lli %s > /dev/null
define i32 @main() {
%A_i8 = and <5 x i8> <i8 4, i8 4, i8 4, i8 4, i8 4>, <i8 8, i8 8, i8 8, i8 8, i8 8>
%B_i8 = or <5 x i8> %A_i8, <i8 7, i8 7, i8 7, i8 7, i8 7>
%C_i8 = xor <5 x i8> %B_i8, %A_i8
%A_i16 = and <4 x i16> <i16 4, i16 4, i16 4, i16 4>, <i16 8, i16 8, i16 8, i16 8>
%B_i16 = or <4 x i16> %A_i16, <i16 7, i16 7, i16 7, i16 7>
%C_i16 = xor <4 x i16> %B_i16, %A_i16
%A_i32 = and <3 x i32> <i32 4, i32 4, i32 4>, <i32 8, i32 8, i32 8>
%B_i32 = or <3 x i32> %A_i32, <i32 7, i32 7, i32 7>
%C_i32 = xor <3 x i32> %B_i32, %A_i32
%A_i64 = and <2 x i64> <i64 4, i64 4>, <i64 8, i64 8>
%B_i64 = or <2 x i64> %A_i64, <i64 7, i64 7>
%C_i64 = xor <2 x i64> %B_i64, %A_i64
ret i32 0
}

View File

@ -0,0 +1,25 @@
; RUN: %lli %s > /dev/null
define i32 @main() {
%double1 = fadd <2 x double> <double 0.0, double 0.0>, <double 0.0, double 0.0>
%double2 = fadd <2 x double> <double 0.0, double 0.0>, <double 0.0, double 0.0>
%float1 = fadd <3 x float> <float 0.0, float 0.0, float 0.0>, <float 0.0, float 0.0, float 0.0>
%float2 = fadd <3 x float> <float 0.0, float 0.0, float 0.0>, <float 0.0, float 0.0, float 0.0>
%test49 = fcmp oeq <3 x float> %float1, %float2
%test50 = fcmp oge <3 x float> %float1, %float2
%test51 = fcmp ogt <3 x float> %float1, %float2
%test52 = fcmp ole <3 x float> %float1, %float2
%test53 = fcmp olt <3 x float> %float1, %float2
%test54 = fcmp une <3 x float> %float1, %float2
%test55 = fcmp oeq <2 x double> %double1, %double2
%test56 = fcmp oge <2 x double> %double1, %double2
%test57 = fcmp ogt <2 x double> %double1, %double2
%test58 = fcmp ole <2 x double> %double1, %double2
%test59 = fcmp olt <2 x double> %double1, %double2
%test60 = fcmp une <2 x double> %double1, %double2
ret i32 0
}

View File

@ -0,0 +1,69 @@
; RUN: %lli %s > /dev/null
define i32 @main() {
%int1 = add <3 x i32> <i32 0, i32 0, i32 0>, <i32 0, i32 0, i32 0>
%int2 = add <3 x i32> <i32 0, i32 0, i32 0>, <i32 0, i32 0, i32 0>
%long1 = add <2 x i64> <i64 0, i64 0>, <i64 0, i64 0>
%long2 = add <2 x i64> <i64 0, i64 0>, <i64 0, i64 0>
%sbyte1 = add <5 x i8> <i8 0, i8 0, i8 0, i8 0, i8 0>, <i8 0, i8 0, i8 0, i8 0, i8 0>
%sbyte2 = add <5 x i8> <i8 0, i8 0, i8 0, i8 0, i8 0>, <i8 0, i8 0, i8 0, i8 0, i8 0>
%short1 = add <4 x i16> <i16 0, i16 0, i16 0, i16 0>, <i16 0, i16 0, i16 0, i16 0>
%short2 = add <4 x i16> <i16 0, i16 0, i16 0, i16 0>, <i16 0, i16 0, i16 0, i16 0>
%ubyte1 = add <5 x i8> <i8 0, i8 0, i8 0, i8 0, i8 0>, <i8 0, i8 0, i8 0, i8 0, i8 0>
%ubyte2 = add <5 x i8> <i8 0, i8 0, i8 0, i8 0, i8 0>, <i8 0, i8 0, i8 0, i8 0, i8 0>
%uint1 = add <3 x i32> <i32 0, i32 0, i32 0>, <i32 0, i32 0, i32 0>
%uint2 = add <3 x i32> <i32 0, i32 0, i32 0>, <i32 0, i32 0, i32 0>
%ulong1 = add <2 x i64> <i64 0, i64 0>, <i64 0, i64 0>
%ulong2 = add <2 x i64> <i64 0, i64 0>, <i64 0, i64 0>
%ushort1 = add <4 x i16> <i16 0, i16 0, i16 0, i16 0>, <i16 0, i16 0, i16 0, i16 0>
%ushort2 = add <4 x i16> <i16 0, i16 0, i16 0, i16 0>, <i16 0, i16 0, i16 0, i16 0>
%test1 = icmp eq <5 x i8> %ubyte1, %ubyte2
%test2 = icmp uge <5 x i8> %ubyte1, %ubyte2
%test3 = icmp ugt <5 x i8> %ubyte1, %ubyte2
%test4 = icmp ule <5 x i8> %ubyte1, %ubyte2
%test5 = icmp ult <5 x i8> %ubyte1, %ubyte2
%test6 = icmp ne <5 x i8> %ubyte1, %ubyte2
%test7 = icmp eq <4 x i16> %ushort1, %ushort2
%test8 = icmp uge <4 x i16> %ushort1, %ushort2
%test9 = icmp ugt <4 x i16> %ushort1, %ushort2
%test10 = icmp ule <4 x i16> %ushort1, %ushort2
%test11 = icmp ult <4 x i16> %ushort1, %ushort2
%test12 = icmp ne <4 x i16> %ushort1, %ushort2
%test13 = icmp eq <3 x i32> %uint1, %uint2
%test14 = icmp uge <3 x i32> %uint1, %uint2
%test15 = icmp ugt <3 x i32> %uint1, %uint2
%test16 = icmp ule <3 x i32> %uint1, %uint2
%test17 = icmp ult <3 x i32> %uint1, %uint2
%test18 = icmp ne <3 x i32> %uint1, %uint2
%test19 = icmp eq <2 x i64> %ulong1, %ulong2
%test20 = icmp uge <2 x i64> %ulong1, %ulong2
%test21 = icmp ugt <2 x i64> %ulong1, %ulong2
%test22 = icmp ule <2 x i64> %ulong1, %ulong2
%test23 = icmp ult <2 x i64> %ulong1, %ulong2
%test24 = icmp ne <2 x i64> %ulong1, %ulong2
%test25 = icmp eq <5 x i8> %sbyte1, %sbyte2
%test26 = icmp sge <5 x i8> %sbyte1, %sbyte2
%test27 = icmp sgt <5 x i8> %sbyte1, %sbyte2
%test28 = icmp sle <5 x i8> %sbyte1, %sbyte2
%test29 = icmp slt <5 x i8> %sbyte1, %sbyte2
%test30 = icmp ne <5 x i8> %sbyte1, %sbyte2
%test31 = icmp eq <4 x i16> %short1, %short2
%test32 = icmp sge <4 x i16> %short1, %short2
%test33 = icmp sgt <4 x i16> %short1, %short2
%test34 = icmp sle <4 x i16> %short1, %short2
%test35 = icmp slt <4 x i16> %short1, %short2
%test36 = icmp ne <4 x i16> %short1, %short2
%test37 = icmp eq <3 x i32> %int1, %int2
%test38 = icmp sge <3 x i32> %int1, %int2
%test39 = icmp sgt <3 x i32> %int1, %int2
%test40 = icmp sle <3 x i32> %int1, %int2
%test41 = icmp slt <3 x i32> %int1, %int2
%test42 = icmp ne <3 x i32> %int1, %int2
%test43 = icmp eq <2 x i64> %long1, %long2
%test44 = icmp sge <2 x i64> %long1, %long2
%test45 = icmp sgt <2 x i64> %long1, %long2
%test46 = icmp sle <2 x i64> %long1, %long2
%test47 = icmp slt <2 x i64> %long1, %long2
%test48 = icmp ne <2 x i64> %long1, %long2
ret i32 0
}